

Comparison of Initial Investment Costs: Non-Animal Testing vs. Traditional Animal Testing (Draize Test)

Scope of Comparison

This analysis compares the **initial investment costs** (infrastructure, equipment, and setup) for non-animal testing methods (in vitro: EpiDerm/ EpiOcular; organ-on-chip) versus the Draize test (animal-based, for eye and skin irritation testing). It accounts for:

- The **75-year history** of the Draize test (since 1944), with established infrastructure in many labs.
- The **10–20-year timeline** of non-animal methods, developed primarily since the 2000s.
- The **cost of refreshing and updating** Draize test facilities to comply with modern animal welfare laws (e.g., USDA regulations, EU Directive 2010/63/EU, updated 2010–2020). Costs are in USD (2025 dollars, adjusted for inflation where historical), with estimates based on

industry data, regulatory guidelines, and prior context. Limitations are noted where exact figures are unavailable.

1. Traditional Animal Testing: Draize Test

The Draize test, developed in 1944, assesses eye and skin irritation using albino rabbits. Its 75-year history means many labs have established vivariums, but modern animal welfare laws require costly updates to facilities. Below, I'll evaluate initial investment costs in three contexts:

1. **Historical (1944)**: Original setup costs, adjusted to 2025 dollars.
2. **Modern (2025, New Lab)**: Costs for a new lab starting from scratch.
3. **Modern (2025, Existing Lab with Updates)**: Costs for refreshing existing facilities to meet modern welfare standards.

Initial Investment Costs

- **Historical Context (1944):**
 - **Animal Procurement:** Albino rabbits cost \$1–\$5 each in 1944 (\$20–\$100 in 2025 dollars, CPI-adjusted). Initial setup required 10–20 rabbits for protocol development, costing \$10–\$100 (\$200–\$2,000 in 2025 dollars). Note: Ongoing animal costs are excluded as they are not initial investments.
 - **Facility Setup:** Early vivariums were basic, with minimal regulatory oversight. A small vivarium for 10–20 rabbits cost \$5,000–\$20,000, including:
 - Cages: \$500–\$2,000 (\$10,000–\$40,000 in 2025 dollars).
 - Ventilation: \$1,000–\$5,000 (\$20,000–\$100,000 in 2025 dollars).
 - Basic lab supplies: \$500–\$1,000 (\$10,000–\$20,000 in 2025 dollars).
 - **Equipment:** Minimal equipment (e.g., magnifying glasses, scales) cost \$500–\$2,000 (\$10,000–\$40,000 in 2025 dollars).
 - **Personnel Training:** Basic training in animal handling and scoring cost \$500–\$2,000 (\$10,000–\$40,000 in 2025 dollars).
 - **Total Initial Investment (1944): \$6,500–\$29,000** (\$150,000–\$600,000 in 2025 dollars).
- **Modern Context (2025, New Lab):**
 - **Facility Setup:** A new vivarium for 10–20 rabbits, compliant with modern welfare laws (e.g., USDA, EU Directive 2010/63/EU), costs \$500,000–\$2 million, including:
 - Cages (enriched, larger for welfare): \$5,000–\$20,000.
 - Advanced ventilation (HEPA filters): \$100,000–\$500,000.
 - Biosecurity and waste disposal (e.g., autoclaves): \$50,000–\$200,000.
 - Welfare compliance (e.g., environmental enrichment, monitoring): \$50,000–\$100,000.
 - **Equipment:** Includes restraint devices (\$1,000–\$5,000), slit-lamp biomicroscopes for eye observation (\$10,000–\$50,000), and lab supplies (\$5,000–\$10,000). Total: \$16,000–\$65,000.
 - **Personnel Training:** Training for animal handling, welfare compliance (e.g., analgesia use per OECD TG 405, 2020), and Good Laboratory Practice (GLP) costs \$5,000–\$20,000 for a small team.
 - **Total Initial Investment (New Lab): \$550,000–\$2.1 million**, reflecting modern standards for animal welfare and regulatory compliance.

