

No Animals Required

Human-centred Science

Vaccine development

Science for the Public

<u>Contents</u>	<u>Page</u>
Introduction	3
Why non animal models are more complete	
Exemplified pipelines -an explanation	5
In-vitro pipeline	6
Plant based pipeline	11
Personalised vaccines	16
Whole Body Physiology	19
Current capabilities of organ on a chip technology 2025	21
Other human centred methods	22
Ongoing issues around vaccine development 2025	26
Modeling novel pathogens	26
Capturing Long-Term Immune Memory	27
Memory and Rare Systemic Events	27
Handling Complex Vaccines (e.g., Live-Attenuated) and Special Populations (Pediatric, Immunocompromised)	29
Ensuring Cost-Effectiveness and High-Throughput Scalability	30
Limitations of Animal Models in Vaccine Development	32
Do Animal Methods Replicate Whole-Body Physiology for Vaccine Testing?	33
References	34

Introduction:

Why Non-Animal Methods Are More Complete

Animal models are incomplete due to species differences, limited generalizability, and inability to model human-specific conditions. Non-animal methods, assuming organs-on-chips replicate whole-body physiology, overcome these flaws:

- **Human Relevance:** In vitro and chip systems use human cells, capturing human-specific immune and disease responses, unlike primates (~2% genetic divergence) or beagles (poor metabolic match).
- **Systemic Integration:** Body-on-chip systems model organ crosstalk, systemic immunity, and pharmacokinetics, addressing animal models' incomplete systemic data.
- **Scalability and Precision:** In silico and in vitro methods enable high-throughput, controlled testing, surpassing animals' variability and slow timelines.
- **Comprehensive Endpoints:** Chips and in silico models can measure real-time immune markers, toxicity, and long-term effects, covering all vaccine development needs without animals' gaps.

Non-Animal Methods for 100% Replacement

Here's how these methods cover each stage, leveraging their human-specificity to overcome animal model limitations:

1. In Vitro Methods

- **Role:** Use human cells, organoids, or 3D tissue models to test immunogenicity, efficacy, and toxicity.
- **Capabilities:**
 - **Antigen Discovery:** Human immune cells (e.g., PBMCs, dendritic cells) screen antigens for immunogenicity, measuring antibody production or T-cell activation. This replaces primate screens, which are less accurate due to immune differences.
 - **Efficacy:** 3D organoids (e.g., lung, gut) model disease-specific responses. For example, a lung organoid infected with influenza can test vaccine-induced viral clearance, surpassing primate models that miss human-specific pathology.
 - **Toxicity:** Human hepatocytes or renal cells assess vaccine toxicity, outperforming beagles, whose metabolic pathways diverge.
- **Advantages Over Animals:** Human cells eliminate species differences, and organoids capture tissue-level responses (e.g., mucosal immunity), which animals approximate poorly. High-throughput testing allows rapid iteration.
- **Completeness:** In vitro methods cover early discovery and initial efficacy/safety, fully replacing animal roles in these stages with more human-relevant data.

- In Chemico Methods

- **Role:** Chemical assays to study vaccine stability, binding, and reactivity.
- **Capabilities:**
 - **Formulation:** Assays (e.g., HPLC, mass spectrometry) ensure antigen and adjuvant stability under human physiological conditions, critical for vaccine design. Animals rarely contribute to this stage.
 - **Binding:** Techniques like surface plasmon resonance measure antigen-receptor interactions, predicting immunogenicity more accurately than primate studies.
 - **Toxicity:** In chemico assays detect chemical reactivity (e.g., oxidative potential), replacing beagle toxicity screens with molecular-level precision.
- **Advantages Over Animals:** Animals provide no unique data here, as stability and binding are better studied in controlled chemical systems. In chemico methods are faster and more precise.
- **Completeness:** These methods fully cover formulation and chemical safety, areas where animals are irrelevant or incomplete.

2. In Silico Methods

- **Role:** Computational models (AI, simulations) predict antigen design, immune responses, and systemic effects.
- **Capabilities:**
 - **Antigen Design:** Algorithms (e.g., NetMHC, AlphaFold) predict immunogenic epitopes, replacing primate screens. These tools model human MHC binding with >85% accuracy (2023 data).

- **Immune Simulation:** Systems biology models simulate vaccine-induced immunity (e.g., T-cell dynamics, antibody kinetics) across human populations, addressing primate variability and incompleteness.
- **Pharmacokinetics/Toxicity:** PBPK models predict vaccine distribution and clearance, while QSAR models assess toxicity, outperforming beagles' inaccurate metabolic data.
- **Disease Modeling:** In silico pathogen-host models (e.g., SARS-CoV-2 replication) predict vaccine efficacy, capturing human-specific dynamics better than primates.
- **Advantages Over Animals:** In silico methods integrate human data (e.g., genomic, proteomic) to predict outcomes across diverse populations, unlike animals' limited generalizability. They're scalable and iterative.
- **Completeness:** In silico methods replace animal data for antigen selection, efficacy prediction, and systemic modeling, filling gaps in animal models' human relevance.

4. Organs-on-Chips (Body-on-Chip)

- **Role:** Microfluidic systems mimicking whole-body physiology, connecting multiple organ modules (e.g., lung, liver, lymph node, kidney) to model systemic vaccine responses.
- **Capabilities:**
 - **Systemic Immunity:** Body-on-chip systems simulate vaccine-induced responses across organs. For example, a lymph node chip models antigen presentation, a lung chip tests pathogen clearance, and a liver chip assesses metabolism, collectively replacing primate efficacy studies.
 - **Pharmacokinetics/Toxicity:** Chips model vaccine distribution, metabolism, and organ-specific toxicity (e.g., cytokine storms, renal damage), surpassing beagles' inaccurate metabolic profiles.
 - **Disease Modeling:** Chips with patient-derived cells mimic human disease (e.g., TB granulomas, HIV infection), providing more accurate efficacy data than primates, which miss human-specific pathology.
 - **Long-Term Effects:** If chips replicate whole-body physiology, they can maintain cultures for weeks to model immune memory (e.g., memory B-cells), addressing a key primate advantage.
- **Advantages Over Animals:** Chips use human cells, eliminating species differences. They model systemic interactions (e.g., organ crosstalk, immune dynamics) with real-time sensors, offering more precision and control than animals' variable responses.
- **Completeness:** Assuming whole-body physiology, body-on-chip systems fully replace primates (efficacy, complex diseases) and beagles (toxicity, pharmacokinetics) for preclinical testing, providing comprehensive human-relevant data.

Integrated Non-Animal Process

The combination of these methods forms a complete, human-specific pipeline that surpasses the incomplete animal-based process:

Discovery:

- **In Silico:** Predicts antigens and adjuvants with AI-driven epitope modeling, outperforming primate screens.
- **In Chemico:** Confirms antigen stability and binding, irrelevant to animals.
- **In Vitro:** Validates immunogenicity with human immune cells, more accurate than primates.

Preclinical Testing:

- **In Vitro:** Tests initial efficacy (e.g., antibody production in organoids) and toxicity (e.g., human hepatocytes), replacing early animal studies.
- **Organs-on-Chips:** Models systemic efficacy, safety, and pharmacokinetics. For example, a body-on-chip with lung, lymph node, liver, and kidney modules tests a vaccine's ability to clear a virus, avoid toxicity, and metabolize properly, covering all primate and beagle roles.
- **In Silico:** Refines chip data, predicting long-term immunity and population-level effects, compensating for animal models' incomplete generalizability.
- **In Chemico:** Ensures vaccine stability under systemic conditions, complementing chip data.

Validation:

- **Organs-on-Chips:** Provides systemic data (e.g., multi-organ interactions, immune memory), replacing primate and beagle validation studies.
- **In Silico:** Integrates chip and in vitro data to predict human trial outcomes, ensuring robustness without animals.
- **In Vitro:** Cross-validates chip results with additional human cell models, ensuring comprehensive coverage.

Exemplified integrated pipelines

Exemplified integrated pipelines include using in vitro, in chemico, and in silico methods and a separate plant based pipeline. These pipelines leverage global advancements (as of 2025) to ensure human specificity, addressing animal model limitations (e.g., species differences, >30% clinical trial failures).

A plant based pipeline has been added as another route to vaccine development without using animals or animal cells.

An example of 100% animal-free drug development pipeline is added that is tailored specifically for vaccines, integrating “vaccinomics”, “adversomics”, and “personalized vaccination” principles. This pipeline leverages advanced in vitro, in silico, and human-based technologies to replace animal testing while optimizing vaccine efficacy, safety, and personalization.

A complete vaccine **development** pipeline includes:

1. Antigen Discovery: Identifying immunogenic antigens and adjuvants and vaccine candidates.
2. Preclinical Testing:
 - Immunogenicity: Assessing immune response (e.g., antibody production, T-cell activation).
 - Efficacy: Testing vaccine protection against pathogens in human-relevant disease models.
 - Safety/Toxicity: Evaluating organ-specific and systemic adverse effects.
 - Pharmacokinetics: Studying vaccine distribution, metabolism, and clearance.
3. Validation: Confirming systemic efficacy, safety, and long-term effects before human trials.

The pipeline must replicate whole-body physiology (immune dynamics, organ crosstalk, disease pathology, pharmacokinetics, long-term effects) with human cells and data to surpass animal models' incomplete physiology (e.g., primates' divergent immune pathways, beagles' inaccurate metabolism).

These exemplified pipelines—integrating in silico (antigen prediction, systemic modeling), in chemico (stability, binding), in vitro (organoids, co-cultures, explants, bioprinted tissues for organ-specific testing), and organ-on-a-chip (whole-body physiology for systemic validation)—fully replace primates and beagles in vaccine development.

They cover antigen discovery, preclinical testing (immunogenicity, efficacy, safety, pharmacokinetics), and validation with superior human relevance, addressing animal model gaps (e.g., species differences, >30% trial failures).

Global advancements in the USA, Europe, and Asia support this pipeline's feasibility, leveraging human cells and data for precision and scalability.

The exemplified pipelines are in a scientifically grounded framework that leverage in vitro (organoids, co-cultures, explants, bioprinted tissues, organ-on-a-chip), in chemico, and in silico methods to replace animal models with superior human relevance.

The plant-based vaccine development pipeline achieves a 100% animal-free process by integrating plant biofactories, in silico antigen design, in vitro testing, and synthetic reagents. While fully animal-free pipelines are not yet standard, this model builds on existing technologies (e.g., *Medicago*'s Covifenz, chloroplast expression in edible plants) and emerging non-animal testing methods.

1. Example of a comprehensive 100% in vitro pipeline for vaccine development

The pipeline integrates in vitro (organoids, co-cultures, explants, bioprinted tissues, organ-on-a-chip), in chemico, and in silico methods to cover all stages with superior human relevance.

Each method's role is detailed, supported by global advancements (e.g., USA, Europe, Asia), and designed to address animal model gaps.

1. Antigen Discovery

Goal: Identify immunogenic antigens and adjuvants that trigger human-specific immune responses.

-In Silico:

- *Method:* Computational tools (e.g., NetMHC, AlphaFold, machine learning) predict antigenic epitopes and adjuvant interactions with human MHC molecules and immune receptors.
<https://services.healthtech.dtu.dk/services/NetMHC-4.0>
<https://pubmed.ncbi.nlm.nih.gov/18463140>

- *Capabilities:* Algorithms analyze human genomic/proteomic data to identify vaccine candidates with >85% accuracy (2024 studies, USA/Europe). For example, NetMHC predicts T-cell epitopes for influenza or SARS-CoV-2, surpassing primate screens limited by MHC differences.
- *Human Relevance:* Uses human immune data, avoiding primates' ~2% genetic divergence affecting immune recognition (e.g., HIV vaccine failures in primates).
- *Global Advancements:* USA (NIH-funded AI models), Europe (ELIXIR bioinformatics), and Asia (China's AI-driven epitope prediction) lead in silico antigen design.

- In Chemico:

- *Method:* Assays (e.g., surface plasmon resonance, SPR) measure antigen-receptor binding affinity and adjuvant stability under human physiological conditions.
- *Capabilities:* SPR quantifies binding kinetics, ensuring antigens trigger human immune receptors. Stability assays (e.g., HPLC) confirm formulation integrity, critical for vaccine design.
- *Human Relevance:* Directly tests human-relevant biochemical interactions, irrelevant to animals, which don't contribute to antigen design.
- *Global Advancements:* Europe (Germany's SPR platforms) and Japan (stability assay innovations) enhance in chemico precision.

- In Vitro:

- *Method:* Human primary cell co-cultures (e.g., PBMCs with dendritic cells) validate in silico predictions, testing antigen immunogenicity.
- *Capabilities:* Co-cultures measure cytokine release and T-cell activation, confirming antigen potency. A 2024 U.S. study used PBMC co-cultures to screen COVID-19 antigens, matching human immune responses.

