

Linda Birr-Pixton
The Alliance for Cruelty Free Science
The NAM's UK market - a snapshot
19 December 2025

UK-Specific Estimates: No direct figure isolates the UK's share of the replacement-focused non-animal segment. However:

- The UK in vitro toxicology testing market (a close proxy, heavily overlapping with animal replacement in safety assessment) was **~USD 1.7 billion in 2023** and is projected to reach **USD 3.9 billion by 2030** (CAGR \sim 12.6%).
- Broader UK in vitro diagnostics (IVD) market (including but not limited to animal alternatives) is larger: **~USD 4 billion in 2024–2025**, growing to **~USD 6–7.6 billion by 2030–2033**.

Key Market Drivers for Animal-Free Testing and Research in the UK (as of December 2025)

The UK animal-free testing sector (encompassing New Approach Methodologies/ NAMs, organ-on-a-chip, in vitro models, AI-driven tools, and other non-animal technologies) is experiencing accelerated growth, driven by these five factors ranked from 1st to 5th in order of biggest **drivers for change**.

These drivers are interlinked and co-dependent on a global market, regulations and demand driven health industry.

Challenges remain (e.g., full validation for complex uses), but the combination of funding, timelines, and regulatory push is expected to significantly expand the sector, benefiting companies like CN Bio and academic hubs.

Key Drivers:

1. Scientific and Technological Advantages

- NAMs offer superior human relevance, predictability, and efficiency over animal models (e.g., organ-on-a-chip, 3D bioprinting, AI for drug analysis).
- Potential for better outcomes in drug discovery, toxicology, and personalised medicine, addressing limitations of animal models.

2. Economic and Innovation Opportunities

- Substantial market potential: Global non-animal technologies projected to reach ~\$29.4 billion by 2030.
- Attracts private investment by leveraging UK's life sciences sector, reducing R&D costs/time, and creating jobs in biotech.
- Supports growth in pharma, chemicals, and cosmetics by enabling faster, cheaper, and more accurate testing.

3. Ethical and Public Pressure

- Strong societal demand to reduce animal suffering (e.g., ~2.64 million procedures in 2024, with public support for alternatives).

- Alignment with long-standing bans (e.g., cosmetics testing since 1998) and manifesto commitments to partner with scientists/industry/civil society for phasing out animal testing.

4. Government Policy and Regulatory Commitments

- Roadmap to phase out specific animal tests: End pyrogen testing (2025), skin/eye irritation and sensitisation tests (by 2026), Botox mouse tests (by 2027), and reduce pharmacokinetic studies in dogs/primates by at least 35% (by 2030).

- Streamlined regulatory reforms via the Animals in Science Regulation Unit and new centres for faster validation/approval of alternatives.

- Explicit goal to drive private investment, improve regulatory confidence, and position the UK as a leader in NAMs adoption.

5. Public Funding and Investment

- £75 million committed overall, including £60 million for a data/technology/expertise hub and regulatory simplification centre.

- Additional £15.9 million from bodies like Medical Research Council, Innovate UK, and Wellcome Trust for human in vitro models.

- Focus on infrastructure, training (e.g., for early-career researchers from 2026), and biennial research priorities to sustain momentum.

The global non-animal alternatives market is growing rapidly (valued at ~\$9.8–10 billion in recent estimates, projected to \$29.4 billion by 2030 at 13.5% CAGR), with the UK playing an important role through innovation and funding.

Overview of Animal-Free Testing and Research in the UK

The UK is an important nation state in promoting alternatives to animal testing, driven by ethical concerns, scientific advancements, and regulatory bans (e.g., cosmetics testing banned since 1998, with full EU-wide sales bans since 2013).

Animal-free methods—often called New Approach Methodologies (NAMs) or non-animal technologies (NATs)—include in vitro cell cultures, organoids, organ-on-a-chip systems, 3D tissue models, in silico modeling, and stem cell platforms. These aim to better mimic human biology, improving predictability over animal models while reducing ethical issues.

Notable Businesses and Technologies

The UK hosts growing NATs innovation, though many leading companies are international (e.g., Emulate Inc., MIMETAS, InSphero, CN Bio—UK-based, specializing in 3D organs for drug testing). UK strengths:

- Organ-on-a-Chip - Queen Mary University of London opened one of Europe's largest facilities (£7 million investment), with a doctoral training center. Models mimic organs (e.g., lung, liver, musculoskeletal) for safety/efficacy testing.
- CN Bio (UK): Develops 3D human organ models to reduce animal dependency in drug discovery.
- Academic hubs: e.g. projects at UCL, Birmingham, Westminster using chips for cancer, immunology, toxicology.

Key UK Organizations and Funding

- NC3Rs (National Centre for the Replacement, Refinement and Reduction of Animals in Research): Government-funded body leading 3Rs efforts. Since 2004, funded ~550 projects (£ millions invested), with ~75% focused on replacement. Partners with 300+ organizations; collaborates on NATs like organ-on-chips. Recent initiatives include guidelines for non-animal biologics testing and £4–4.7 million joint funding with BBSRC/UKRI for NATs (e.g., 3D models, stem cell platforms).
- Animal Free Research UK: Leading charity funding exclusively human-relevant, animal-free methods. Awarded over £11.5–10 million in grants since 1970 for ~300 projects (e.g., cancer, diabetes, COVID-19 models using organoids, in vitro systems). Focuses on stem cells, microfluidics, and computational tools.

