The Committed Force or the Fifth Force of Nature in Geophysics

By: Babak Dion (Panahian-Jand), M.D.

Canadian Iranian Amateur Physicist, Toronto, Canada

Why do earthquakes and volcanoes happen on Earth? The answer is internal geo-forces, but I think these geo-forces arise from a lack of equilibrium in matter properties which raises the idea of the fifth force of nature. A deviation of average matter density from a designated density on the Earth surface creates a fifth force, which I have named this fifth force "The Committed Force". I personally believe in "determinism", but of course set aside religious determinism! I believe in mathematical and physical determinism which I have a new name for it, and it's called a "Mathematical and Physical Commitment". The Committed Force is responsible for earthquakes and volcanoes.

Keywords: Committed Force, Mathematical & Physical Determinism, Cosmic String, Geophysics

The Commitment Factor and the Committed Force

If all planets and stars which are spheres are simply created from an angular expansion of cosmic strings around one end, then a homogenous string would give rise to a planet which has a special order and properties in its matter density from surface to center of the planet. Matter properties translate to a combination of density, pressure, and temperature. Let's do calculation for our planet the "Earth". Consider a homogenous cosmic string with a mass equal to Earth mass and length of Earth Radius. Angular expansion of this string will result in the following values.

$$M=5.98 \times 10^{24} \text{ kg}$$

R = 6370 km

Mass of a segment of string is:
$$m_i = \frac{M}{n}$$
 $n = \frac{R}{L_{Pl}}$

n = number of segments each with a length of a superstring

L_{Pl} = superstring length or Planck Length

Average density of Earth:
$$\rho_{average} = \frac{M}{\frac{4}{3}\pi R^3}$$

Density of matter at earth surface with a minimal Planck Length thickness:

$$\rho_{surface} = \frac{m_i}{4\pi R^2 L_{Pl}}$$

This is defined as the committed density of matter at earth surface and it is physically deterministic:

$$\rho_{surface} = \frac{\rho_{average}}{3} = \frac{5400}{3} = 1800 \left(\frac{kg}{m^3}\right)$$

Earth surface is covered with %30 of land made of granite and basalt rocks with average density of 2800 kg/m³ and %70 ocean with a density of water or a little more than 1000 kg/m³.

Average actual density at surface:

$$\rho_{actual} = \frac{((70 \times 1000) + (30 \times 2800))}{100} = 1540 (kg/m^3)$$

Here I define the commitment factor "K" as a deviation from committed density:

$$K = \frac{\rho_{surface} - \rho_{actual}}{\rho_{surface}} = \frac{1800 - 1540}{1800} = \frac{260}{1800} = 0.144$$

The committed force "F_K" is derived as:

$$F_K = Ad\rho gK$$

A= Area of Earth surface piece

d= depth

 ρ = density of matter at A

 $g = 9.8 \text{ m/s}^2$

K=commitment factor = 0.144

Approximately %14.4 of any objects gravitational pull is that objects fifth or committed force on the planet Earth. A positive K demands quakes and volcanoes happening on that planet.

For Mars and the Moon, "K" comes out to be a negative value, so Moonquakes and Mars quakes happen very rarely.

The End