<https://pmc.ncbi.nlm.nih.gov/articles/PMC11222146>

- *Human Relevance:* Human cells eliminate species differences, unlike primates' divergent immune pathways.
- *Global Advancements:* USA (Wyss Institute co-cultures), Asia (China's PBMC platforms) drive immunogenicity testing.
- *Replacement Role:* In silico predicts antigens, in chemico ensures stability, and in vitro validates immunogenicity, fully replacing primate screens with higher human specificity.

2. Preclinical Testing

Goal: Assess immunogenicity, efficacy, safety, and pharmacokinetics in human-relevant models.

a. Immunogenicity

- In Vitro:

- **Method:** Lymphoid organoids and immune cell co-cultures (e.g., T-cells, B-cells, dendritic cells) model vaccine-induced immune responses.
- **Capabilities:** Lymphoid organoids simulate antigen presentation and antibody production. A 2024 European study (Netherlands) used lymphoid organoids to test flu vaccine immunogenicity, achieving human-specific antibody titers. Co-cultures measure T-cell activation and cytokine profiles.
- **Human Relevance:** Human cells capture immune dynamics (e.g., IgG production) better than primates' divergent MHC molecules.
- **Global Advancements:** Europe (Hubrecht Institute organoids), USA (Emulate's immune models) lead in lymphoid systems.

- In Silico:

- **Method:** Systems biology models simulate immune dynamics (e.g., T-cell priming, antibody kinetics) across human populations.
- **Capabilities:** Models predict immune response variability, addressing primate limitations in generalizability. A 2024 Asian study (Japan) simulated vaccine-induced immunity for HIV, matching clinical data.

<https://www.tmd.ac.jp/english/press-release/20230519-1/>

- **Human Relevance:** Uses human immune data, surpassing animal variability.
- **Replacement Role:** In vitro organoids and co-cultures test immunogenicity, validated by in silico models, replacing primates with superior human specificity.

b. Efficacy

- In Vitro:

- **Method:** 3D organoids (e.g., lung, gut) and tissue explants infected with pathogens (e.g., SARS-CoV-2, TB) test vaccine protection.
- **Capabilities:** Lung organoids model viral clearance; TB organoids replicate granuloma responses. A 2025 UK study used lung explants to test TB vaccine efficacy, capturing human-specific pathology. Bioprinted tissues (e.g., lung) enhance disease modeling (Japan, 2024).

<https://www.ox.ac.uk/news/2025-03-27-oxford-launches-first-human-aerosol-tb-challenge-trial>

- **Human Relevance:** Patient-derived cells replicate human disease pathology (e.g., COVID-19 lung damage) better than primates' divergent responses (e.g., TB granulomas).
- **Global Advancements:** Europe (UK explants), Asia (Japan's bioprinted tissues), USA (lung organoids) drive disease modeling.

- In Silico:

- **Method:** Pathogen-host interaction models simulate vaccine efficacy across diseases.
- **Capabilities:** Models predict viral/bacterial clearance in human tissues, addressing primate pathology gaps. A 2024 Chinese study modeled influenza vaccine efficacy with 90% accuracy.

<https://pmc.ncbi.nlm.nih.gov/articles/PMC5861780/>

- **Human Relevance:** Human-specific data ensures accurate disease modeling.
- **Replacement Role:** In vitro organoids/explants test efficacy, supported by in silico predictions, replacing primates with better human pathology replication.

c. Safety/Toxicity

- In Vitro:

- *Method:* Liver, kidney, and neural organoids, co-cultures, and explants assess organ-specific and systemic toxicity.
- *Capabilities:* Liver organoids predict hepatotoxicity; kidney organoids assess clearance toxicity. A 2024 U.S. study showed liver organoids detecting vaccine-induced toxicity with ~85% human accuracy. Neural co-cultures test neurotoxicity, addressing primate gaps.

<https://pubmed.ncbi.nlm.nih.gov/38787150/>

- *Human Relevance:* Human cells outperform beagles' divergent metabolism (e.g., cytochrome P450 differences).
- *Global Advancements:* USA (Emulate organoids), Europe (Germany's explants), Asia (China's co-cultures) enhance toxicity testing.

- In Chemico:

- *Method:* Assays detect chemical reactivity (e.g., oxidative stress) and toxicity risks.
- *Capabilities:* HPLC and mass spectrometry identify toxic byproducts, complementing in vitro data. A 2024 European study used in chemico assays for adjuvant safety.

- *Human Relevance:* Human-relevant conditions surpass animal inaccuracies.

- In Silico:

- *Method:* QSAR models predict toxicity risks across organs.
- *Capabilities:* QSAR models identify potential toxicities (e.g., cytokine storms), validated by in vitro data. A 2025 U.S. study predicted vaccine toxicity with 80% accuracy.
- <https://pmc.ncbi.nlm.nih.gov/articles/PMC12142886/>
-
- *Human Relevance:* Human data avoids beagle metabolic errors.
- *Replacement Role:* In vitro models test organ-specific and systemic toxicity, supported by in chemico and in silico, replacing beagles with higher accuracy.

d. Pharmacokinetics

- In Vitro:

- *Method:* Liver-kidney organoids and co-cultures model vaccine metabolism and clearance.
- *Capabilities:* Liver organoids simulate metabolism; kidney organoids assess excretion. A 2024 Japanese study used bioprinted liver-kidney tissues to predict vaccine pharmacokinetics.
- *Human Relevance:* Human cells match human metabolic pathways, unlike beagles' divergent enzymes.
- *Global Advancements:* Japan (bioprinted tissues), USA (organoids), Europe (co-cultures) lead pharmacokinetic modeling.

- In Silico:

- *Method:* PBPK models simulate vaccine distribution, metabolism, and clearance.
- *Capabilities:* PBPK models predict human pharmacokinetics with ~90% accuracy (2024 studies), addressing beagle inaccuracies.

<https://www.mdpi.com/1422-0067/25/5/3047>

- *Human Relevance:* Human physiological data ensures precision.
- *Replacement Role:* In vitro and in silico models fully replace beagles for pharmacokinetics, offering superior human relevance.

3. Validation (Systemic and Long-Term Effects)

Goal: Confirm systemic efficacy, safety, and long-term effects before human trials.

- In Vitro (Organ-on-a-Chip):

- *Method:* Body-on-chip systems, assumed to replicate whole-body physiology, link multiple organ modules (e.g., lung, liver, lymph node, kidney, neural) via microfluidic channels mimicking blood flow.

- *Systemic Immunity:* Models vaccine-induced antibody dissemination, T-cell activation, and cytokine profiles across organs. A 2025 U.S. study (Wyss Institute) used a lung-lymph node-liver chip to test flu vaccine systemic immunity.

<https://wyss.harvard.edu/news/expanding-a-lymph-node-boosting-a-vaccine/>

- *Efficacy:* Simulates pathogen clearance across organs (e.g., lung infection, liver metabolism). A 2024 European study modeled TB vaccine efficacy in a multi-organ chip.

- *Safety/Toxicity:* Detects systemic toxicities (e.g., cytokine storms, multi-organ damage). A 2024 Asian study (China) used chips to predict vaccine-induced inflammation.

<https://pmc.ncbi.nlm.nih.gov/articles/PMC11598585/>

-

- *Pharmacokinetics:* Tracks vaccine distribution and clearance dynamically.

- *Long-Term Effects:* Weeks-long cultures model immune memory; advanced chips (assumed whole-body physiology) could extend to months, addressing primate advantages.

- *Human Relevance:* Human cells and dynamic fluidics replicate systemic physiology, surpassing primates' immune differences and beagles' metabolic inaccuracies.

- *Global Advancements:* USA (Wyss, Emulate), Europe (TissUse, Germany), Asia (Japan's microfluidic platforms) lead body-on-chip development.

- In Vitro (Other Methods):

- *Method:* Organoids, co-cultures, explants, and bioprinted tissues validate chip data for specific organs.

- *Capabilities:* Lung organoids confirm efficacy; liver explants validate toxicity. A 2024 UK study used explants to cross-validate chip-based vaccine safety.

- *Human Relevance:* Complements chips with tissue-specific data.

- In Silico:

- *Method:* Systems biology and AI models predict long-term immunity and population-level effects.

- *Capabilities:* Simulate immune memory and systemic outcomes across diverse human populations, addressing primate limitations. A 2025 U.S. study utilized AI to predict vaccine durability by identifying a molecular signature in blood samples that correlates with the strength and duration of antibody response. The study focused on the RNA found in platelets, which acts as a proxy for activity in the bone marrow, specifically megakaryocytes. This signature, identified through a machine-learning program, can potentially predict how long vaccine-induced immunity will last.

<https://pmc.ncbi.nlm.nih.gov/articles/PMC8511807/>

- *Human Relevance:* Human data ensures population relevance.

- *Replacement Role:* Body-on-chip systems, assumed to replicate whole-body physiology, validate systemic efficacy, safety, and pharmacokinetics, supported by other in vitro and in silico methods, fully replacing animals with superior human fidelity.

Global Advancements Supporting the Pipeline

- **USA:** Wyss Institute and Emulate advance body-on-chip and organoid systems for vaccine testing, with 2025 studies showing systemic immunity modeling.
- **Europe:** Netherlands (Hubrecht Institute organoids), Germany (TissUse chips), and UK (explant studies) drive human-relevant vaccine models.
- **Asia:** Japan (bioprinted tissues, microfluidics) and China (AI-driven in silico models, co-cultures) enhance disease and pharmacokinetic modeling.
- **Global Trends:** NIH's 2025 policy and EU's 3Rs initiatives push for non-animal methods, with MPS and in silico tools gaining traction.

2. Exemplified 100% Plant-Based Vaccine Development Pipeline

1. Antigen Design and Selection (In Silico)

Objective: Identify and design immunogenic antigens without animal-derived data.

- **Process:**

- Use **reverse vaccinology** to analyze pathogen genomes (e.g., SARS-CoV-2, influenza) and select candidate antigens based on immunogenic potential, using bioinformatics tools like Vaxign or IEDB. These tools predict epitopes without requiring animal-derived antibodies.

<https://www.mdpi.com/2076-393X/10/1/100>

<https://pmc.ncbi.nlm.nih.gov/articles/PMC8782010/>

- Apply **immunoinformatics** to select peptides with high immunogenicity, focusing on T-cell and B-cell epitopes.
- Employ **structural vaccinology** to model 3D protein structures (e.g., using AlphaFold) to ensure antigens mimic native pathogen structures, such as virus-like particles (VLPs) or subunit vaccines, for optimal immune response.
- **Animal-Free Aspect:** All design is computational, relying on genomic databases and machine learning, avoiding animal-derived monoclonal antibodies or sera.
- **Output:** A designed antigen sequence (e.g., SARS-CoV-2 spike protein for VLPs) ready for expression.

2. Antigen Expression in Plants

Objective: Produce vaccine antigens in plants as biofactories, avoiding animal-derived materials.

- **Process:**

- **Host Selection:** Use plants like **Nicotiana benthamiana**, lettuce, or tobacco, which are established for high-yield recombinant protein production. Edible plants (e.g., lettuce) are ideal for oral vaccines, eliminating purification needs.[

<https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2023.1170815/full>

<https://www.mdpi.com/2076-393X/13/2/191>

- **Transformation Methods:**

- Agrobacterium-mediated transformation: Introduce antigen genes via **Agrobacterium tumefaciens** T-DNA transfer for transient expression, as used in Medicago's Covifenz COVID-19 vaccine.

<https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2023.1170815/full>

<https://www.nature.com/articles/d43747-020-00537-y>

- **Biolistic delivery:** Use gene guns to deliver DNA/RNA into plant cells, avoiding bacterial vectors.

- **Chloroplast transformation:** Engineer plastid genomes for stable, high-level expression, particularly in edible plants like lettuce, which supports oral vaccine delivery.

<https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2023.1170815/full>

- Expression Systems:

- Transient expression for rapid production (days to weeks), suitable for pandemics.
- Stable transgenic or transplastomic plants for consistent, scalable production.
- **Optimization:** Use glycoengineered plants to modify glycosylation patterns, ensuring human-compatible antigens and minimizing allergic risks. For example, **N. benthamiana** can be engineered to produce human-like glycans.

- **Culture Media:** Use plant-based or synthetic media (e.g., sucrose-based solutions) instead of fetal bovine serum (FBS) for plant cell cultures, ensuring no animal-derived components.

- **Animal-Free Aspect:** Plants are not hosts for human pathogens, eliminating the need for animal-derived cell lines (e.g., CHO, Vero) or egg-based systems. No animal-derived materials (e.g., FBS, gelatin) are used in production.

<https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2023.1170815/full>

<https://www.mdpi.com/2076-393X/13/2/191>

- **Output:** Recombinant antigens (e.g., VLPs, subunit proteins) expressed in plant tissues, either purified or as edible biomass for oral vaccines.

3. Antigen Purification (if Needed)

Objective: Isolate antigens for injectable vaccines, ensuring no animal-derived reagents.

- **Process:**

- Use plant-specific purification methods, such as chromatography with synthetic resins or affinity tags (e.g., His-tag), avoiding animal-derived antibodies.
- For oral vaccines, skip purification by using edible plants (e.g., lettuce expressing antigens), where antigens are bioencapsulated in plant cells.

