
 

SPI Controller Verification IP 

Functional Verification Using UVM RAL Methodology 
(For APB/Wb-SPI Master Core) 

 

Overview 

The SPI Master Controller is designed to perform full-duplex synchronous serial 
communication between a master and multiple slave devices, following the SPI protocol. 
This Verification IP (VIP) enables comprehensive, configurable, and reusable verification of 
the APB/Wb-SPI Master core using a robust UVM-based environment and register 
abstraction via RAL methodology. 

 

Key Features 

● Full-duplex SPI communication 
 

● Supports up to 128-bit word length transfers 
 

● MSB/LSB first configurable transmission 
 

● Rx and Tx edges configurable (rising/falling) 
 

● 8 programmable Slave Select (SS) lines 
 

● Register-programmable via APB interface 
 

● Technology-independent Verilog design 
 

● Fully synthesizable 
 

● Verified using UVM Testbench with built-in SPI slave VI 

 

IO Interfaces 

APB/WB Interface Signals: 
Signal Width Direction Description 



 

PCLK 1 Input Clock 

PRESET 1 Input Active-high reset 

PADDR 32 Input Address input 

PWDATA 32 Input Data input 

PRDATA 32 Output Data output 

PENABLE 1 Input Transfer enable 

PSEL 1 Input Peripheral select 

PWRITE 1 Input Write control 

PREADY 1 Output Transfer complete status 

 

SPI External Connections 
Signal Width Direction Description 

/ss_pad_o 8 Output Active-low slave select lines 

sclk_pad_o 1 Output Serial clock 

mosi_pad_o 1 Output Master-out, slave-in data 

miso_pad_i 1 Input Master-in, slave-out data 

 



 

Core Register Map 

Register Name Address Width Access Description 

RX0–RX3 0x00–0x0C 32 Read Data Receive Registers 

TX0–TX3 0x00–0x0C 32 R/W Data Transmit Registers 

CTRL 0x10 32 R/W Control and Status Register 

DIVIDER 0x14 32 R/W Clock Divider 

SS 0x18 32 R/W Slave Select Register 

 

Register Highlights 

CTRL Register (0x10) 

● CHAR_LEN[6:0]: Data bit length (1–128 bits) 
 

● GO_BSY: Starts the SPI transfer 
 

● IE: Enables interrupt post-transfer 
 

● ASS: Auto Slave Select enable 
 

● LSB: Configures LSB or MSB first 
 

● Tx_NEG/Rx_NEG: Configures clock edge for transmit and receive 
 

DIVIDER Register (0x14) 

● Controls SPI clock generation 
 

● f_sclk = f_wbclk / (DIVIDER + 1) 

 
 

UVM-Based Verification Architecture 

Testbench Hierarchy 

● SPI_TEST: Top-level test extension from uvm_test 
 



 

● SPI_ENVIRONMENT: Encapsulates agent and scoreboard 
 

● SPI_AGENT: Configured as active, includes driver, monitor, sequencer 
 

● SPI_SEQUENCE/ITEM: Parameterized transaction flow with constraints 
 

● SPI_DRIVER: Drives transaction to DUT via APB 
 

● SPI_MONITOR: Captures and forwards observed responses 
 

● SPI_SCOREBOARD: Compares expected vs. actual data 
 

● COVERAGE: Functional and code coverage monitored via Cadence IMC 
 

"UVM Environment Architecture for SPI Verification" 

 

 

Test Methodology 

● Reset Phase: Initializes DUT and testbench state 
 

● Main Phase: Triggers SPI sequences using UVM sequencer 
 



 

● Synchronization: Handled via APB clocking block in interface 
 

● Coverage Goals: Achieve 100% functional + code coverage 
 

 

Timing Diagrams 

● Write cycle with PREADY wait + no-wait conditions 
 

● SPI transfer with varying Clock Polarity and Clock Phase combinations 
 

 

 

Test Case Scenarios 

● APB/Wb-Related: 
 

○ Read/write transactions with/without PREADY delays 
 

○ Address/data/data-phase validation 
 



 

● SPI-Related: 
 

○ Transfer integrity with varying data lengths 
 

○ Phase/polarity effects on data propagation 
 

 

Conclusion 

This Verification IP for the SPI Controller offers an exhaustive and configurable environment 
to ensure SPI Master core reliability and standard compliance. Its UVM architecture supports 
seamless integration with APB/Wb-based SoC designs and guarantees scalability across 
designs using SPI-based interfaces. 

 


	SPI Controller Verification IP 
	Functional Verification Using UVM RAL Methodology 
	Overview 
	Key Features 
	IO Interfaces 
	APB/WB Interface Signals: 
	 
	SPI External Connections 

	Core Register Map 
	Register Highlights 
	CTRL Register (0x10) 
	DIVIDER Register (0x14) 

	UVM-Based Verification Architecture 
	Testbench Hierarchy 

	Test Methodology 
	Timing Diagrams 
	Test Case Scenarios 
	Conclusion 



