Equations used in High School Physics

MECHANICS	Equations Used
Density	mass (kg)or (g) volume (m3) or(cm3)
Relative Density	$\frac{1\left(\frac{g}{cm3}\right)}{density\left(\frac{g}{cm3}\right)}$
Graphing	$\frac{y_1 - y_2}{x_1 - x_2}$ OR $\frac{y_2 - y_1}{x_2 - x_1}$
Determination of resultant force via right angled forces	hypotenuse ² = adjacent ² + opposite ²
Force	Mass (kg) × gravity (N/kg)
Turning moment	Force (N) × Distance (m) (Force ₁ × Distance ₁) = (Force ₂ × Distance ₂) All upward forces = All downward forces
Hooke's Law	Force (N) = spring constant (N/m) × extension (m)
Average speed	distance (m) time (s)
velocity	$\frac{displacement (m)}{time (s)}$
Acceleration	$\frac{change\ in\ velocity\ \left(\frac{m}{s}\right)}{change\ in\ time\ (s)}$

MECHANICS	Equations Used
Related equations to speed, velocity and acceleration s = distance (m) a = acceleration (m/s²) u = initial velocity (m/s) v = final velocity (m/s) t = time (s)	$v = u + at$ $v^2 = u^2 + 2as$ $s = ut + (at^2/2)$ $s = ((u + v)t) \div 2$
Newton's second law of motion	Force (N) = mass (kg) × acceleration (m/s²)
Momentum	mass (kg) \times velocity (m/s) Equation used for collision questions: $(mass_1 \times velocity_1) + (mass_2 \times velocity_2) = (mass_1 + mass_2) \times final velocity$ $change in momentum = Force (N) \times time (s)$
Work	Force (N) × distance (m)
Potential Energy	mass (kg) × gravity (N/kg) × Δheight (m)
Kinetic Energy	½ × mass (kg) × velocity ²
Power	* Where Energy = Force (N) × distance (m)

MECHANICS	Equations Used
Efficiency	Output value × 100
Pressure 1 Pa = 1 Nm ⁻²	Pressure on surfaces = $\frac{Force}{Area}$ Pressure in liquids = height (m) × density (kg/m ³) × gravity (N/kg)

THERMAL PHYSICS AND KINETIC THEORY	Equations Used
Temperature	When converting: Degree Celcius to Kelvins = + 273 Kelvins to Degree Celcius = - 273
Gas Laws Where: P means pressure V means volume T means temperature	Charles' Law $\frac{V1}{T1} = \frac{V2}{T2}$ Boyle's Law $P_1V_1 = P_2V_2$ Pressure Law $\frac{P1}{T1} = \frac{P2}{T2}$ The gas equation $\frac{P1V1}{T1} = \frac{P2V2}{T2}$
Heat capacity	Heat capacity, C (J/K) = heat energy, E_H (J) ÷ Temperature change, $\Delta\theta$ (K)
Specific Heat Capacity, c	$c = \frac{heat\ energy\ (J)}{mass\ (kg) \times change\ in\ temperature\ (\Delta\theta)}$ $c = Thermal\ capacity,\ C \div mass$
Latent heat of fusion, I_f	$I_f = E_H (J) \div mass (kg)$ OR $I_f = (Power (J/s) \times time (s)) \div mass (kg)$
Latent heat of vaporization, I_v	$I_v = E_H (J) \div mass (kg)$ OR $I_v = (Power (J/s) \times time (s)) \div mass (kg)$
Various equations for heat energy, E _H	$E_{Hheat given out} = E_{Hheat taken in}$ $E_{H} = Power (W of J/s) \times time (s)$ $E_{H} = mass (kg) \times gravity (N/kg) \times height (m)$ $E_{H} = \frac{1}{2} \times mass (kg) \times velocity^{2} (m/s)^{2}$

Waves	Equations Used
Period, T	$\frac{1}{frequency\left(\frac{1}{s}\right)}$
wave speed, v	frequency $(\frac{1}{s})$ × wavelength (m) OR distance (m) ÷ time (s)
Refractive Index, n	$\frac{\sin i}{\sin r}$ OR $\frac{\text{speed of light in air,v1}(\frac{m}{s})}{\text{speed of light in material,v2}(\frac{m}{s})}$ OR $\frac{\sin i}{\sin r} = \frac{v1}{v2}$
Critical angle, C	$\sin C = \frac{1}{refractive \ index \ of \ boundary}$
Linear magnification, m	height of image height of object OR image distance, v object distance, u
Lens formula Where u = object distance v = image distance f = focal length	$\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$

Electricity and Magnetism	Equations Used
Electric charge, Q (C)	Current (A) \times time (s) OR $I \times t$
Voltage, V (V) Where E means energy transferred R means resistance	$V = E \div Q$ OR $V = I \times R$ $P = I \times V$
Power, (W or J/s)	OR P = E ÷ t
Resistance, R (Ω)	R = V ÷ I Resistors in series = R ₁ + R ₂ + R ₃ Resistors in parallel = $\frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3}$
The transformer equation Where V means voltage N means number of turns I means current P means power subscript s means secondary subscript p means primary	$\frac{Vs}{Vp} = \frac{Ns}{Np} = \frac{Ip}{Is}$ Ideal transformer equation $= V_s I_s = V_p I_p \text{OR} P_{\text{out}} = P_{\text{in}}$

THE PHYSICS OF THE ATOM	Equations used
Mass number	Number of neutrons + Number of protons
Alpha decay	A-4 _{Z-2} X
Beta decay	A Z+ 1 X
Gamme decay	A _z X
Energy, E (J)	$E = m \times c^2$
Where m means mass c means speed of light	