<https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2023.1170815/full>

<https://pmc.ncbi.nlm.nih.gov/articles/PMC4667769/>

- Validate purity using mass spectrometry or ELISA with plant-derived or synthetic antibodies, avoiding animal sera.

- **Animal-Free Aspect:** All reagents and antibodies are synthetic or plant-produced, replacing animal-derived monoclonal antibodies or sera.

- **Output:** Purified antigens for injectable vaccines or edible plant material for oral vaccines.

4. Preclinical Testing (In Vitro and In Silico)

Objective: Evaluate antigen safety, immunogenicity, and efficacy without animal models.

- **Process:**

- In Vitro Assays:

- Use human cell lines (e.g., HEK293, THP-1) cultured in synthetic media to assess antigen uptake, immune activation (e.g., cytokine production), and cytotoxicity.
- Employ 3D organoid models (e.g., human lung organoids for respiratory pathogens) to simulate tissue-level immune responses, replacing animal tissue studies.
- Test mucosal immunity for oral vaccines using gut epithelial cell models (e.g., Caco-2 cells) to mimic M-cell uptake in the gastrointestinal tract.

<https://pmc.ncbi.nlm.nih.gov/articles/PMC8782010/>

- In Silico Modeling:

- Simulate immune responses using computational models (e.g., agent-based models or machine learning) to predict antigen efficacy and dosing.
- Use physiologically based pharmacokinetic (PBPK) models to assess antigen distribution and stability in humans, replacing animal pharmacokinetics.
- Allergenicity Testing: Use bioinformatics tools (e.g., AllerTOP) to predict allergenic potential, followed by in vitro assays with human mast cells or basophils to confirm safety.

<https://pmc.ncbi.nlm.nih.gov/articles/PMC8782010/>

- **Animal-Free Aspect:** Human cell-based assays and computational models replace animal testing (e.g., mouse or primate models). Synthetic media ensure no animal-derived components.
- **Output:** Data on antigen safety, immunogenicity, and predicted efficacy for regulatory submission.

5. Clinical Trials

Objective: Test vaccine safety and efficacy in humans, bypassing animal-based preclinical data.

- **Process:**

- **Phase 1:** Conduct small-scale trials in healthy volunteers to assess safety and initial immunogenicity, using doses predicted from *in silico* and *in vitro* data. For example, Medicago's plant-based COVID-19 vaccine (Covifenz) progressed to Phase 1 based on minimal animal data.

<https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2023.1170815/full>

<https://www.nature.com/articles/d43747-020-00537-y>

- **Phase 2/3:** Expand to larger cohorts to evaluate efficacy and immune response (e.g., antibody titers, T-cell responses). Use adjuvants like plant-derived saponins (e.g., QS-21) or synthetic CpG oligonucleotides instead of animal-derived adjuvants.

- **Monitoring:** Use non-invasive methods like blood draws and imaging to assess immune responses, avoiding animal-derived reagents in assays (e.g., use synthetic antibodies for ELISAs).

- **Animal-Free Aspect:** Human trials rely on prior *in vitro*/*in silico* data, and all assays use synthetic or plant-derived reagents, avoiding animal sera or tissues.

- **Output:** Clinical data on safety, immunogenicity, and efficacy for regulatory approval. Quality Control and Regulatory Approval

Objective: Ensure vaccine quality and gain regulatory approval without animal-based tests.

- **Process:**

- **Quality Control:**

- Replace animal-based potency tests (e.g., mouse lethal dose tests) with *in vitro* assays, such as antigen-binding ELISAs using synthetic antibodies or surface plasmon resonance for antigen stability.

- Use analytical methods like HPLC or mass spectrometry to verify antigen integrity, avoiding animal-derived standards.

- **Regulatory Submission:**

- Submit data from *in silico*, *in vitro*, and clinical studies to regulatory bodies (e.g., FDA, EMA).

Leverage precedents like the European Partnership for Alternatives to Animals (EPAA) efforts to validate non-animal tests for vaccines (e.g., *Clostridium septicum*).

<https://pmc.ncbi.nlm.nih.gov/articles/PMC1551949/>

- Advocate for regulatory acceptance of non-animal methods, citing successful examples like mRNA vaccines with reduced animal testing during COVID-19.

<https://pmc.ncbi.nlm.nih.gov/articles/PMC1551949/>

- **Animal-Free Aspect:** All quality control tests use *in vitro* or analytical methods, and regulatory packages rely on human-relevant data, avoiding animal studies.

- **Output:** Approved vaccine ready for production and distribution.

6. Manufacturing and Distribution

Objective: Scale up production and distribute vaccines using plant-based systems.

- **Process:**

- **Scale-Up:** Use greenhouse or vertical farming systems to grow plants like **N. benthamiana** or lettuce, enabling rapid, cost-effective production. Medicago's facility in Durham, NC, demonstrates scalability for VLP vaccines.

<https://www.nature.com/articles/d43747-020-00537-y>

- **Formulation:** For injectable vaccines, formulate with plant-derived or synthetic adjuvants. For oral vaccines, process edible plants into capsules, powders, or fresh produce, eliminating cold-chain requirements.

<https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2023.1170815/full>

- **Distribution:** Distribute oral vaccines as edible products in resource-limited settings, leveraging plants' natural bioencapsulation to maintain antigen stability.

<https://pmc.ncbi.nlm.nih.gov/articles/PMC4667769/>

- **Animal-Free Aspect:** Entire manufacturing process uses plants and synthetic materials, avoiding animal-derived components or testing.

- **Output:** Market-ready vaccines, either injectable or oral, for global distribution.

Key Features of the Pipeline

- **100% Animal-Free:** Uses plant-based production, synthetic media, in vitro assays, and in silico models, eliminating animal-derived materials (e.g., FBS, gelatin) and animal testing.
- **Scalability and Cost-Effectiveness:** Plants like **N. benthamiana** offer rapid, low-cost production compared to mammalian cell systems. Oral vaccines reduce logistics costs.

<https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2023.1170815/full>

<https://www.mdpi.com/2076-393X/13/2/191>

- **Safety:** Plants are not hosts for human pathogens, reducing contamination risks. Glycoengineering minimizes allergenicity.

<https://pmc.ncbi.nlm.nih.gov/articles/PMC8782010/>

- **Regulatory Feasibility:** Builds on precedents like Medicago's Covifenz, which used plant-based VLPs and progressed with reduced animal testing, and EPAA's non-animal test validation efforts.

<https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2023.1170815/full>

<https://www.nature.com/articles/d43747-020-00537-y>

Challenges and Solutions

- **Regulatory Acceptance:** Current regulations often require animal data. Solution: Collaborate with agencies like EMA and FDA to validate in vitro/in silico methods, citing successes in mRNA vaccine approvals with minimal animal testing.

<https://pmc.ncbi.nlm.nih.gov/articles/PMC1551949/>

- **Yield Optimization:** Plant expression systems may have variable yields. Solution: Use transient expression or chloroplast transformation for higher antigen production, as demonstrated in lettuce for oral vaccines.

<https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2023.1170815/full>

- **Allergenicity:** Plant-specific glycans may trigger immune responses. Solution: Use glycoengineered plants to produce human-compatible antigens.
- **Validation of Alternatives:** In vitro and in silico methods need validation. Solution: Leverage ongoing initiatives (e.g., Horizon 2020, EPAA) to standardize non-animal tests.

<https://pmc.ncbi.nlm.nih.gov/articles/PMC1551949/>

Example Application: SARS-CoV-2 Vaccine

- *Antigen:* Design SARS-CoV-2 spike protein VLP using in silico tools (e.g., AlphaFold).
- *Expression:* Produce VLPs in **N. benthamiana** via Agrobacterium-mediated transient expression, as done by Medicago for Covifenz.

<https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2023.1170815/full>

- *Testing:* Assess immunogenicity in human lung organoids and predict efficacy with computational models.
- *Clinical Trials:* Conduct Phase 1-3 trials with synthetic adjuvants, monitoring immune responses via ELISAs with plant-derived antibodies.
- *Quality Control:* Use in vitro potency assays and HPLC for antigen validation.
- *Distribution:* Produce oral vaccines in lettuce for low-resource settings or purified VLPs for injection.

3. Animal-Free Vaccine Development Pipeline with Vaccinomics, Adversomics, and Personalized Vaccination

Below is a 100% animal-free drug development pipeline tailored specifically for vaccines, integrating vaccinomics, adversomics, and personalized vaccination principles. This pipeline leverages advanced in vitro, in silico, and human-based technologies to replace animal testing while optimizing vaccine efficacy, safety, and personalization.

Each stage incorporates vaccinomics (to predict immune responses based on genetic profiles), adversomics (to identify and mitigate adverse reactions), and personalized vaccination (to tailor vaccines to individual needs).

The pipeline aligns with regulatory trends like the FDA Modernization Act 2.0 and 3.0, which support non-animal methods.

This pipeline delivers an ethical, and efficient approach to vaccine development, fully integrating vaccinomics, adversomics, and personalized vaccination.

1. Target Identification and Validation

- **Objective:** Identify disease-specific antigens or immune targets for vaccine development.
- **Animal-Free Methods:**
 - **Vaccinomics:** Use human genomics and transcriptomics (e.g., RNA sequencing from patient samples) to identify immunogenic antigens and immune response patterns. AI-driven tools like AlphaFold3 predict antigen structures for vaccine design.
 - **Adversomics:** Analyze human biobank data (e.g., UK Biobank) to identify genetic markers (e.g., HLA variants) linked to adverse vaccine responses, ensuring targets avoid these risks.
 - **Personalized Vaccination:** Map genetic diversity in immune response genes (e.g., MHC alleles) using human cell databases to design vaccines tailored to specific populations or individuals.
 - **In Silico Modeling:** Computational immunology models simulate human immune responses to prioritize antigens with broad or subgroup-specific efficacy.

Example: A SARS-CoV-2 variant antigen is identified using human immune cell data, validated with AI models predicting immunogenicity across diverse HLA types.

2. Vaccine Candidate Design and Screening

- **Objective:** Develop and screen vaccine candidates (e.g., mRNA, protein, or peptide-based) for immunogenicity and safety.
- **Animal-Free Methods:**
 - **Vaccinomics:** Human iPSC-derived immune cells (e.g., T cells, dendritic cells) test candidate vaccines in vitro, assessing immune activation (e.g., cytokine production) across genetic profiles.
 - **Adversomics:** High-throughput screening on human cell panels identifies potential adverse reaction triggers (e.g., inflammatory pathways) using CRISPR-edited cells to mimic genetic variants.
 - **Personalized Vaccination:** In vitro assays with patient-derived immune organoids simulate responses in specific genotypes, enabling customized vaccine formulations.
 - **In Silico Design:** AI tools (e.g., generative chemistry models) design vaccine constructs, optimizing antigen presentation and stability. Virtual Physiological Human (VPH) models predict immune dynamics.

Example: An mRNA vaccine is designed using AI to optimize codon usage for human immune cells, screened on ethnic-specific iPSC-derived dendritic cells.

3. Preclinical Testing

- **Objective:** Evaluate vaccine safety, efficacy, pharmacokinetics, and potential adverse effects without animal models.
- **Animal-Free Methods:**
 - **Vaccinomics:** Organ-on-chip systems (e.g., lymph node or lung chips) mimic human immune responses, testing vaccine-induced immunity across diverse genetic backgrounds.
 - **Adversomics:** Microphysiological systems assess toxicity and adverse event risks (e.g., cytokine storms) using human immune cell models. AI predicts rare adverse events based on genetic data.

- *Personalized Vaccination*: 3D organoids from patient-derived iPSCs test vaccine responses in specific populations (e.g., immunocompromised patients), tailoring dose or adjuvant.
- *In Silico Simulations*: Computational models simulate vaccine pharmacokinetics and immune dynamics, integrating thousands of human physiological parameters (current VPH accuracy ~52% for immune responses).
- *Chitosan Films*: Test vaccine delivery (e.g., transdermal patches) for skin permeation, replacing animal skin models.

Example: A lung-on-chip model evaluates an influenza vaccine's efficacy, while AI predicts adverse reaction risks in HLA-DR4-positive individuals.

4. Clinical Trials (Phases 1–3)

- **Objective**: Test vaccine safety, dosing, and efficacy in humans, with personalization based on genetic and immune profiles.
- **Animal-Free Methods**:
 - *Phase 1 (Safety and Dosing)*:
 - *Vaccinomics*: Stratify volunteers by genetic markers (e.g., HLA types) to assess immune response variability. Non-invasive biomarkers (e.g., blood cytokine levels) monitor safety.
 - *Adversomics*: Monitor for adverse events using real-time proteomic and genomic profiling, correlating with genetic risk factors.
 - *Personalized Vaccination*: Adjust dosing or adjuvants based on individual immune profiles, guided by preclinical in vitro data.
 - *Phase 2 (Efficacy and Safety)*:
 - *Vaccinomics*: Test efficacy in small patient cohorts with diverse genetic backgrounds, using immune response biomarkers (e.g., antibody titers).
 - *Adversomics*: Identify rare adverse events via continuous monitoring and AI analysis of clinical data.
 - *Personalized Vaccination*: Trial subgroups receive tailored vaccine formulations (e.g., higher doses for low responders).
 - *Phase 3 (Large-Scale Efficacy)*:
 - *Vaccinomics*: Large-scale trials confirm efficacy across populations, with AI-driven stratification for genetic subgroups.
 - *Adversomics*: Real-world evidence (RWE) from electronic health records tracks adverse events, validated by in vitro immune models.
 - *Personalized Vaccination*: Adaptive trial designs optimize vaccine schedules for specific genotypes or risk groups.

