

MASTERING PISTON RINGS

Insights from Madev Engine Parts

TYPES OF PISTON RINGS

There are mainly three types of piston rings

1 COMPRESSION RING

The compression ring is installed in the upper grooves of the piston. Its main role is to transfer heat from the piston to the cylinder liner. Additionally, it helps control the side thrust on the piston, which can lead to variations.

2 OIL CONTROL RING

The oil control ring is positioned below the compression ring. Its function is to ensure adequate lubrication between the piston and the cylinder. Additionally, if excess lubrication accumulates inside the cylinder, the ring helps to scrape it away.

SCRAPER RING

The scraper ring is situated alongside the oil control ring. Its function is to remove excess oil from the cylinder walls. Additionally, it ensures the correct oil film thickness, preventing any oil from entering the combustion chamber.

TAPER FACED

KEYSTONE RING

TYPES OF PISTON RINGS

OIL RINGS

SLOTTED OIL CONTROL RING

BEVELLED OIL CONTROL RING

DOUBLE BEVELLED
OIL CONTROL RING

SPRING LOADED
OIL CONTROL RING

THREE PIECE OIL RING

TYPES OF PISTON RINGS

EDGE FEATURES OF COMPRESSION RINGS

INSIDE BEVEL

INSIDE BEVEL BOTTOM SIDE

INSIDE STEP

INSIDE STEP BOTTOM SIDE

COATINGS

PHOSPHATING: PHOSPHATE COATING ON ALL SURFACES

Phosphating deposits crystalline phosphates on all surfaces of the piston rings, except for chrome-plated areas. The phosphate layer, with a thickness ranging from 0.002 to 0.005 mm, enhances the piston ring's break-in performance by improving oil adhesion. Additionally, this layer provides some anti-corrosive protection during prolonged storage, even in humid conditions.

CHROME PLATING: O.D. SURFACE CHROME-PLATED AND LAPPED

Chrome plating on piston rings involves electroplating a thin chromium layer, typically 0.005 to 0.025 mm thick, onto the surface. This process boosts surface hardness beyond 1000 HV, enhancing wear resistance and durability. This makes chrome plating valuable for both compression and oil control rings, extending engine life and efficiency.

COATINGS

NITRIDING (NIT): NITROGEN COATING ON ALL SURFACES

Nitride coating on piston rings enhances durability and performance by increasing surface hardness through the diffusion of nitrogen atoms into the base metal. Applied to steel top and oil rings, this coating offers excellent wear and scuff resistance, comparable to chrome but with additional benefits. It improves heat transfer and side thrust management in pistons.

MOLYBDENUM COATING

Molybdenum coatings on piston rings reduce friction, enhance wear resistance, and improve lubrication by retaining oil on the ring surface. Applied via plasma spraying, these coatings provide excellent scuff resistance and withstand high temperatures, resulting in improved fuel efficiency, lower emissions, enhanced power output, and extended engine life.

MATERIALS

There are several kinds of material used in manufacturing madev piston rings

311 TAPER FACED RINGS

311

311 CR

311 1F

311IF CR

311 IF U CR

311 IW

311 IW U

311 IW U CR

3111F U

331 TAPER FACED NAPIER RING

331

331 ES

331 ESIW U

304 DOUBLE KEYSTONE RING 7° ANGLE

304 CR

304 IF CR

304 IW CR

303 DOUBLE KEYSTONE RING 3° ANGLE

303 CR

303 IF CR

303 IW CR

302 HALF KEYSTONE RING

302 CR

310 RECTANGULAR RING

310

310 CR

310 IF

310 IF CR

310 IW CR

344 CR

322 DOUBLE KEYSTONE RING 7° ANGLE

322

330 NAPIER RING

330

330 IF

501 SLOTTED OIL CONTROL RING (WITH SPIRAL EXPANDER)

501

501 EX

503 DOUBLE BEVELLED OIL CONTROL RING

503

503 EX NIT

503 EX DOUBLE BEVELLED OIL CONTROL RING

503 EX

503 EX CR

505 DOUBLE BEVELLED OIL CONTROL RING

505

505 EX

555 THREE PIECE STEEL RAIL OIL CONTROL RING

555 NIT

555 CR

RING DENOMINATIONS

IF U Inner Bevel Bottom SideIW Inner Cut Bottom Side

ES Interrupted Gap

COATINGS AND SURFACE TREATMENTS

CR Periphery Chrome-Plated

MO Periphery Molybdenum-Plated

PL Periphery Plasma Spray-Coated

NIT Nitrited

TF Periphery Teflon-Coated

4CR all sides Chrome-Plated

3CR Periphery not Chrome-Plated

other sides Chrome-Plated

FE Ferroxided

FX Periphery with Ferrox insert

P Phosphated

SN Tin-Plated

IN Coilspring & Interior of Oil Ring

Chrome-Plated

FS Joint with Side Notch

PVD Physical Vapour Deposition

CDS Chrome-Diamond-Coating

CKS Chrome-Ceramnic-Coating

www.madevinternational.com