- **Modern Context (2025, Existing Lab with Updates):**
 - **Facility Updates for Welfare Laws:** Many labs have vivariums from the 1960s–1990s, predating modern welfare standards (e.g., EU Directive 2010/63/EU, effective 2013; USDA Animal Welfare Act amendments). Updates include:
 - **Cage Upgrades:** Replacing small cages with larger, enriched ones (e.g., group housing, hiding areas) costs \$2,000–\$10,000 per 10 rabbits.
 - **Ventilation and Biosecurity:** Upgrading to HEPA filters and modern waste systems costs \$50,000–\$200,000 for a small vivarium.
 - **Welfare Compliance:** Adding monitoring systems (e.g., CCTV, temperature/humidity sensors) and enrichment materials costs \$20,000–\$50,000.
 - **Total Update Costs:** **\$72,000–\$260,000** per lab, depending on facility age and existing infrastructure.
 - **Equipment Updates:** Replacing outdated biomicroscopes or adding new ones costs \$10,000–\$50,000. Other equipment (e.g., restraints) may not need replacement if functional, adding \$0–\$5,000.
 - **Personnel Retraining:** Training staff on updated welfare protocols (e.g., humane endpoints, analgesia per OECD TG 405) costs \$5,000–\$15,000.
 - **Total Initial Investment (Existing Lab with Updates):** **\$87,000–\$330,000**, assuming the vivarium exists but requires modernization.

Summary for Draize Test

- **Historical (1944): \$150,000–\$600,000** (2025 dollars), low due to minimal regulations and simple infrastructure.
- **Modern (2025, New Lab): \$550,000–\$2.1 million**, reflecting modern welfare and regulatory standards.
- **Modern (2025, Existing Lab with Updates): \$87,000–\$330,000**, leveraging existing vivariums but requiring significant updates for welfare compliance.
- **Key Insight:** The Draize test's 75-year history means most labs have established vivariums, lowering initial costs for existing facilities. However, modern welfare laws (e.g., EU Directive 2010/63/EU) mandate costly updates, narrowing the cost gap with non-animal methods.

2. Non-Animal Testing Methods

Non-animal methods, developed primarily since the 2000s, include in vitro (EpiDerm for skin irritation, EpiOcular for eye irritation) and organ-on-chip systems. Their shorter 10–20-year timeline means costs are concentrated, and infrastructure is often built anew or adapted from existing cell culture facilities.

Initial Investment Costs

- **In Vitro Methods (EpiDerm/EpiOcular):**
 - **Cell Culture Facilities:** Requires cleanrooms, biosafety cabinets, and CO₂ incubators. Costs for a small to mid-sized lab: \$100,000–\$500,000, including:
 - Biosafety cabinets: \$10,000–\$20,000 each.
 - CO₂ incubators: \$5,000–\$15,000 each.
 - Cell culture consumables (e.g., media, plates): \$10,000–\$50,000 for initial stock.
 - **High-Throughput Equipment:** Automated pipetting and plate readers for regulatory testing cost \$50,000–\$200,000.
 - **Tissue Models:** Initial EpiDerm/EpiOcular kits (24-well plates, \$500–\$2,000 each) for protocol optimization cost \$10,000–\$50,000.
 - **Personnel Training:** Training in cell culture and GLP costs \$10,000–\$30,000 for a small team.
 - **Total Initial Investment:** **\$200,000–\$850,000** per lab.
 - **Context:** Labs with existing cell culture facilities (common in biotech/pharma) may only need equipment and kits (\$70,000–\$280,000), reducing costs.
- **Organ-on-Chip Systems:**
 - **Equipment:** Microfluidic pumps (\$5,000–\$20,000), fluorescence microscopes (\$50,000–\$200,000), and control software (\$10,000–\$50,000) cost \$65,000–\$270,000.
 - **Consumables:** Initial chips (10–50, \$1,000–\$5,000 each) for optimization cost \$10,000–\$250,000.
 - **Personnel Training:** Training in microfluidics and cell biology costs \$20,000–\$50,000.
 - **Total Initial Investment:** **\$300,000–\$1.5 million** per lab.
 - **Context:** Development costs (e.g., Emulate's \$36 million in 2018) are typically externalized to companies, not individual labs. Labs with cell culture facilities may reduce costs to \$100,000–\$500,000.

Summary for Non-Animal Methods

- **In Vitro (EpiDerm/EpiOcular): \$200,000–\$850,000**; \$70,000–\$280,000 with existing cell culture facilities.
- **Organ-on-Chip: \$300,000–\$1.5 million**; \$100,000–\$500,000 with existing facilities.
- **Key Insight:** Non-animal methods require specialized equipment, but costs are lower for labs with existing cell culture infrastructure, common in modern biotech settings.

3. Direct Cost Comparison

Testing Method	Initial Investment (2025, USD)	Notes
Draize (Historical, 1944)	\$150,000–\$600,000	Low due to minimal regulations; adjusted to 2025 dollars.
Draize (New Lab, 2025)	\$550,000–\$2.1M	High due to modern vivarium and welfare requirements.
Draize (Existing Lab with Updates, 2025)	\$87,000–\$330,000	Leverages existing vivariums; updates for welfare laws add costs.
In Vitro (EpiDerm/ EpiOcular)	\$200,000–\$850,000 (\$70,000–\$280,000 with existing facilities)	Lower or comparable to new Draize lab; benefits from existing cell culture infrastructure.
Organ-on-Chip	\$300,000–\$1.5M (\$100,000–\$500,000 with existing facilities)	Higher due to specialized equipment; reduced with existing infrastructure.