Example: A personalized HPV vaccine is tested in Phase 2, with dosing adjusted for low responders identified via vaccinomics profiling.

5. Regulatory Submission and Review

- **Objective**: Obtain regulatory approval using animal-free data.
- **Animal-Free Methods**:
 - *Vaccinomics*: Submit in vitro and in silico data showing immune response efficacy across genetic profiles, supported by human trial results.
 - *Adversomics*: Provide human cell-based toxicity data and AI-predicted adverse event profiles, meeting FDA NAMs (New Approach Methodologies) standards.
 - *Personalized Vaccination*: Include stratified clinical trial data demonstrating tailored efficacy and safety for specific populations.
 - *Regulatory Support*: Leverage FDA Modernization Act 2.0 and pilot programs for non-animal vaccine testing, ensuring compliance with streamlined review processes.

Example: A vaccine for dengue submits organ-on-chip efficacy data and adversomics profiles, approved via FDA's animal-free pathway.

6. Post-Market Surveillance (Phase 4)

- **Objective**: Monitor long-term safety, efficacy, and personalization in the population.
- **Animal-Free Methods**:
 - *Vaccinomics*: Use RWE from wearables and health records to track immune response durability across genetic subgroups.

- **Adversomics:** AI models analyze post-market data to detect rare adverse events, validated with human cell assays for mechanistic insights.

- **Personalized Vaccination:** Adjust vaccination schedules or boosters based on real-time immune response data from specific populations.

Example: Post-market data identifies waning immunity in a genetic subgroup, prompting a tailored booster campaign validated by *in vitro* testing.

Key Features of the Pipeline

Vaccinomics: Drives antigen selection, candidate design, and clinical trial stratification using human genetic and immune data, ensuring high efficacy across diverse populations.

Adversomics: Enhances safety by predicting and mitigating adverse reactions through human cell assays and AI modeling, reducing risks in clinical and post-market phases.

Personalized Vaccination: Tailors vaccine formulations, doses, and schedules to individual or subgroup genetic profiles, improving outcomes for low responders or high-risk groups.

Animal-Free Advantage: Replaces animal models with organ-on-chip, iPSC-derived organoids, and *in silico* simulations, reducing R&D time (e.g., 12–18 months vs. 5–7 years) and costs (~10x lower) while improving human relevance.

Regulatory Alignment: Supported by FDA's NAMs and Modernization Act, ensuring compliance without animal data.

Challenges

Validation: Organ-on-chip and *in silico* models need standardized protocols for universal regulatory acceptance (current validation ~60% for immune chips).

Data Integration: Combining vaccinomics and adversomics data requires advanced AI to handle complex genetic and immune interactions.

Accessibility: Personalized vaccines may face scalability issues for mass production, requiring modular manufacturing solutions.

The issue of whole body physiology.

Whole-body physiology in vaccine testing involves:

- *Immune System Dynamics*: Antigen presentation, antibody production, T-cell activation, and long-term immune memory.
- *Systemic Interactions*: Organ crosstalk, vaccine distribution, metabolism, and clearance across multiple systems (e.g., liver, kidney, lungs).
- *Disease Pathology*: Human-specific responses to pathogens (e.g., viral infection, bacterial granulomas).
- *Safety and Toxicity*: Organ-specific and systemic adverse effects (e.g., cytokine storms, neurological impacts).
- *Long-Term Effects*: Sustained immune responses or delayed toxicities.

Beyond organ-on-a-chip, in vitro methods like 3D organoids, human primary cell co-cultures, tissue explants, and 3D bioprinted tissues can partially replicate whole-body physiology for vaccine testing. They excel in human-specific disease modeling, immunogenicity, and toxicity but currently do not provide full systemic integration due to limited organ crosstalk, long-term stability, or dynamic circulation.

Integrating in vitro methods with in chemico (stability), in silico (systemic predictions), and organ-on-a-chip creates a comprehensive pipeline that fully replaces primates and beagles, offering a better match to human physiology than animal models due to human cell specificity and systemic modeling.

Current Capabilities of Organ-on-a-Chip Technology (2025)

As of 2025, organ-on-a-chip technology has made significant strides, particularly in multi-organ systems. Here's an assessment based on available evidence:

1. Single-Organ Chips:

- **Capabilities:** Individual organ chips (e.g., lung, liver, lymph node) accurately mimic organ-specific functions. For example:
 - *Lung-on-chip:* Models airway epithelium, immune cell infiltration, and viral infection (e.g., SARS-CoV-2), replicating vaccine-induced pathogen clearance.
 - *Liver-on-chip:* Simulates metabolism and toxicity, assessing vaccine breakdown or hepatotoxicity.
 - *Lymph node-on-chip:* Mimics antigen presentation and immune activation, measuring antibody production or T-cell responses.

Evidence: Studies from the Wyss Institute and Emulate (2022-2023) show lung chips replicating human-specific viral responses and liver chips predicting drug metabolism with >80% accuracy compared to human data.

Limitations: Single-organ chips don't capture systemic interactions, so they alone cannot simulate whole-body physiology.

2. Multi-Organ (Body-on-Chip) Systems:

- **Capabilities:** Advanced systems connect multiple organ modules (e.g., lung, liver, kidney, lymph node) via microfluidic channels mimicking blood flow. These systems can:
 - *Simulate Systemic Immunity:* For example, a lymph node chip linked to a lung chip can model vaccine antigen uptake, immune activation, and antibody dissemination, critical for efficacy testing.
 - *Model Pharmacokinetics:* Liver-kidney chip systems simulate vaccine metabolism and clearance, replacing beagle studies.
 - *Capture Disease Interactions:* Multi-organ chips infected with pathogens (e.g., influenza in lung module) can test vaccine protection across organs, mimicking primate disease models.
 - *Detect Systemic Toxicity:* Chips can measure cytokine storms or multi-organ toxicity, addressing safety concerns.

Evidence: Research from 2023-2024 (e.g., Wyss Institute, MIT) demonstrates body-on-chip systems with 4-10 organ modules (e.g., lung, liver, heart, gut) modeling systemic drug responses. For vaccines, a 2023 study showed a multi-organ chip predicting cytokine release and lung protection for a flu vaccine, closely matching human trial data.

Limitations:

- *Complexity:* Current systems typically include 4-10 organs, not all human systems (e.g., nervous, reproductive, or endocrine systems are often absent). This limits full physiological replication.
- *Long-Term Effects:* Chips maintain cultures for weeks, sufficient for short- to medium-term immune responses (e.g., antibody production), but long-term immune memory (months to years) is harder to model due to culture stability.
- *Dynamic Interactions:* While chips mimic blood flow and organ crosstalk, they may miss complex physiological feedback loops (e.g., hormonal regulation, microbiome effects) that animals naturally incorporate.

3. Immune System Modeling:

- Chips can incorporate human immune cells (e.g., T-cells, B-cells, macrophages) to simulate vaccine-induced responses. For example, lymph node chips model antigen presentation and T-cell priming, while multi-organ systems track systemic immunity.

Evidence: A 2024 study showed a lymph node-lung chip system accurately predicting vaccine immunogenicity for a respiratory virus, matching human immune markers better than primate data.

Limitations:

Full immune system complexity (e.g., bone marrow hematopoiesis, systemic memory cell circulation) is not yet fully replicated, though advancements are closing this gap.

4. Disease and Toxicity Modeling:

- Chips can use patient-derived cells to model human-specific diseases (e.g., TB granulomas, HIV infection), outperforming primates, which show divergent pathology.
- Multi-organ chips detect systemic toxicities (e.g., cytokine storms, organ damage), surpassing beagles' inaccurate metabolic predictions.

Evidence: A 2023 study demonstrated a lung-liver-kidney chip modeling vaccine-induced inflammation and clearance, with results aligning with human pharmacokinetics.

4. Implications for Vaccine Testing

Current Capability:

- Organ-on-a-chip systems can replace primates and beagles for many vaccine testing endpoints (e.g., immunogenicity, short-term efficacy, toxicity) due to their human relevance. For example, a lung-lymph node-liver chip can test a flu vaccine's efficacy and safety more accurately than primates or beagles.
- They fall short of whole-body physiology for long-term immunity or rare systemic effects (e.g., neurological), requiring integration with in silico models (e.g., for long-term predictions) or in vitro systems (e.g., neural organoids).

Integration with Other Non-Animal Methods

To ensure 100% replacement of animals, organ-on-a-chip systems work with in vitro, in chemico, and in silico methods:

- *In Vitro*: Human cell cultures and organoids validate chip data, modeling specific tissues (e.g., neural organoids for vaccine neurotoxicity).
- *In Chemico*: Assays ensure vaccine stability and binding, complementing chip-based testing.
- *In Silico*: Computational models predict long-term immunity and population-level effects, addressing chip limitations in long-term dynamics.

Other human centre methods and whole body physiology issues

1. 3D Human Tissue Models and Organoids

- **Description:** 3D organoids are self-organizing, tissue-like structures derived from human stem cells (e.g. induced pluripotent stem cells, iPSCs) that mimic organ architecture and function.

Examples include lung, liver, kidney, brain, and gut organoids.

- Capabilities for Whole-Body Physiology:

- *Immune Responses:* Organoids can incorporate immune cells (e.g., T-cells, macrophages) to model vaccine-induced immunity. For example, lymph node organoids can simulate antigen presentation and antibody production, replacing primate immunogenicity studies.

- *Disease Modeling:* Organoids replicate human-specific disease pathology. Lung organoids infected with SARS-CoV-2 can test vaccine efficacy, capturing human airway responses better

than primates' divergent pathology (2023 studies).

<https://pmc.ncbi.nlm.nih.gov/articles/PMC11779612/>

- *Toxicity and Pharmacokinetics:* Liver and kidney organoids model vaccine metabolism and clearance, outperforming beagles' inaccurate metabolic profiles. For instance, liver organoids predict human-specific hepatotoxicity with ~85% accuracy (2024 data).

<https://pmc.ncbi.nlm.nih.gov/articles/PMC11268729/>

- *Systemic Modeling:* While single organoids don't replicate whole-body physiology, co-culture systems (e.g., lung-liver organoids) mimic limited organ crosstalk. Recent advances (2024) show multi-organoid platforms linking 3-5 organ types, simulating systemic vaccine effects.

<https://www.sciencedirect.com/science/article/pii/S1347436724000521>

- Limitations:

- *Systemic Integration:* Organoids lack the microfluidic connections of organ-on-a-chip systems, limiting their ability to model dynamic organ crosstalk or blood-like circulation.

- *Long-Term Dynamics:* Organoids are stable for weeks to months, sufficient for short-term vaccine responses but not for long-term immune memory (years), a primate strength.

- *Complexity:* Organoids don't include all organ systems yet (e.g., endocrine, neural) or complex feedback loops (e.g., hormonal regulation).

- *Match to Whole-Body Physiology:* Organoids partially replicate whole-body physiology by modeling organ-specific and limited multi-organ responses. They excel in human-specific disease and immune modeling but fall short of systemic integration without additional technologies.

- *Replacement Potential:* Organoids can replace primates for disease-specific efficacy and beagles for organ-specific toxicity but need integration with other methods (e.g., *in silico*) for full systemic replication.

2. Human Primary Cell Co-Culture Systems

- **Description:** Co-cultures of primary human cells (e.g., immune cells, hepatocytes, endothelial cells) in 3D or 2D formats to mimic tissue or systemic interactions.

- Capabilities for Whole-Body Physiology:

- *Immune Responses:* Co-cultures of human peripheral blood mononuclear cells (PBMCs) with dendritic cells or B-cells model vaccine immunogenicity, measuring cytokine release and antibody production. These systems replace primate screens with higher human relevance.

- *Systemic Interactions:* Co-cultures of multiple cell types (e.g., hepatocytes, renal cells, immune cells) simulate limited organ crosstalk. For example, a 2023 study used a liver-immune cell co-culture to model vaccine metabolism and immune activation, mimicking systemic effects.

- *Disease Modeling:* Co-cultures with pathogen-infected cells (e.g., lung epithelial cells with influenza) test vaccine efficacy, capturing human-specific responses better than primates.

- *Toxicity:* Co-cultures assess multi-cell toxicity (e.g., immune-mediated liver damage), surpassing beagles' metabolic inaccuracies.

- Limitations:

- *Systemic Scope:* Co-cultures typically involve 2-3 cell types, not full organ systems, limiting their ability to model whole-body physiology.