- The Humane Research Trust: Funds humane, non-animal projects. Recently awarded £1.04 million to UK universities for advanced models (e.g., microfluidic/3D bioprinting for blood vessels).
- Government Strategy (November 2025): "Replacing animals in science" plan commits to accelerating NATs adoption, with increased funding via UKRI/NC3Rs. Targets ending specific tests (e.g., rabbit pyrogen by 2025, Botox mouse tests by 2027). £75 million pledged for delivery.

Facts and Trends

- **Reduction Potential:** Abolishing outdated tests with approved alternatives could save >80,000 animals/year (Cruelty Free International RAT List).
- **Investment Growth:** UK funders (BBSRC, NC3Rs, charities) prioritize NATs; global shift (e.g., FDA endorsing non-animal methods) boosts adoption.
- **Challenges:** Validation for regulatory use is slow; animal procedures remain ~2.6 million annually due to legacy requirements.

University Spinouts in Animal-Free Testing and Research (New Approach Methodologies/NAMs) in the UK (2015–2025)

The UK has seen limited but growing numbers of university spinouts directly focused on animal-free testing technologies (e.g., organ-on-a-chip, 3D cell culture hydrogels, in vitro models).

Many advancements remain in academic labs or funded projects (via NC3Rs, Animal Free Research UK, or UKRI), with commercialization often through partnerships rather than formal spinouts.

The sector is nascent, accelerated by the 2025 "Replacing Animals in Science" strategy and funding like £75M government commitments.

Notable Spinouts

CN Bio Innovations (Founded ~2009–2010, spinout from University of Oxford, with MIT/Vanderbilt tech licensing)

Develops organ-on-a-chip (OOC) systems (e.g., PhysioMimix for liver/lung/multi-organ models) for drug discovery and toxicology, reducing animal use.

Figures: Raised ~\$44.8M total funding (including \$21M Series B in 2024). Commercial products used globally; strong regulatory traction (e.g., FDA collaborations). One of the most successful UK NAMs spinouts.

PeptiMatrix (Founded 2023, spinout from University of Nottingham)

Develops fully synthetic, customizable peptide hydrogels for 3D cell culture—animal-free alternatives for drug development and biomedical research.

Figures: Early-stage; highlighted in innovation reports for ethical, human-relevant modeling. No major public funding rounds detailed yet.

InoCardia (Founded ~2014, spinout from **Coventry University)

Developed human in vitro heart tissue models for cardiotoxicity testing, aiming to replace animal-based drug safety screens.

Figures: Attracted early VC from Mercia Fund Management; focused on faster/cheaper predictions than animal trials. Commercialization ongoing; limited recent public updates.

MOMO-biotech (Founded 2022, London)

Creates MEmic, an in vitro tumor microenvironment model for cancer drug efficacy and immune response testing.

Global Ties: Focus on human-relevant oncology; aligns with international cancer research networks.

Funding/Figures: Early-stage; highlighted in innovation reports for predictive accuracy over animal models.

Jetbio (Founded 2023, UK)

Uses reactive jet impingement (ReJI) 3D bioprinting for biomimetic, cell-filled gels—animal-free alternatives for organ-like models in drug testing.

Global Ties: Emerging tech with potential pharma partnerships.

Funding/Figures: Early-stage; noted for high-throughput potential.

XCellR8 (Established pre-2015, expanded; Manchester area)

GLP-accredited lab offering 100% animal-free in vitro testing (e.g., irritation, sensitization) for cosmetics/chemicals.

Global Collaborations: Works with international brands; OECD/ECHA-recognized tests.

Funding/Figures: Grant-supported (Innovate UK, Horizon); contract-based growth.

Trends and Numbers**UK University Spinouts Since 2010**

The UK has a strong ecosystem for university spinouts (companies formed to commercialize academic research and intellectual property). Data sources vary slightly in definitions (e.g., formal spinouts with university equity vs. broader IP-based companies), time periods, and inclusion of active vs. all companies, but consistent trends emerge from reports by Beauhurst (in partnership with the Royal Academy of Engineering), HESA (Higher Education Statistics Agency), and others.

Total Number of Spinouts

Since approximately 2011–2012, the UK has produced over 2,000 spinouts:

- HESA's 2025 national register lists 2,269 spinout companies founded or owned by UK higher education providers since August 2012 (plus older active ones).
- Beauhurst's Spotlight on Spinouts (2025 edition) tracks around 2,064 spinouts from 2011 to early 2025, with 1,609 active as of mid-2025.
- Annual formations peaked at ~200 in 2020/21 but declined to ~160 in 2023/24.
- For the full period since 2010, estimates align closely with these figures, as activity ramped up significantly post-2010.