Analysis

- **Draize Test:**
 - **Historical (1944):** Extremely low initial costs (\$150,000–\$600,000 in 2025 dollars) due to simple vivariums and minimal regulations, giving it a historical advantage.
 - **New Lab (2025):** High costs (\$550,000–\$2.1M) due to modern vivarium requirements (e.g., enriched cages, HEPA ventilation) and welfare compliance (e.g., EU Directive 2010/63/EU), comparable to or higher than

non-animal methods.

- **Existing Lab with Updates (2025):** Lower costs (\$87,000–\$330,000) due to established vivariums, but mandatory updates for welfare laws (e.g., larger

cages, monitoring systems) significantly increase expenses. Most labs fall in this category, as vivariums have existed for decades.

- **In Vitro (EpiDerm/EpiOcular):**

- Costs (\$200,000–\$850,000) are lower or comparable to a new Draize lab, especially for labs with existing cell culture facilities (\$70,000–\$280,000). These facilities are common in biotech/pharma, reducing the cost barrier.
- The 10–20-year timeline means costs are concentrated, but scalability and lower per-test costs (\$500–\$2,000 vs. \$5,000–\$10,000 for Draize) offset initial investment.

- **Organ-on-Chip:**

- Higher costs (\$300,000–\$1.5M) due to specialized microfluidic and imaging systems, but reduced (\$100,000–\$500,000) with existing cell culture facilities.
- The novelty (developed since 2000s) means fewer labs have infrastructure, but costs overlap with high-end Draize estimates for new labs.

- **Time Range Impact:**

- The Draize test's 75-year history means most labs have amortized infrastructure costs, with only updates needed today. This lowers perceived initial costs but ignores the massive cumulative investment (\$67.5B–\$180B globally, from prior analysis) over decades.
- Non-animal methods, developed in 10–20 years, have front-loaded costs but benefit from modern lab infrastructure (e.g., cell culture facilities) and regulatory trends (e.g., FDA Modernization Act 2.0).

- **Welfare Law Updates:**

- Modern welfare laws significantly increase Draize costs for existing labs (\$87,000–\$330,000 for updates), narrowing the gap with non-animal methods. For example, EU Directive 2010/63/EU mandates enriched environments and humane endpoints, requiring costly retrofits.

4. Critical Evaluation of the Claim

- **Claim:** “Developing advanced non-animal testing methods, like organ-on-chip systems, involves high initial costs.”
- **Verdict: Partially true but context-dependent:**
 - **Draize (Historical):** Extremely low initial costs (\$150,000–\$600,000) gave it an early advantage, but these are irrelevant for modern labs.
 - **Draize (New Lab, 2025):** Costs (\$550,000–\$2.1M) are comparable to or higher than in vitro (\$200,000–\$850,000) and organ-on-chip (\$300,000–\$1.5M), refuting the claim that non-animal methods are uniquely costly.
 - **Draize (Existing Lab with Updates, 2025):** Lower costs (\$87,000–\$330,000) due to established vivariums, but mandatory welfare updates (e.g., EU Directive 2010/63/EU) make it comparable to in vitro with existing facilities (\$70,000–\$280,000).
 - **In Vitro:** Costs are lower or comparable to a new Draize lab, especially with existing cell culture facilities, challenging the claim for these methods.
 - **Organ-on-Chip:** Higher costs support the claim, but overlap with new Draize labs and are reduced with existing infrastructure.
 - **Historical Context:** The Draize test’s 75-year history means most labs have established infrastructure, but modern welfare laws require significant updates, aligning costs closer to non-animal methods. Non-animal methods’ shorter timeline concentrates costs but leverages modern lab capabilities.
- **Conclusion:** The claim is **true for organ-on-chip** (\$300,000–\$1.5M) but **not universally true for in vitro methods** (\$200,000–\$850,000), which are often cheaper or comparable to a new Draize lab (\$550,000–\$2.1M). For existing Draize labs, welfare updates (\$87,000–\$330,000) make costs competitive with in vitro (\$70,000–\$280,000 with existing facilities), undermining the claim’s implication that non-animal methods are prohibitively expensive.