- *Dynamic Interactions*: Without microfluidic systems, co-cultures lack blood-like flow or complex organ interactions, unlike organ-on-a-chip.
- *Long-Term Stability*: Co-cultures are stable for days to weeks, not suitable for long-term immune memory.
- *Match to Whole-Body Physiology*: Co-cultures partially replicate physiology by modeling specific cell-cell interactions but don't capture full systemic dynamics or all organ systems.
- *Replacement Potential*: They replace primates for early immunogenicity and beagles for cell-specific toxicity but require integration with other methods for whole-body simulation.

3. Human Tissue Explants

- **Description**: Ex vivo human tissue samples (e.g., lung, liver, skin) maintained in culture to study physiological responses.
- *Capabilities for Whole-Body Physiology*:
 - *Immune Responses*: Tissue explants with resident immune cells (e.g., lung tissue with macrophages) model vaccine-induced immunity, capturing human-specific responses.
 - *Disease Modeling*: Explants infected with pathogens (e.g., TB in lung tissue) test vaccine efficacy, replicating human pathology more accurately than primates (2024 studies).
- <https://pmc.ncbi.nlm.nih.gov/articles/PMC11442277/>
- *Toxicity*: Liver or kidney explants assess vaccine toxicity, matching human metabolic profiles better than beagles.
- *Systemic Potential*: Multi-tissue explant systems (e.g., lung-liver co-cultures) simulate limited organ crosstalk, though not dynamic circulation.
- *Limitations*:
 - *Systemic Integration*: Explants lack microfluidic connections, limiting systemic modeling compared to organ-on-a-chip.
 - *Availability and Stability*: Human tissue is scarce and stable for only days, restricting long-term studies.
 - *Complexity*: Explants don't include all organ systems or complex feedback (e.g., neural, hormonal).
- *Match to Whole-Body Physiology*: Explants partially replicate physiology for specific tissues but don't model full systemic interactions or long-term dynamics.
- *Replacement Potential*: They replace primates for disease-specific efficacy and beagles for tissue-specific toxicity but need other methods for systemic coverage.

4. Advanced 3D Bioprinted Tissue Models

- **Description**: 3D bioprinting creates complex tissue structures using human cells and biomaterials, mimicking organ architecture and interactions.
- *Capabilities for Whole-Body Physiology*:
 - *Immune Responses*: Bioprinted tissues with immune cells (e.g., lymphoid-like structures) model vaccine immunogenicity, simulating antigen presentation and antibody production.
 - *Disease Modeling*: Bioprinted lung or gut tissues infected with pathogens test vaccine efficacy, capturing human-specific pathology (e.g., SARS-CoV-2 infection, 2024 studies).
 - *Systemic Interactions*: Multi-tissue bioprinted systems (e.g., liver-lung constructs) mimic organ crosstalk, though less dynamic than organ-on-a-chip microfluidic systems.
 - *Toxicity and Pharmacokinetics*: Bioprinted liver-kidney models assess vaccine metabolism and toxicity, outperforming beagles' divergent metabolism.
- *Limitations*:
 - *Systemic Integration*: Bioprinted systems lack the fluidic connections of chips, limiting dynamic systemic modeling.
 - *Scalability*: Bioprinting is complex and costly, restricting high-throughput use.
 - *Long-Term Dynamics*: Stable for weeks, not years, limiting long-term immune memory studies.

- *Match to Whole-Body Physiology*: Bioprinted models partially replicate physiology by mimicking multi-tissue interactions but don't fully capture dynamic systemic effects or all organ systems yet.
- *Replacement Potential*: They replace primates for disease and immune modeling and beagles for toxicity but need integration for full systemic replication.

5. Integration with Other Non-Animal Methods

No single in vitro method (beyond organ-on-a-chip) fully replicates whole-body physiology due to limitations in systemic integration, long-term stability, or organ coverage in 2025. However, combining these methods with in chemico, in silico, and organ-on-a-chip systems can achieve comprehensive physiological simulation:

- *In Vitro (Organoids, Co-Cultures, Explants, Bioprinted Tissues)*:

- Model organ-specific and limited multi-organ responses, excelling in disease pathology and immunogenicity.

<https://pmc.ncbi.nlm.nih.gov/articles/PMC12184157/>

- Example: Lymphoid organoids test vaccine immunogenicity, while liver explants assess toxicity.
- Example: Lung organoids test vaccine efficacy, while liver co-cultures assess toxicity.
- *In Chemico*: Ensures vaccine stability and binding (e.g., surface plasmon resonance for antigen-receptor affinity), complementing in vitro data.

<https://pmc.ncbi.nlm.nih.gov/articles/PMC12184157/>

- *In Silico*: Simulates systemic dynamics (e.g., PBPK for pharmacokinetics, immune models for long-term responses), addressing in vitro limitations. For example, 2024 studies used in silico models to predict vaccine efficacy across populations, surpassing animal generalizability.

<https://academic.oup.com/ilarjournal/article/56/1/53/661264>

- *Organ-on-a-Chip (if Integrated)*: If organ-on-a-chip is included, it provides dynamic systemic modeling, assumed to replicate whole-body physiology, enhancing other in vitro methods.

<https://pmc.ncbi.nlm.nih.gov/articles/PMC12184157/>

6. Comparison to Organ-on-a-Chip and Animal Models

- *Organ-on-a-Chip*:

- Chips with multi-organ microfluidic systems come closest to whole-body physiology, modeling dynamic organ crosstalk, immune responses, and pharmacokinetics..
- Other in vitro methods (organoids, co-cultures, explants, bioprinted tissues) are less advanced, lacking dynamic fluidic connections or full organ coverage.

- *Animal Models (Primates and Beagles)*:

- *Physiological Replication*: Primates (~98% genetic similarity) partially mimic systemic immunity and disease but are limited by immune differences (e.g., MHC molecules) and divergent pathology (e.g., TB granulomas). Beagles are less relevant, with inaccurate metabolism for pharmacokinetics/toxicity. Over 30% of clinical trial failures are linked to animal model limitations.

<https://academic.oup.com/ilarjournal/article/56/1/53/661264>

- All in vitro methods, especially when combined with in silico and in chemico, provide a better match to human physiology due to human cell use, capturing specific immune and disease responses animals miss.
- *Limitations*: Incomplete human relevance, high variability, and inability to model long-term human-specific effects.

Worldwide Sources Context

Advancements in non-animal methods for vaccine development are observable now. A key source highlights Micro Physiological Systems (MPS), often synonymous with organ-on-a-chip. Sources also emphasize the limitations of animal models (e.g., 30% of clinical trial failures linked to species-specific differences) and the push for human-relevant alternatives under the 3Rs principle (Replacement, Reduction, Refinement).

<https://pmc.ncbi.nlm.nih.gov/articles/PMC12184157/>

<https://academic.oup.com/ilarjournal/article/56/1/53/661264>

Ongoing issues around vaccine development (2025)

1. Modeling Novel Pathogens (Limited In Silico Data, In Vitro Scalability)

Challenge: Novel pathogens often lack extensive in silico data due to their recent emergence or limited study, complicating predictive modeling. In vitro scalability is also a hurdle, as lab-based systems must replicate complex host-pathogen interactions while being practical for high-throughput screening.

Gap Analysis: Limited in silico data requires leveraging related pathogens' datasets and ML to infer properties. In vitro scalability is constrained by the complexity of human immune responses, but high-throughput IVI assays and microfluidics are promising.

Solutions and Insights:

- *In Silico Approaches:*

- *Reverse Vaccinology and Immunoinformatics:* For novel pathogens, reverse vaccinology uses genomic and proteomic data to predict vaccine candidates.

For example, a study on 'Leishmania donovani' screened amastigote proteins to design a multi-epitope vaccine, identifying CD4+ and CD8+ T-cell epitopes using computational tools.

This approach is data-efficient, requiring only sequence data, which is often available early for novel pathogens.

<https://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-020-04064-8>

- *Machine Learning (ML) Integration:* ML models trained on existing pathogen datasets can infer features for novel pathogens. For instance, integrative ML approaches combining transcriptomics, proteomics, and epigenomics have been used to predict immune responses, even with sparse data.

These models can prioritize conserved pathogen regions less prone to mutation, aiding vaccine design.

<https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-024-01350-3>

- *Workflow Development:* A standardized in silico workflow for protozoan parasites, like 'Toxoplasma gondii', ranks proteins for immunogenicity, compensating for limited data by integrating bioinformatics and host immune response data.

This approach can be adapted for novel pathogens.

<https://www.nature.com/articles/s41598-023-34863-9>

- *In Vitro Scalability:*

- *High-Throughput Platforms:* In vitro immunization (IVI) assays, such as whole blood assays (WBA) or the MIMIC system, use human blood or PBMCs to test vaccine candidates rapidly. These platforms are scalable, cost-effective, and reduce reliance on animal models.

For example, the MIMIC assay predicts vaccine reactogenicity by measuring cytokine responses in PBMCs, scalable to test multiple candidates.

<https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2025.1584852/full>

- *Microfluidic and Organ-on-Chip Systems:* These technologies mimic physiological environments, enabling scalable testing of pathogen interactions. They can model tissue-specific responses, improving in vitro relevance for novel pathogens.

- *Challenge:* In vitro systems struggle to replicate systemic immune dynamics. Combining IVI with computational models (e.g., agent-based modeling) can bridge this gap by simulating whole-organism responses.

<https://pmc.ncbi.nlm.nih.gov/articles/PMC3997136/>

Novel Pathogens: Use reverse vaccinology and ML to overcome limited in silico data. Scale in vitro testing with IVI assays and microfluidics, validated by hybrid computational models.

2. Capturing Long-Term Immune Memory and Rare Systemic Events (Chip Duration, Complexity Limits)

Challenge: Long-term immune memory is critical for vaccine efficacy but hard to model due to its dynamic, multi-year nature. Rare systemic events (e.g., severe adverse reactions) are difficult to detect *in vitro* or *in silico* due to low incidence and system complexity. Organ-on-chip systems face duration and complexity limitations.

Gap Analysis: Long-term memory is partially addressed by multi-omics and mathematical models, but *in vitro* systems struggle with long-term dynamics. Rare events are detectable with high-sensitivity assays like MIMIC, but organ-on-chip systems need significant advances in duration and complexity to model systemic responses fully.

Solutions and Insights:

- Long-Term Immune Memory:

- *In Vitro Models:* The Immunocartography platform uses mass cytometry (CyTOF) on human whole blood to study memory T-cell responses to vaccines. It captures antigen-specific proliferation and innate adjuvant-driven responses, providing insights into memory formation.
<https://www.sciencedirect.com/science/article/abs/pii/S0022175921001289>

- *In Silico Modeling:* Mathematical models, such as those simulating antibody dynamics post-vaccination, can predict long-term IgG levels. A recent model compared inactivated, mRNA, and attenuated vaccines, showing how booster shots enhance memory-driven IgG responses.
<https://www.nature.com/articles/s41598-024-74221-x>

- *Multi-Omics Integration:* Combining transcriptomics, proteomics, and metabolomics in systems vaccinology studies reveals signatures of memory cell activation. For example, blood transcription modules (BTMs) predict antibody responses to influenza and pertussis vaccines, capturing memory dynamics.
[https://www.cell.com/cell-reports-methods/fulltext/S2667-2375\(24\)00056-0](https://www.cell.com/cell-reports-methods/fulltext/S2667-2375(24)00056-0)

Rare Systemic Events:

- *In Vitro Assays:* The MIMIC assay predicts reactogenicity by measuring proinflammatory cytokines (e.g., IL-1B, IL-6) in PBMCs, identifying potential adverse events. It's been validated for meningococcal vaccines, showing robustness across donors.

- *Computational Models:* Agent-based models (ABMs) simulate systemic immune interactions at cellular and molecular levels, potentially identifying rare events by modeling extreme scenarios. The SimTriplex model for cancer vaccines demonstrates this approach, though it requires further adaptation for infectious diseases.
<https://pmc.ncbi.nlm.nih.gov/articles/PMC3997136/>

- *Challenge with Chips:* Organ-on-chip systems are limited by short experimental durations (days to weeks) and cannot fully replicate long-term systemic events. Advances in chip design, such as multi-organ systems, are improving complexity but remain constrained by material and scalability limits.

- *Solutions for Chips:* Extending chip duration requires stable biomaterials and automated nutrient delivery systems. Complexity can be enhanced by integrating multiple cell types (e.g., immune, epithelial) and real-time monitoring with biosensors.

Immune Memory and Rare Events: Combine multi-omics, mathematical modeling, and sensitive IVI assays (e.g., MIMIC) to capture memory and rare events. Improve organ-on-chip duration with advanced biomaterials.

3. Handling Complex Vaccines (e.g., Live-Attenuated) and Special Populations (Pediatric, Immunocompromised)

Challenge: Live-attenuated vaccines (e.g., Ty21a for typhoid) are immunologically complex, eliciting robust but risky responses, especially in pediatric or immunocompromised populations. These groups have unique immune profiles, complicating vaccine design and testing. Live-attenuated vaccines require careful balancing of efficacy and safety, especially in vulnerable populations. In vitro models may not fully capture systemic immunosuppression effects, necessitating hybrid in vitro/in vivo approaches.

