## **SPI Controller Verification IP**

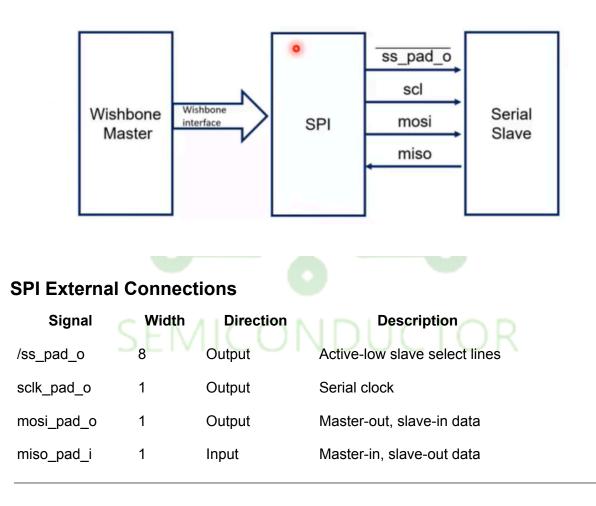
### Functional Verification Using UVM RAL Methodology

(For APB/Wb-SPI Master Core)

#### Overview

The SPI Master Controller is designed to perform full-duplex synchronous serial communication between a master and multiple slave devices, following the SPI protocol. This Verification IP (VIP) enables comprehensive, configurable, and reusable verification of the APB/Wb-SPI Master core using a robust UVM-based environment and register abstraction via RAL methodology.

#### **Key Features**


- Full-duplex SPI communication
- Supports up to 128-bit word length transfers
- MSB/LSB first configurable transmission
- Rx and Tx edges configurable (rising/falling)
- 8 programmable Slave Select (SS) lines
- Register-programmable via **APB interface**
- Technology-independent Verilog design
- Fully synthesizable
- Verified using UVM Testbench with built-in SPI slave VI

#### **IO Interfaces**

# APB/WB Interface Signals:SignalWidthDirectionDescription

| PCLK    | 1  | Input  | Clock                    |
|---------|----|--------|--------------------------|
| PRESET  | 1  | Input  | Active-high reset        |
| PADDR   | 32 | Input  | Address input            |
| PWDATA  | 32 | Input  | Data input               |
| PRDATA  | 32 | Output | Data output              |
| PENABLE | 1  | Input  | Transfer enable          |
| PSEL    | 1  | Input  | Peripheral select        |
| PWRITE  | 1  | Input  | Write control            |
| PREADY  | 1  | Output | Transfer complete status |
|         |    |        |                          |

## **SPI Master Core Architecture**



#### **Core Register Map**

| Register Name | Address   | Width | Access | Description                 |
|---------------|-----------|-------|--------|-----------------------------|
| RX0–RX3       | 0x00–0x0C | 32    | Read   | Data Receive Registers      |
| TX0–TX3       | 0x00–0x0C | 32    | R/W    | Data Transmit Registers     |
| CTRL          | 0x10      | 32    | R/W    | Control and Status Register |
| DIVIDER       | 0x14      | 32    | R/W    | Clock Divider               |
| SS            | 0x18      | 32    | R/W    | Slave Select Register       |

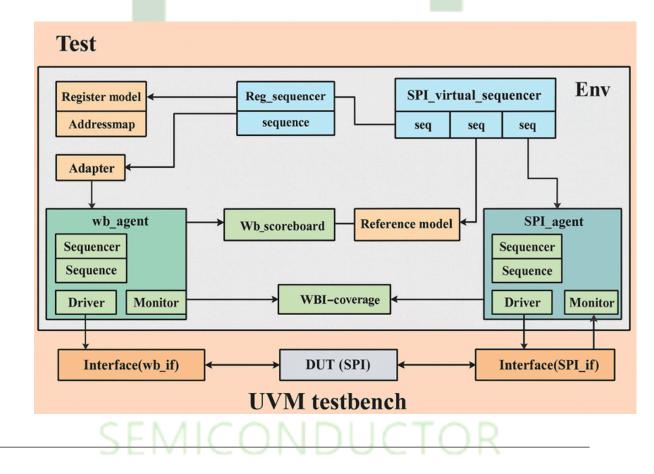
#### **Register Highlights**

#### CTRL Register (0x10)

- CHAR\_LEN[6:0]: Data bit length (1–128 bits)
- G0\_BSY: Starts the SPI transfer
- IE: Enables interrupt post-transfer
- ASS: Auto Slave Select enable
- LSB: Configures LSB or MSB first
- Tx\_NEG/Rx\_NEG: Configures clock edge for transmit and receive

#### DIVIDER Register (0x14)

- Controls SPI clock generation
- f\_sclk = f\_wbclk / (DIVIDER + 1)


#### UVM-Based Verification Architecture

#### **Testbench Hierarchy**

• SPI\_TEST: Top-level test extension from uvm\_test

- SPI\_ENVIRONMENT: Encapsulates agent and scoreboard
- SPI\_AGENT: Configured as active, includes driver, monitor, sequencer
- SPI\_SEQUENCE/ITEM: Parameterized transaction flow with constraints
- SPI\_DRIVER: Drives transaction to DUT via APB
- SPI\_MONITOR: Captures and forwards observed responses
- SPI\_SCOREBOARD: Compares expected vs. actual data
- COVERAGE: Functional and code coverage monitored via Cadence IMC

#### "UVM Environment Architecture for SPI Verification"



#### **Test Methodology**

- Reset Phase: Initializes DUT and testbench state
- Main Phase: Triggers SPI sequences using UVM sequencer

- Synchronization: Handled via APB clocking block in interface
- **Coverage Goals**: Achieve 100% functional + code coverage

| Write cycle  | with PREADY wait + no-wait conditions                             |
|--------------|-------------------------------------------------------------------|
| SPI transfer | with varying Clock Polarity and Clock Phase combinations          |
| ss_pad_o     |                                                                   |
| sclk_pad_o   |                                                                   |
| mosi_pad_o   | MSB<br>(Tx[7])                                                    |
| miso_pad_i   | MSB<br>(Rx[7])                                                    |
| CTRL[LSF     | B] = 0, CTRL[CHAR_LEN] = 0x08, CTRL[TX_NEG] = 1, CTRL[RX_NEG] = 0 |
| ss_pad_o     |                                                                   |
| sclk_pad_o   |                                                                   |
| mosi_pad_o   | LSB<br>(Tx[0])                                                    |
|              |                                                                   |

#### Test Case Scenarios

- APB/Wb-Related:
  - Read/write transactions with/without PREADY delays
  - Address/data/data-phase validation

- SPI-Related:
  - Transfer integrity with varying data lengths
  - Phase/polarity effects on data propagation

#### Conclusion

This Verification IP for the SPI Controller offers an exhaustive and configurable environment to ensure SPI Master core reliability and standard compliance. Its UVM architecture supports seamless integration with APB/Wb-based SoC designs and guarantees scalability across designs using SPI-based interfaces.

