RJ Semiconductor DDR Solution.

Overview

RJ Semiconductor DDR IP is a family of high-speed interface solutions optimized for **High-Performance Computing (HPC)** and **data center** applications. The IP supports fast integration into any **System-on-Chip (SoC)** and works as a complete memory subsystem when paired with **Denali DDR Controller IP**.

Key Benefits

- High-speed performance up to 10 Gbps
- Seamless integration with SoCs using AXI and DFI interfaces
- Product-optimized variants for **DDR3** and **DDR4**
- Verified and silicon-proven
- Extensive configuration options for power, performance, and area

DDR PHY IP Features

- Supports DDR4/DDR3 training:
 - Write-leveling
 - Data-eye training
- Low power control with optional clock gating
- Loop-back modes:

• Internal MICONDUCTOR

- External datapath
- Advanced I/O Pads:

- Impedance calibration logic
- Data retention capability
- Per-bit deskew (PVT compensated) on read/write paths
- **RX and TX equalization** to support heavily loaded systems

DDR Controller IP Features

- ECC Support:
 - Sideband and in-line SEC/DED ECC
- RAS Features:
 - Error scrubbing
 - Parity check
- Memory Compatibility:
 - DDR5/4/3
 - LPDDR5/4X/4/3
- DFI Compliance:
 - Up to **DFI 5.0**
- AXI Interface Support:
 - AMBA 4 AXI protocol
 - Single & multi-port options
 - **QoS features**: Command prioritization

SEMICONDUCTOR

- High-performance computing (HPC) systems
- Data centers & server memory subsystems

- AI/ML accelerators
- Networking devices
- Automotive SoCs
- Storage controllers
- Embedded systems requiring fast DDR access

DDR3 vs DDR4 – Key Differences

Feature	DDR3	DDR4
Data Rate	800–2133 MT/s	1600–3200+ MT/s
Voltage	1.5V (typical), 1.35	V (low) 1.2V (typical), 1.05V (low)
Prefetch Length	8n	8n
Bank Groups	Not Available	4 Bank Groups
Burst Chop	Yes (BC4, BL8)	No (Only BL8 supported)
Command/Address B	sus Single-ended	Differential (higher signal integrity)
Power Saving Feature	es Limited	Enhanced (self-refresh, gear-down)
CRC on Data	Not Supported	Supported

Complete DDR Interface Block Diagram Overview

- Masters: PCIe, DMA, SPD Controller act as masters initiating read/write transactions
- **AXI Interconnect**: Connects masters to the DDR controller
- **DDR Controller**: Manages protocol, RAS, ECC, and QoS features
- **DFI Interface**: Connects controller to PHY
- **DDR PHY**: Handles electrical signaling, training, and interface timing
- **DRAM Interface**: Physical signals between PHY and DDR memory

DDR3/DDR4 DRAM Signal Overview

Common DDR Signals:

Signal Category

Signals

Command/Address CK, CK#, CS#, RAS#, CAS#, WE#, A[0:n], BA[0:2]

ControlODT, RESET#, CKEDataDQ[0:63] (data lines), DQS[n], DQS#[n] (strobe lines)

Power VDD, VSS, VDDQ, VSSQ