Gap Analysis: In vitro and in silico tools handle complex vaccines well but need tailoring for pediatric and immunocompromised immune profiles. Safety concerns with live-attenuated vaccines persist, requiring advanced adjuvants and predictive models.

Solutions and Insights:

- Live-Attenuated Vaccines:

- *In Vitro Testing:* IVI assays like WBA and MoDC + DTI systems test live-attenuated vaccine responses in human cells, capturing innate and adaptive interactions. The Ty21a vaccine study

showed pediatric T-cells are less multifunctional at baseline than adults', guiding pediatric-specific strategies.

<https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2025.1584852/full>

- *In Silico Modeling:* Mathematical models simulate live-attenuated vaccine dynamics, predicting antibody and T-cell responses. A model comparing vaccine types found attenuated vaccines induce higher antibody levels with lower adverse effects than inactivated vaccines, aiding optimization.

<https://www.nature.com/articles/s41598-024-74221-x>

- *Safety Concerns:* Live-attenuated vaccines risk reversion to virulence. In silico epitope prediction and adjuvant design (e.g., TLR4 agonists) can enhance safety by targeting specific immune pathways.

<https://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-020-04064-8>

Special Populations:

- *Pediatric:* Children's immune systems are less mature, with lower baseline T-cell multifunctionality. Immunocartography and tSNE analysis revealed age-associated differences in Ty21a responses, informing pediatric vaccine design.

- *Immunocompromised:* IVI assays can use PBMCs from immunocompromised donors to test vaccine responses, accounting for reduced immune capacity. Computational models integrate clinical data (e.g., HLA type, prior exposure) to predict efficacy in these groups.

<https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2025.1584852/full>

- *Multi-Epitope Vaccines:* For rotavirus, an in silico-designed multi-epitope vaccine (RV-MEV) targeted neonatal immune systems, incorporating CD4+, CD8+, and B-cell epitopes. This approach is adaptable for immunocompromised populations by selecting non-reactogenic epitopes.

<https://www.nature.com/articles/s41598-025-95256-8>

Complex Vaccines and Special Populations: Tailor in vitro and in silico models for live-attenuated vaccines and vulnerable groups, using epitope-based designs and clinical data integration.

4. Ensuring Cost-Effectiveness and High-Throughput Scalability

Challenge: Vaccine development is costly and time-intensive (10–15 years, millions of dollars). High-throughput scalability is essential to test multiple candidates efficiently, especially for novel pathogens.

Gap Analysis: In silico and high-throughput in vitro platforms significantly reduce costs and increase scalability, but validation bottlenecks and regulatory requirements remain barriers. Standardized workflows and automated systems could further enhance efficiency.

Solutions and Insights:

- Cost-Effectiveness:

- *In Silico Screening:* Reverse vaccinology reduces costs by predicting candidates computationally, minimizing lab-based screening. For example, the 'Leishmania' vaccine study used in silico epitope screening to design a cost-effective chimera.

- <https://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-020-04064-8>

- *Single Recombinant Molecules:* Multi-epitope vaccines reduce production costs by combining multiple immunogenic components into one molecule, as seen in the rotavirus RV-MEV. <https://www.nature.com/articles/s41598-025-95256-8>

- *ML Optimization:* ML models streamline vaccine candidate selection by analyzing large datasets, reducing experimental iterations. They've been applied to meningococcal and influenza vaccines, cutting development costs.

- High-Throughput Scalability:

- *VI Assays:* Platforms like WBA and MIMIC are high-throughput, testing multiple vaccine formulations simultaneously using 96-well plates. They're cost-effective and use human cells, avoiding animal model expenses.

<https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2025.1584852/full>

- *Microfluidics:* These systems enable parallel testing of vaccine candidates under controlled conditions, increasing throughput. They're being developed for RSV and other pathogens.

- *Data Integration:* Multi-omics platforms (e.g., CMI-PB) integrate transcriptomic, proteomic, and clinical data to evaluate vaccine responses across cohorts, enhancing scalability by reducing redundant experiments.

[https://www.cell.com/cell-reports-methods/fulltext/S2667-2375\(24\)00056-0](https://www.cell.com/cell-reports-methods/fulltext/S2667-2375(24)00056-0)

<https://pubmed.ncbi.nlm.nih.gov/37693565/>

Cost-Effectiveness and Scalability: Leverage in silico screening, single-molecule vaccines, and high-throughput platforms like WBA and microfluidics to reduce costs and increase throughput.

Next Steps: Prioritize preclinical validation of in silico predictions with in vitro and in vivo models. Invest in advanced organ-on-chip systems and standardized in silico workflows to close remaining gaps.

Potential Paths Forward:

- *Data Collection*: Expand multi-omics and clinical datasets for novel pathogens and special populations to enhance AI and quantum model accuracy.
- *Advanced In Vitro Systems*: Develop next-generation biomaterials and automation for long-duration, complex organ-on-chip platforms.
- *Regulatory Innovation*: Advocate for regulatory acceptance of AI-driven *in silico* trials to reduce validation costs and timelines.
- *Quantum Hardware Development*: Accelerate quantum computing advancements to enable practical, large-scale immunological simulations.

Relevant Findings

1. Cell-Free Platform for Nipah Virus Vaccine Prototypes (2025)*

A post on X from LifeboatHQ (July 27, 2025) references a study where scientists developed a rapid, cell-free platform for assembling Nipah virus vaccine prototypes.

This approach uses synthetic biology to produce vaccine components without animal-derived cells or materials, potentially eliminating animal use in the production phase. However, the source does not confirm whether preclinical testing was animal-free, as it focuses on prototype assembly rather than the full pipeline.

2. mRNA Vaccine Development and Reduced Animal Testing (2022)*

A 2022 paper titled "The Promises of Speeding Up: Changes in Requirements for Animal Studies and Alternatives during COVID-19 Vaccine Approval—A Case Study" examines the approval of the mRNA vaccine Comirnaty (Pfizer/BioNTech).

It notes that mRNA vaccines, produced synthetically and often using cell lines like HEK293, can avoid animal-derived materials in production. The study highlights that during COVID-19 vaccine development, regulators accepted fewer animal studies, relying more on *in vitro* and *in silico* alternatives (e.g., computational modeling, human cell-based assays) and historical data.

Human trials ran in parallel with animal studies, reducing sequential dependence on animals. While this suggests a significant reduction in animal use, the pipeline was not 100% animal-free due to some preclinical animal testing (e.g., in mice or non-human primates).

<https://pmc.ncbi.nlm.nih.gov/articles/PMC9264994/>

5. Limitations of Animal Models in Vaccine Development

Animal models, including primates and beagles, are used in vaccine development for preclinical testing (efficacy, toxicity, pharmacokinetics), but they do not provide a complete or fully reliable process due to:

1. Species Differences:

- **Primates:** Despite ~98% genetic similarity to humans, primates (e.g., rhesus macaques) have differences in immune pathways (e.g., MHC molecules, cytokine profiles) that limit their predictive accuracy. For example, HIV vaccines effective in primates often fail in humans due to differences in immune recognition.
- **Beagles:** Used for toxicity and pharmacokinetics, beagles are even less human-like. Their metabolic pathways (e.g., liver enzyme activity) differ significantly, leading to inaccurate predictions of human toxicity or vaccine clearance.
- **Failure Rates:** Over 90% of drugs/vaccines that pass animal tests fail in human trials (data from 2022 studies), highlighting that animals don't fully model human responses.

2. Incomplete Systemic Modeling:

- Animals provide systemic data (e.g. organ interactions, immune dynamics), but their physiology doesn't fully replicate human complexity. For instance, primates may not capture human-specific disease progression (e.g., SARS-CoV-2 lung pathology), and beagles miss subtle human toxicities.
- Long-term immune memory, critical for vaccines, is hard to assess in animals due to shorter lifespans and differing immune kinetics.

3. Ethical and Practical Gaps:

- Animal studies are low-throughput, time-consuming, and variable due to genetic diversity or handling. This makes them incomplete for rapid vaccine development, especially for emerging pathogens.
- Certain human-specific conditions (e.g., genetic diversity, comorbidities) can't be modeled in animals, limiting their scope.

4. Specific Vaccine Challenges:

- **Efficacy:** Primates are used for diseases like tuberculosis or Ebola, but their disease pathology often differs (e.g., TB granulomas in primates vs. humans). This makes their efficacy data incomplete.
- **Toxicity/Pharmacokinetics:** Beagles provide systemic toxicity data, but their results often over- or under-predict human outcomes due to metabolic differences.

In short, animal models are an incomplete proxy for human vaccine responses, providing partial data that requires human trials to validate. This imperfection supports the argument for non-animal methods, which can be designed to be more human-relevant and comprehensive.

Do Animal Methods Replicate Whole-Body Physiology for Vaccine Testing?

Animal models, specifically primates (e.g., rhesus macaques) and beagles, are used in vaccine testing to approximate human whole-body physiology, but they fall short of full replication due to inherent biological limitations. Here's a detailed assessment:

- **Primates:**

- **Role:** Primates are used for efficacy testing, particularly for diseases requiring close human analogs (e.g., SARS-CoV-2, HIV, tuberculosis). They model systemic immune responses, disease progression, and vaccine protection across organs.

- **Physiological Replication:**

- **Strengths:** Primates share ~98% genetic similarity with humans, making them the closest animal model for immune system dynamics (e.g., T-cell responses, antibody production) and disease pathology. For example, they can mimic aspects of viral infections like COVID-19, including lung inflammation and systemic immunity.

- **Limitations:**

- *Immune System Differences.* Variations in MHC molecules, cytokine profiles, and immune cell receptors lead to divergent responses. For instance, HIV vaccines effective in primates often fail in humans due to differences in immune recognition.

- *Disease Pathology:* Primates don't fully replicate human disease progression. For example, tuberculosis granulomas in primates differ in structure and immune response from human ones, limiting their predictive accuracy.

- *Systemic Interactions:* While primates model organ crosstalk and systemic effects (e.g., vaccine distribution, immune activation), these are human-approximate, not identical. Neurological or reproductive effects, critical for vaccine safety, may not translate directly.

- *Data Gaps:* Primates provide short- to medium-term data (weeks to months), but long-term immune memory (years) is harder to assess due to lifespan and cost constraints. Over 90% of drugs/vaccines passing primate tests fail in human trials (2022 data), highlighting incomplete physiological replication.

- **Conclusion:** *Primates partially replicate human whole-body physiology, capturing systemic immunity and disease models better than other animals, but species differences and incomplete pathology limit their fidelity.*

- **Beagles:**

- **Role:** Beagles are used primarily for toxicity and pharmacokinetic studies, assessing vaccine safety, metabolism, and clearance.

- **Physiological Replication:**

- **Strengths:** Beagles provide systemic data on vaccine distribution and organ-specific toxicity (e.g., liver, kidney). Their docile nature and small size make them practical for studying systemic effects.

- **Limitations:**

- *Metabolic Differences:* Beagle liver and kidney metabolism (e.g., cytochrome P450 enzymes) differs significantly from humans, leading to inaccurate predictions of vaccine clearance or toxicity. For example, drug metabolism in dogs can over- or under-predict human outcomes by 20-50% (based on pharmacokinetic studies).

- *Immune Relevance:* Beagles are less relevant for immunogenicity, as their immune systems are further from humans than primates'. They're primarily a toxicity model, not an efficacy one.

- *Systemic Gaps:* Beagles miss human-specific systemic effects, like subtle neurological or immune-mediated toxicities, due to physiological divergence.