5. Conclusion

The claim that non-animal testing methods have high initial costs is **partially true** but highly context-dependent:

- **Draize Test:**
 - **Historical (1944):** Low costs (\$150,000–\$600,000) gave it an early advantage, but irrelevant today.
 - **New Lab (2025):** High costs (\$550,000–\$2.1M) due to modern vivarium and welfare requirements, comparable to or higher than non-animal methods.
 - **Existing Lab with Updates (2025):** Lower costs (\$87,000–\$330,000) due to established vivariums, but welfare updates (e.g., EU Directive 2010/63/EU) significantly increase expenses, making it competitive with in vitro methods.
- **In Vitro (EpiDerm/EpiOcular):** Costs (\$200,000–\$850,000; \$70,000–\$280,000 with existing facilities) are often lower or comparable to a new Draize lab, challenging the claim.
- **Organ-on-Chip:** Higher costs (\$300,000–\$1.5M; \$100,000–\$500,000 with existing facilities) support the claim but overlap with new Draize labs.
- **Historical Context:** The Draize test's 75-year history means most labs have amortized infrastructure, but modern welfare laws require costly updates, aligning costs closer to non-animal methods. Non-animal methods' 10–20-year timeline concentrates costs, but existing cell culture facilities reduce barriers.
- **Key Insight:** Modern welfare requirements (e.g., enriched cages, monitoring) make Draize testing less cost-advantageous than its historical perception suggests. In vitro methods are often the most cost-competitive, especially with existing infrastructure, while organ-on-chip remains more expensive but aligns with future regulatory trends.

6. Limitations

- **For Labs:** Labs with existing cell culture facilities should prioritize in vitro methods for cost efficiency. Existing Draize labs must budget for welfare updates, which may rival non-animal setup costs.
- **Limitations:**
 - Historical Draize costs (1944) are estimates due to sparse data.
 - Costs for welfare updates vary by facility age and region (e.g., EU vs. U.S.).
 - Non-animal costs assume standard lab setups; variations (e.g., shared facilities) may lower costs further.

References

1. Draize, J. H., Woodard, G., & Calvery, H. O. (1944). Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. *Journal of Pharmacology and Experimental Therapeutics*, 82(3), 377–390. (Original publication describing the Draize test; referenced widely, e.g., in Wikipedia and NIH reviews).
2. Parascandola, J. (1991). The development of the Draize test for eye toxicity. *Pharmacy in History*, 33(3), 111–117.
3. European Parliament and Council. (2010). Directive 2010/63/EU on the protection of animals used for scientific purposes. *Official Journal of the European Union*, L 276, 33–79. (Key source for modern animal welfare standards, enrichment, humane endpoints, and facility requirements impacting retrofitting costs).
4. OECD. (2023). Test No. 405: Acute Eye Irritation/Corrosion (updated version, originally 1981; revisions including 2020/2021). *OECD Guidelines for the Testing of Chemicals*, Section 4. OECD Publishing. (Covers updates to Draize protocol, including analgesia, humane endpoints, and welfare compliance).
5. MatTek Corporation (part of Sartorius). (n.d.). *EpiDerm™ Reconstructed Human Epidermis and EpiOcular™ Eye Irritation Test*. Product information and OECD TG 431/439/492 validations. Available at: <https://www.mattek.com/mattek-product/epiderm> and <https://www.mattek.com/mattek-product/epiocular>.
6. OECD. (Various). Test Guidelines related to in vitro skin/eye irritation (e.g., TG 431, 439 for EpiDerm; TG 492 for EpiOcular). *OECD Guidelines for the Testing of Chemicals*.
7. Emulate, Inc. (n.d.). Organ-Chips technology and cost comparison tools (e.g., vs. NHP/animal studies). Available at: <https://emulatebio.com/organ-chips-vs-nhps-cost-calculator>. (Provides context on organ-on-chip setup, equipment, and relative costs).
8. Wyss Institute at Harvard University. (n.d.). Human Organs-on-Chips technology overview. (Foundational development; spun out to Emulate).
9. Humane Society / Humane World for Animals. (2012). Costs of Animal and Non-Animal Testing (comparative table including Draize rabbit eye test vs. in vitro alternatives). Available at: <https://www.humaneworld.org/en/news/costs-animal-and-non-animal-testing>.
10. MSPCA-Angell. (n.d.). Product Safety Testing: Replacing the Draize test with human skin models like EpiDerm (cost reduction examples). Available at: https://www.mspca.org/animal_protection/product-safety-testing.
11. U.S. National Institutes of Health (NIH) / PubMed Central. Various retrospective analyses of Draize test data and alternatives (e.g., PMC3927066 on statistical review of historical Draize eye test data).
12. General sources for lab equipment costs (indicative ranges): Industry suppliers (e.g., biosafety cabinets, CO₂ incubators, microfluidic pumps) and university animal facility rate documents (e.g., NIH Cost Analysis and Rate Setting Manual for Animal Research Facilities, 2000; updated per-diem and setup examples from institutions like Ohio State, UCLA, 2024–2025).