Top Universities by Number of Spinouts (Since ~2011–2012)

According to the latest Beauhurst/Royal Academy of Engineering data (Spotlight on Spinouts 2025):

1. University of Oxford: 225 spinouts
2. University of Cambridge: 175–299 (sources vary; HESA reports higher figures including broader criteria)
3. Imperial College London: ~132
4. University College London (UCL): ~152
5. Swansea University: ~139
6. University of Manchester: ~122
7. Others notable: University of Edinburgh (~71), Royal College of Art (~72), University of Bristol (~64), Queen's University Belfast (~52).

The "Golden Triangle" (Oxford, Cambridge, London institutions) and a few others account for over 50% of all spinouts.

Key Trends

The UK's spinout ecosystem is world-leading in Europe, with high survival rates (~90% beyond 5 years) and notable successes like Oxford Nanopore and Darktrace.

- **Investment:** Record highs in recent years. Spinouts raised £2.6–3.35 billion in 2024 (38–44% increase from 2023), bucking broader VC downturns. Sectors like AI, life sciences, and biotech dominate.
- **Equity Stakes:** Universities reduced average stakes to a record-low ~16% in 2024 (down from ~22% in 2023), aligning with government recommendations to make deals more founder/investor-friendly.
- **Regional Distribution:** Concentrated in South East England (especially Oxford/Cambridge/London), but growing elsewhere (e.g., Scotland ~12% of total).
- **Broader Ecosystem:** Universities like Queen Mary (Europe's largest OOC facility, £7M+ investment) and Nottingham drive innovation, often via grants (£10M+ from Animal Free Research UK since 1970; £4.85M NC3Rs awards for in vitro scaling).
- **Funding Context:** Spinouts benefit from Innovate UK, UKRI, and charity grants. Global OOC market growth supports traction, **but validation delays slow new formations.**

The field prioritizes academic-commercial collaboration over prolific spinouts. With 2025 policy drivers (e.g., phasing out tests by 2026–2030), expect more in coming years.

Broader UK Biotechs in Animal-Free Testing and Research (2015–2025)

Expanding beyond university spinouts, the UK hosts a growing number of biotechs focused on New Approach Methodologies (NAMs), including organ-on-a-chip (OOC), 3D in vitro models, synthetic scaffolds, and tumor microenvironment platforms. These companies develop human-relevant, animal-free technologies for drug discovery, toxicology, disease modeling, and personalized medicine, often collaborating with global players (e.g., pharma giants like GSK, AstraZeneca; regulators like FDA; or international firms like Emulate for tech partnerships).

Many collaborate internationally for validation, commercialization, and adoption

Biotech/pharma spinouts dominate, with record investment (£3.35 billion in 2024 across all spinouts). Leading universities:

- Oxford: ~225 spinouts since 2011, highest value (~£6.4 billion historically).
- Cambridge: ~175, strong recent growth.

Notable biotech spinouts include Exscientia (Dundee), Immunocore (Oxford), Gyroscope Therapeutics (Cambridge, acquired by Novartis), Amphista Therapeutics (Dundee), and Quell Therapeutics (UCL/King's).

The "Golden Triangle" (Oxford, Cambridge, London universities) produces the most biotech spinouts:

- Oxford University Innovation: Full portfolio of spinouts (many in biotech, e.g., Oxford Nanopore, Immunocore).
- Cambridge Enterprise Equity portfolio and spinouts (strong in cancer, therapeutics).
- - Other universities: Bristol, Nottingham, Dundee.

Comprehensive Lists and Databases for UK University Spinouts in the Biotech Sector

There is no single, free, publicly accessible exhaustive list of all UK university spinouts in biotech, as these are tracked across multiple sources including university technology transfer offices, government databases, and commercial analytics platforms. However, several reliable resources provide directories, registers, or searchable lists, often with a strong focus on biotech (which dominates UK spinouts, accounting for a significant portion of activity in pharmaceuticals, biotechnology, and life sciences).

Key Official and Comprehensive Resources

1. HE-BCI Spin-out Register (Higher Education Statistics Agency - HESA)

This is the UK's official national register of university spinouts, launched as part of the HE-BCI (Higher Education - Business and Community Interaction) survey. It provides a complete list of spin-out firms from UK higher education providers, including company names, registration numbers, and details like social enterprise status. Biotech is the largest category here.

Access the register and data:

<https://www.hesa.ac.uk/data-and-analysis/business-community/spin-out-register>

It's designed for analysis and links to other datasets.

2. UK Biotech Database (Biotechgate)

A searchable directory of UK biotech, pharma, and medtech companies, including many university spinouts. Filter by sector, location, and founding origin.

<https://www.ukbiotech.com/uk/portal/index.php>

3. Beauhurst

A leading commercial platform tracking UK spinouts (over 2,000 since 2011). They publish annual "Spotlight on Spinouts" reports with trends, rankings, and sector breakdowns—biotech/pharma often leads. You can filter spinouts by university, sector (e.g., biotechnology), and region. Reports highlight top universities for life sciences spinouts (e.g., Oxford, Cambridge, Imperial, UCL).

<https://www.beauhurst.com>