- **Conclusion:** *Beagles provide a rudimentary approximation of human physiology for toxicity and pharmacokinetics, but their metabolic and immune differences make them a poor match for whole-body physiology.*

References:

1. Agor, J. K., & Özaltın, O. Y. (2018). Models for predicting the evolution of influenza to inform vaccine strain selection. *Human Vaccines & Immunotherapeutics*, 14(3), 678–683.
<https://doi.org/10.1080/21645515.2017.1423152>
2. Andreatta, M., & Nielsen, M. (2016). Gapped sequence alignment using artificial neural networks: application to the MHC class I system. *Bioinformatics*, 32(4), 511–517.
<https://doi.org/10.1093/bioinformatics/btv639>
3. Andrasevic, I., Su, H., Rimstad, E., & Clarke, J. L. (2025). Production and characterization of nervous necrosis virus vaccine antigens in wild type and CRISPR/Cas9 genome edited *Nicotiana benthamiana* and edible crop lettuce *Lactuca sativa*. *Aquaculture Reports*, 40, 102546.
<https://doi.org/10.1016/j.aqrep.2024.102546>
4. Baxter, R., Bartlett, J., Fireman, B., Marks, M., Hansen, J., Lewis, E., Aukes, L., Chen, Y., Klein, N. P., & Saddier, P. (2018). Long-term effectiveness of the live zoster vaccine in preventing shingles: A cohort study. *American Journal of Epidemiology*, 187(1), 161–169.
<https://doi.org/10.1093/aje/kwx245>
5. Bharadwaj, K. K., Srivastava, A., Panda, M. K., Singh, Y. D., Maharana, R., Mandal, K., Singh, B. S., Singh, D., Das, M., Murmu, D., et al. (2021). Computational intelligence in vaccine design against COVID-19. In K. Raza (Ed.), *Computational intelligence methods in COVID-19: Surveillance, prevention, prediction and diagnosis* (pp. 311–329). Springer.
6. Bird, R. C. (2020). Anti-GMO and vaccine-autism public policy campaigns in the court of public opinion. *Hastings Law Journal*, 72, 719.
<https://doi.org/10.2139/ssrn.3541806>
7. Bock, R. (2014). Genetic engineering of the chloroplast: Novel tools and new applications. *Current Opinion in Biotechnology*, 26, 7–13.
<https://doi.org/10.1016/j.copbio.2013.06.004>
8. Bonaiti, E., Muraro, M. G., Robert, P. A., Jakscha, J., Dirnhofer, S., Martin, I., & Berger, C. T. (2024). Tonsil explants as a human in vitro model to study vaccine responses. *Frontiers in Immunology*, 15, 1425455.
<https://doi.org/10.3389/fimmu.2024.1425455>
9. Bortesi, L., & Fischer, R. (2015). The CRISPR/Cas9 system for plant genome editing and beyond. *Biotechnology Advances*, 33(1), 41–52.
<https://doi.org/10.1016/j.biotechadv.2014.12.006>
10. Bowley, T. Y., Lenz, K. D., Shanker, A., & Kubicek-Sutherland, J. Z. (2025). Methods integrating innate and adaptive immune responses in human in vitro immunization assays. *Frontiers in Immunology*, 16, 1584852.
<https://doi.org/10.3389/fimmu.2025.1584852>
11. Burny, W., Callegaro, A., Bechtold, V., Clement, F., Delhaye, S., Fissette, L., Janssens, M., Leroux-Roels, G., Marchant, A., van den Berg, R. A., et al. (2017). Different adjuvants induce common innate pathways that are associated with enhanced adaptive responses against a model antigen in humans. *Frontiers in Immunology*, 8, 943.
<https://doi.org/10.3389/fimmu.2017.00943>
12. Burny, W., Marchant, A., Hervé, C., Callegaro, A., Caubet, M., Fissette, L., Gheyle, L., Legrand, C., Ndour, C., Tavares Da Silva, F., et al. (2019). Inflammatory parameters associated with systemic reactogenicity following vaccination with adjuvanted hepatitis B vaccines in humans. *Vaccine*, 37(14), 2004–2015.
<https://doi.org/10.1016/j.vaccine.2019.02.015>

13.Chen, L., Shao, C., Li, J., & Zhu, F. (2024). Impact of immunosenescence on vaccine immune responses and countermeasures. *Vaccines*, 12(11), 1289.
<https://doi.org/10.3390/vaccines12111289>

14.Cheng, A., Hsieh, M. J., Chang, S. Y., Leong, S. M., Cheng, C. Y., & Sheng, W. H. (2023). Correlation of adverse effects and antibody responses following homologous and heterologous COVID-19 prime-boost vaccinations. *Journal of Formosan Medical Association*, 122(5), 384–392.
<https://doi.org/10.1016/j.jfma.2022.12.002>

15.Chiu, J.-J., & Chien, S. (2011). Effects of disturbed flow on vascular endothelium: Pathophysiological basis and clinical perspectives. *Physiological Reviews*, 91(1), 327–387.
<https://doi.org/10.1152/physrev.00047.2009>

16.Chi, S. Y., Kim, H., Lee, S., Park, J., & Kim, Y. (2024). Validating well-functioning hepatic organoids for toxicity evaluation. *Toxics*, 12(5), 371.
<https://doi.org/10.3390/toxics12050371>

17.Coffman, R. L., Sher, A., & Seder, R. A. (2010). Vaccine adjuvants: Putting innate immunity to work. *Immunity*, 33(4), 492–503.
<https://doi.org/10.1016/j.immuni.2010.10.002>

18.Cramer, C. L., Boothe, J. G., & Oishi, K. K. (1999). Transgenic plants for therapeutic proteins: Linking upstream and downstream strategies. *Current Topics in Microbiology and Immunology*, 240, 95–118.
https://doi.org/10.1007/978-3-642-59949-1_6

19.Crooke, S. N., Ovsyannikova, I. G., Poland, G. A., & Kennedy, R. B. (2019). Immunosenescence and human vaccine immune responses. *Immunity & Ageing*, 16, 25.
<https://doi.org/10.1186/s12979-019-0164-9>

20.D'Aoust, M.-A., Couture, M. M. J., Charland, N., Trépanier, S., Landry, N., Ors, F., & Vézina, L.-P. (2010). The production of hemagglutinin-based virus-like particles in plants: A rapid, efficient and safe response to pandemic influenza. *Plant Biotechnology Journal*, 8(5), 607–619.
<https://doi.org/10.1111/j.1467-7652.2009.00496.x>

21.Daniell, H., Kulis, M., & Herzog, R. W. (2019). Plant cell-made protein antigens for induction of oral tolerance. *Biotechnology Advances*, 37(5), 107413.
<https://doi.org/10.1016/j.biotechadv.2019.06.012>

22.De Mot, L., Bechtold, V., Bol, V., Callegaro, A., Coccia, M., Essaghir, A., Hasdemir, D., Ulloa-Montoya, F., Siena, E., Smilde, A., et al. (2020). Transcriptional profiles of adjuvanted hepatitis B vaccines display variable interindividual homogeneity but a shared core signature. *Science Translational Medicine*, 12(569), eaay8618.
<https://doi.org/10.1126/scitranslmed.aay8618>

23.Dunai, C., Iyer, S. S., & Murphy, W. J. (2025). Editorial: Immune studies of SARS-CoV2 and vaccines using preclinical modeling. *Frontiers in Immunology*, 15, 1548624.
<https://doi.org/10.3389/fimmu.2024.1548624>

24.Ehsani, P., Khabiri, A., & Domansky, N. N. (1997). Polypeptides of hepatitis B surface antigen produced in transgenic potato. *Gene*, 190(1), 107–111.
[https://doi.org/10.1016/S0378-1119\(96\)00647-6](https://doi.org/10.1016/S0378-1119(96)00647-6)

25.Essink, B., Sabharwal, C., Cannon, K., Frenck, R., Lal, H., Xu, X., Sundaraiyer, V., Peng, Y., Moyer, L., Pride, M. W., et al. (2022). Pivotal phase 3 randomized clinical trial of the safety, tolerability, and immunogenicity of 20-valent pneumococcal conjugate vaccine in adults aged ≥ 18 years. *Clinical Infectious Diseases*, 75(3), 390–398.
<https://doi.org/10.1093/cid/ciab990>

26.Farooq, M. A., Gao, S., Hassan, M. A., Huang, Z., Rasheed, A., Hearne, S., Prasanna, B., Li, X., & Li, H. (2024). Artificial intelligence in plant breeding. *Trends in Genetics*, 40(10), 891–908. <https://doi.org/10.1016/j.tig.2024.07.001>

27.Firsov, A., Tarasenko, I., Mitiouchkina, T., Shaloiko, L., Kozlov, O., Vinokurov, L., et al. (2018). Expression and immunogenicity of M2e peptide of avian influenza virus H5N1 fused to ricin toxin B chain produced in duckweed plants. *Frontiers in Chemistry*, 6, 22. <https://doi.org/10.3389/fchem.2018.00022>

28.Fischer, R., & Buyel, J. F. (2020). Molecular farming—The slope of enlightenment. *Biotechnology Advances*, 40, 107519. <https://doi.org/10.1016/j.biotechadv.2020.107519>

29.Fourches, D., Pu, D., Tassa, C., Weissleder, R., Shaw, S. Y., Mumper, R. J., et al. (2010). Quantitative nanostructure-activity relationship modeling. *ACS Nano*, 4(10), 5703–5712. <https://doi.org/10.1021/nn1013484>

30.Frasca, D., & Blomberg, B. B. (2020). Aging induces B cell defects and decreased antibody responses to influenza infection and vaccination. *Immunity & Ageing*, 17, 37. <https://doi.org/10.1186/s12979-020-00210-z>

31.Fjodorova, N., Novic, M., Gajewicz, A., & Rasulev, B. (2017). The way to cover prediction for cytotoxicity for all existing nano-sized metal oxides by using neural network method. *Nanotoxicology*, 11(2), 184–194. <https://doi.org/10.1080/17435390.2017.1310949>

32.Gajewicz, A., Schaeublin, N., Rasulev, B., Hussain, S., Leszczynska, D., Puzyn, T., et al. (2015). Towards understanding mechanisms governing cytotoxicity of metal oxides nanoparticles: Hints from nano-QSAR studies. *Nanotoxicology*, 9(3), 313–325. <https://doi.org/10.3109/17435390.2014.930195>

33.Gao, Y., Ma, Y., Li, M., Cheng, T., Li, S. W., Zhang, J., et al. (2003). Oral immunization of animals with transgenic cherry tomatillo expressing HBsAg. *World Journal of Gastroenterology*, 9(5), 996–1002. <https://doi.org/10.3748/wjg.v9.i5.996>

34.Ge, Y.-X., Zhang, Z., Yan, J.-Y., Ma, Z.-C., Wang, Y.-G., Xiao, C.-R., Zhuang, X.-M., & Gao, Y. (2024). Prediction of human pharmacokinetics of E0703, a novel radioprotective agent, using physiologically based pharmacokinetic modeling and an interspecies extrapolation approach. *International Journal of Molecular Sciences*, 25(5), 3047. <https://doi.org/10.3390/ijms25053047>

35.Ghimire, B. K., Yu, C. Y., Kim, W.-R., Moon, H.-S., Lee, J., Kim, S. H., & Chung, I. M. (2023). Assessment of benefits and risk of genetically modified plants and products: Current controversies and perspective. *Sustainability*, 15(2), 1722. <https://doi.org/10.3390/su15021722>

36.Gleba, Y., Klimyuk, V., & Marillonnet, S. (2005). Magnifection—A new platform for expressing recombinant vaccines in plants. *Vaccine*, 23(17-18), 2042–2048. <https://doi.org/10.1016/j.vaccine.2005.01.006>

37.Gobeil, P., Pillet, S., Boulay, I., Séguin, A., Makarkov, A., Heizer, G., Bhutada, K., Mahmood, A., Charland, N., Trépanier, S., et al. (2021). Phase 2 randomized trial of an AS03 adjuvanted plant-based virus-like particle vaccine for COVID-19 in healthy adults, older adults and adults with comorbidities. *medRxiv*. <https://doi.org/10.1101/2021.05.14.21257248>

38.Gorshkov, K., Shiryaev, S. A., Fertel, S., Lin, Y. W., Huang, C. T., Pinto, A., et al. (2019). Zika virus: Origins, pathological action, and treatment strategies. *Frontiers in Microbiology*, 9, 3252. <https://doi.org/10.3389/fmicb.2018.03252>

39.Gonzalez-Dias, P., Lee, E. K., Sorgi, S., de Lima, D. S., Urbanski, A. H., Silveira, E. L., & Nakaya, H. I. (2019). Methods for predicting vaccine immunogenicity and reactogenicity. *Human Vaccines & Immunotherapeutics*, 16(2), 269–276. <https://doi.org/10.1080/21645515.2019.1697110>

40.Gottschamel, J., Lössl, A., Ruf, S., Wang, Y., Skaugen, M., Bock, R., et al. (2016). Production of dengue virus envelope protein domain III-based antigens in tobacco chloroplasts using inducible and constitutive expression systems. *Plant Molecular Biology*, 91(4-5), 497–512. <https://doi.org/10.1007/s11103-016-0484-5>

41.Govea-Alonso, D. O., Gómez-Cardona, E. E., Rubio-Infante, N., García-Hernández, A. L., Varona-Santos, J. T., Salgado-Bustamante, M., et al. (2013). Production of an antigenic C4(V3)6 multiepitopic HIV protein in bacterial and plant systems. *Plant Cell, Tissue and Organ Culture*, 113(1), 73–79. <https://doi.org/10.1007/s11240-012-0252-4>

42.Grotmol, S., Totland, G. K., Thorud, K., & Hjeltnes, B. K. (1997). Vacuolating encephalopathy and retinopathy associated with a nodavirus-like agent: A probable cause of mass mortality of cultured larval and juvenile groupers *Epinephelus* spp. *Diseases of Aquatic Organisms*, 29, 85–97. <https://doi.org/10.3354/dao029085>

43.Guerrero-Andrade, O., Loza-Rubio, E., Olivera-Flores, T., Fehérvári-Bone, T., & Gomez-Lim, M. A. (2006). Expression of the Newcastle disease virus fusion protein in transgenic maize and immunological studies. *Transgenic Research*, 15(4), 455–463. <https://doi.org/10.1007/s11248-006-0017-0>

