

RJ SEMICONDUCTOR

Universal Verification Methodology

(UVM)

1. UVM Testbench Architecture:

Figure 1: Generic UVM TB to verify DUT

2. UVM Testbench/ Top Module:
The UVM Testbench typically instantiates the Design under Test (DUT) module and the UVM

Test class, and configures the connections between them. If the verification collaterals include

module-based components, they are instantiated under the UVM Testbench as well. The UVM

Test is dynamically instantiated at run-time, allowing the UVM Testbench to be compiled once

and run with many different tests.

3. UVM Test:
The UVM Test is the top-level UVM Component in the UVM Testbench. The UVM Test

typically performs three main functions: Instantiates the top-level environment, configures the

environment (via factory overrides or the configuration database), and applies stimulus by

invoking UVM Sequences through the environment to the DUT. Typically, there is one base

UVM Test with the UVM Environment instantiation and other common items. Then, other

RJ SEMICONDUCTOR

individual tests will extend this base test and configure the environment differently or select

different sequences to run.

4. UVM Environment:
The UVM Environment is a hierarchical component that groups together other verification

components that are interrelated. Typical components that are usually instantiated inside the

UVM Environment are UVM Agents, UVM Scoreboards, or even other UVM Environments.

The top-level UVM Environment encapsulates all the verification components targeting the

DUT.

5. UVM Scoreboard:
The UVM Scoreboard’s main function is to check the behavior of a certain DUT. The UVM

Scoreboard usually receives transactions carrying inputs and outputs of the DUT through

UVM Agent analysis ports (connections are not depicted in Figure 1), runs the input

transactions through some kind of a reference model (also known as the predictor) to produce

expected transactions, and then compares the expected output versus the actual output. There

are different methodologies on how to implement the scoreboard, the nature of the reference

model, and how to communicate between the scoreboard and the rest of the testbench.

6. UVM Agent:

Figure 2: UVM agent

The UVM Agent is a hierarchical component that groups together other verification

components that are dealing with a specific DUT interface (see Figure 2). A typical UVM

Agent includes a UVM Sequencer to manage stimulus flow, a UVM Driver to apply stimulus

on the DUT interface, and a UVM Monitor to monitor the DUT interface. UVM Agents

might include other components, like coverage collectors, protocol checkers, a TLM model,

etc. The UVM Agent needs to operate both in an active mode (where it is capable of

generating stimulus) and a passive mode (where it only monitors the interface without

controlling it).

RJ SEMICONDUCTOR

7. UVM Sequencer:
The UVM Sequencer serves as an arbiter for controlling transaction flow from multiple

stimulus sequences. More specifically, the UVM Sequencer controls the flow of UVM

Sequence Items transactions generated by one or more UVM Sequences.

8. UVM Sequence:
A UVM Sequence is an object that contains a behavior for generating stimulus. UVM

Sequences are not part of the component hierarchy. UVM Sequences can be transient or

persistent. A UVM Sequence instance can come into existence for a single transaction, it may

drive stimulus for the duration of the simulation, or anywhere in-between. UVM Sequences

can operate hierarchically with one sequence, called a parent sequence, invoking another

sequence, called a child sequence. To operate, each UVM Sequence is eventually bound to a

UVM Sequencer. Multiple UVM Sequence instances can be bound to the same UVM

Sequencer.

9. UVM Driver:
The UVM Driver receives individual UVM Sequence Item transactions from the UVM

Sequencer and applies (drives) it on the DUT Interface. Thus, a UVM Driver spans abstraction

levels by converting transaction-level stimulus into pin-level stimulus. It also has a TLM port

to receive transactions from the Sequencer and access to the DUT interface in order to drive

the signals.

10. UVM Monitor:
The UVM Monitor samples the DUT interface and captures the information there in

transactions that are sent out to the rest of the UVM Testbench for further analysis. Thus,

similar to the UVM Driver, it spans abstraction levels by converting pin-level activity to

transactions. In order to achieve that, the UVM Monitor typically has access to the DUT

interface and also has a TLM analysis port to broadcast the created transactions through. The

UVM Monitor can perform internally some processing on the transactions produced (such as

coverage collection, checking, logging, recording, etc.) or can delegate that to dedicated

components connected to the monitor's analysis port.

11. UVM Virtual sequencer:
A virtual sequencer is a top-level sequencer that connects and controls multiple lower-level

sequencers (e.g., for different master agents) in a UVM testbench. It allows coordinated

stimulus generation across multiple interfaces or modules, enabling complex test scenarios

like parallel or interleaved transactions. It doesn’t directly drive a driver but helps in

managing multiple sequence flows using a virtual sequence.

RJ SEMICONDUCTOR

12. UVM Sequence Item/Transaction:
A uvm_sequence_item represents a single transaction or operation to be driven on the DUT

interface. It is a class that defines the fields (such as address, data, control signals) used in

communication and is extended to model protocol-specific operations like AXI read/write or

APB transfers. It’s the core element passed from sequence → sequencer → driver.

13. Checker:
A checker is a functional block, typically implemented using SystemVerilog Assertions

(SVA) or procedural checks, to ensure that protocol rules and expected behaviors are

followed during simulation. Checkers can validate handshake timing, ordering constraints,

and response rules, and are often placed near interfaces or transaction monitoring points in

the testbench.

14. Interface:

An interface in SystemVerilog is a construct that groups related signals (like clock, reset,

read/write controls) and optionally includes clocking blocks, modports, or tasks/functions. In

UVM, interfaces connect the DUT and testbench, allowing drivers and monitors to access

and drive/sense signals consistently and cleanly.

15. Coverage:

Coverage is used to measure and track how thoroughly a testbench has exercised the DUT’s

functionality. In UVM, coverage can be functional (e.g., burst types, ID combinations) or

code-based (e.g., line, toggle coverage). Covergroups are used to define coverage models,

and they help ensure corner cases and all protocol behaviors are tested.

16. Configuration Block:

A configuration block is a user-defined class in UVM that holds settings or parameters (like

address ranges, burst types, ID width, etc.) that are shared across testbench components. It

enables flexible and reusable testbenches by allowing components to fetch their configuration

using uvm_config_db, without tight coupling.

RJ SEMICONDUCTOR

The UVM Class Library:

Figure 3: UVM Class Library

The UVM Class Library provides all the building blocks you need to quickly develop well-

constructed, reusable, verification components and test environments. The library consists of

base classes, utilities, and macros. Figure 3 shows a subset of those classes. Components may

be encapsulated and instantiated hierarchically and are controlled through an extendable set

of phases to initialize, run, and complete each test. These phases are defined in the base class

library, but can be extended to meet specific project needs

The advantages of using the UVM Class Library include:

a) A robust set of built-in features—The UVM Class Library provides many features that are

required for verification, including complete implementation of printing, copying, test

phases, factory methods, and more.

b) Correctly-implemented UVM concepts—Each component in the block diagram in Figure

1 and Figure 2 can be derived from a corresponding UVM Class Library component. Using

these baseclass elements increases the readability of your code since each component’s role

is predetermined by its parent class.

The UVM Class Library also provides various utilities to simplify the development and use

of verification environments. These utilities support configurability by providing a standard

resource sharing database. They support debugging by providing a user-controllable

RJ SEMICONDUCTOR

messaging utility for failure reporting and general reporting purposes. They support

testbench construction by providing a standard communication infrastructure between

verification components (TLM) and flexible verification environment construction (UVM

factory). Finally, they also provide macros for allowing more compact coding styles.