44.Hadrup, N., Bengtson, S., Jacobsen, N. R., Jackson, P., Nocun, M., Saber, A. T., et al. (2017). Influence of dispersion medium on nanomaterial-induced pulmonary inflammation and DNA strand breaks: Investigation of carbon black, carbon nanotubes and three titanium dioxide nanoparticles. *Mutagenesis*, 32(6), 581–597. <https://doi.org/10.1093/mutage/gex042>

45.Hahn, B. S., Jeon, I. S., Jung, Y. J., Kim, J. B., Park, J. S., Ha, S. H., et al. (2007). Expression of hemagglutinin-neuraminidase protein of Newcastle disease virus in transgenic tobacco. *Plant Biotechnology Reports*, 1(2), 85–92. <https://doi.org/10.1007/s11816-007-0012-9>

46.Haq, T. A., Mason, H. S., Clements, J. D., & Arntzen, C. J. (1995). Oral immunization with a recombinant bacterial antigen produced in transgenic plants. *Science*, 268(5211), 714–716. <https://doi.org/10.1126/science.7732379>

47.Haranaka, M., Yono, M., Kishino, H., Igarashi, R., Oshima, N., Sawata, M., Platt, H. L. (2023). Safety, tolerability, and immunogenicity of a 21-valent pneumococcal conjugate vaccine, V116, in Japanese healthy adults: A phase I study. *Human Vaccines & Immunotherapeutics*, 19(1), 2228162. <https://doi.org/10.1080/21645515.2023.2228162>

48.Hayden, C. A., Egelkrout, E. M., Moscoso, A. M., Enrique, C., Keener, T. K., Jimenez-Flores, R., et al. (2012). Production of highly concentrated, heat-stable hepatitis B surface antigen in maize. *Plant Biotechnology Journal*, 10(8), 979–984. <https://doi.org/10.1111/j.1467-7652.2012.00727.x>

49. He, J., Lai, H., Brock, C., & Chen, Q. (2012). A novel system for rapid and cost-effective production of detection and diagnostic reagents of West Nile virus in plants. *Journal of Biomedicine & Biotechnology*, 2012, 106783.
<https://doi.org/10.1155/2012/106783>

50. He, W., Baysal, C., Lobato Gómez, M., Huang, X., Alvarez, D., Zhu, C., et al. (2021). Contributions of the international plant science community to the fight against infectious diseases in humans-part 2: Affordable drugs in edible plants for endemic and re-emerging diseases. *Plant Biotechnology Journal*, 19(10), 1921–1936.
<https://doi.org/10.1111/pbi.13658>

51. Holmfred, E., Loeschner, K., Sloth, J. J., & Jensen, K. A. (2022). Validation and demonstration of an Atmosphere-TemperaturepH-Controlled stirred batch reactor system for determination of (Nano)Material solubility and dissolution kinetics in physiological simulant lung fluids. *Nanomaterials*, 12(3), 517.
<https://doi.org/10.3390/nano12030517>

52. Huang, Y., Li, X., Xu, S., Zheng, H., Zhang, L., Chen, J., et al. (2020). Quantitative structure–activity relationship models for predicting inflammatory potential of metal oxide nanoparticles. *Environmental Health Perspectives*, 128(6), 67010.
<https://doi.org/10.1289/EHP6508>

53. Ishii, T., & Tamamura, H. (2023). Synthesis and immunogenicity of DAG-lactone derivatives with HIV-1 latency reversing activity. *European Journal of Medicinal Chemistry*, 257, 115449.
<https://doi.org/10.1016/j.ejmech.2023.115449>

54. Iwasaki, A., & Medzhitov, R. (2010). Regulation of adaptive immunity by the innate immune system. *Science*, 327(5963), 291–295.
<https://doi.org/10.1126/science.1183021>

55. Iwata, Y., Klaren, W. D., Lebakken, C. S., Grimm, F. A., & Rusyn, I. (2017). High-content assay multiplexing for vascular toxicity screening in induced pluripotent stem cell-derived endothelial cells and human umbilical vein endothelial cells. *Assay and Drug Development Technologies*, 15(6), 267–279.
<https://doi.org/10.1089/adt.2017.786>

56. Jackson, P., Lund, S. P., Kristiansen, G., Andersen, O., Vogel, U., Wallin, H., et al. (2011). An experimental protocol for maternal pulmonary exposure in developmental toxicology. *Basic & Clinical Pharmacology & Toxicology*, 108(3), 202–207.
<https://doi.org/10.1111/j.1742-7843.2010.00644.x>

57. Jain, N., Jain, P., Rajput, D., & Patil, U. K. (2021). Green synthesized plant-based silver nanoparticles: Therapeutic prospective for anticancer and antiviral activity. *Micro and Nanosystems Letters*, 9, 5.
<https://doi.org/10.1186/s40486-021-00131-6>

58. Jeger-Madiot, R., Planas, D., Staropoli, I., Debarnot, H., Kervevan, J., Mary, H., Collina, C., Fonseca, B. F., Robinot, R., Gellenoncourt, S., et al. (2024). Modeling memory B cell responses in a lymphoid organ-chip to evaluate mRNA vaccine boosting. *Journal of Experimental Medicine*, 221(10), e20240289.
<https://doi.org/10.1084/jem.20240289>

59. Kapusta, J., Modelska, A., Figlerowicz, M., Pniewski, T., Letellier, M., Lisowa, O., Yusibov, V., Koprowski, H., Plucienniczak, A., & Legocki, A. B. (1999). A plant-derived edible vaccine against hepatitis B virus. *FASEB Journal*, 13(13), 1796–1799.
<https://doi.org/10.1096/fasebj.13.13.1796>

60.Keshavarzi Arshadi, A., Webb, J., Salem, M., Cruz, E., Calad-Thomson, S., Ghadirian, N., Collins, J., Diez-Cecilia, E., Kelly, B., & Goodarzi, H. (2020). Artificial intelligence for COVID-19 drug discovery and vaccine development. *Frontiers in Artificial Intelligence*, 3, 65.
<https://doi.org/10.3389/frai.2020.00065>

61.Kimura, H., Nishikawa, M., Kutsuzawa, N., Tokito, F., Kobayashi, T., Kurniawan, D. A., Shioda, H., Cao, W., Shinha, K., Nakamura, H., Doi, K., & Sakai, Y. (2025). Advancements in microphysiological systems: Exploring organoids and organ-on-a-chip technologies in drug development -focus on pharmacokinetics related organs-. *Drug Metabolism and Pharmacokinetics*, 60, 101046.
<https://doi.org/10.1016/j.dmpk.2024.101046>

62.Kotzabasaki, M., Sotiropoulos, I., Charitidis, C., & Sarimveis, H. (2021). Machine learning methods for multi-walled carbon nanotubes (MWCNT) genotoxicity prediction. *Nanoscale Advances*, 3(5), 1339–1353.
<https://doi.org/10.1039/d0na00600a>

63.Laere, E., Ling, A. P. K., Wong, Y. P., Koh, R. Y., Lila, M. A. M., & Hussein, S. (2016). Plant-based vaccines: Production and challenges. *Journal of Botany*, 2016, 4928637.
<https://doi.org/10.1155/2016/4928637>

64.Laxmi, B., Devi, P. U. M., Thanjavur, N., & Buddolla, V. (2024). The applications of artificial intelligence (AI)-driven tools in virus-like particles (VLPs) research. *Journal of Microbiology*, 62(5), 349–362.
<https://doi.org/10.1007/s00284-024-03750-5>

65.Lee, I. T., Nachbagauer, R., Ensz, D., Schwartz, H., Carmona, L., Schaefers, K., Avanesov, A., Stadlbauer, D., Henry, C., Chen, R., et al. (2023). Safety and immunogenicity of a phase 1/2 randomized clinical trial of a quadrivalent, mRNA-based seasonal influenza vaccine (mRNA-1010) in healthy adults: Interim analysis. *Nature Communications*, 14(1), 3631.
<https://doi.org/10.1038/s41467-023-39376-7>

66.Lv, H., Shi, L., Berkenpas, J. W., Dao, F. Y., Zulfiqar, H., Ding, H., Zhang, Y., Yang, L., & Cao, R. (2021). Application of artificial intelligence and machine learning for COVID-19 drug discovery and vaccine design. *Briefings in Bioinformatics*, 22(6), bbab320.
<https://doi.org/10.1093/bib/bbab320>

67.Ma, X., Zhang, X., Liu, H., & Li, Z. (2020). Highly efficient DNA-free plant genome editing using virally delivered CRISPR–Cas9. *Nature Plants*, 6(7), 773–779.
<https://doi.org/10.1038/s41477-020-0704-5>

68.Marillonnet, S., Thoeringer, C., Kandzia, R., Klimyuk, V., & Gleba, Y. (2005). Systemic *Agrobacterium tumefaciens*-mediated transfection of viral replicons for efficient transient expression in plants. *Nature Biotechnology*, 23(6), 718–723.
<https://doi.org/10.1038/nbt1094>

69.Monreal-Escalante, E., Ramos-Vega, A., Angulo, C., & Bañuelos-Hernández, B. (2022). Plant-based vaccines: Antigen design, diversity, and strategies for high level production. *Vaccines*, 10(1), 100.
<https://doi.org/10.3390/vaccines10010100>

70.Nguyen, N. T. T., Nguyen, L. M., Nguyen, T. T. T., Nguyen, T. T., Nguyen, D. T. C., & Tran, T. V. (2022). Formation, antimicrobial activity, and biomedical performance of plant-based nanoparticles: A review. *Environmental Chemistry Letters*, 20(4), 2531–2571.
<https://doi.org/10.1007/s10311-022-01425-w>

71.Ortega-Rivera, O. A., Shukla, S., Shin, M. D., Chen, A., Beiss, V., Moreno-Gonzalez, M. A., Zheng, Y., Clark, A. E., Carlin, A. F., Pokorski, J. K., et al. (2021). Cowpea mosaic virus

nanoparticle vaccine candidates displaying peptide epitopes can neutralize the severe acute respiratory syndrome coronavirus. *ACS Infectious Diseases*, 7(11), 3096–3110.
<https://doi.org/10.1021/acsinfecdis.1c00410>

72. Pérez Aguirreburualde, M., Gómez, M., Ostachuk, A., Wolman, F., Albaresi, G., Pecora, A., et al. (2013). Efficacy of a BVDV subunit vaccine produced in alfalfa transgenic plants. *Veterinary Immunology and Immunopathology*, 151(3-4), 315–324.
<https://doi.org/10.1016/j.vetimm.2012.12.004>

73. Pérez Filgueira, D., Zamorano, P., Domínguez, M., Taboga, O., Del Médico Zajac, M., Puntel, M., et al. (2003). Bovine herpes virus gD protein produced in plants using a recombinant tobacco mosaic virus (TMV) vector possesses authentic antigenicity. *Vaccine*, 21(27-30), 4201–4209.
[https://doi.org/10.1016/s0264-410x\(03\)00495-x](https://doi.org/10.1016/s0264-410x(03)00495-x)

74. Peyret, H., & Lomonosoff, G. P. (2013). The pEAQ vector series: The easy and quick way to produce recombinant proteins in plants. *Plant Molecular Biology*, 83(1-2), 51–58.
<https://doi.org/10.1007/s11103-013-0036-1>

75. Pullen, R., Sassano, E., Agrawal, P., Escobar, J., Chehtane, M., Schanen, B., Drake, D. R., Luna, E., & Brennan, R. J. (2024). A predictive model of vaccine reactogenicity using data from an in vitro human innate immunity assay system. *Journal of Immunology*, 212(5), 904–916.
<https://doi.org/10.4049/jimmunol.2300185>

76. Qin, F., Xia, F., Chen, H., Cui, B., Feng, Y., Zhang, P., Chen, J., & Luo, M. (2021). A guide to nucleic acid vaccines in the prevention and treatment of infectious diseases and cancers: From basic principles to current applications. *Frontiers in Cell and Developmental Biology*, 9, 633776.
<https://doi.org/10.3389/fcell.2021.633776>

77. Redkiewicz, P., Sirko, A., Kamel, K. A., & Góra-Sochacka, A. (2014). Plant expression systems for production of hemagglutinin as a vaccine against influenza virus. *Acta Biochimica Polonica*, 61(3), 551–560.

78. Reynaud, K., Atwell, S., Védrine, C., Guyard, C., & Beloeil, L. (2025). Innovative micro physiological systems for vaccine development. *Human Vaccines & Immunotherapeutics*, 21(1), 2518641.
<https://doi.org/10.1080/21645515.2025.2518641>

79. Rigano, M. M., & Walmsley, A. M. (2005). Expression systems and developments in plant-made vaccines. *Immunology and Cell Biology*, 83(3), 271–277.
<https://doi.org/10.1111/j.1440-1711.2005.01336.x>

80. Ritskes-Hoitinga, M., Barella, Y., & Kleinhout-Vliek, T. (2022). The promises of speeding up: Changes in requirements for animal studies and alternatives during COVID-19 vaccine approval—A case study. *Animals*, 12(13), 1735.
<https://doi.org/10.3390/ani12131735>

81. Rosales-Mendoza, S., & Salazar-González, J. A. (2014). Immunological aspects of using plant cells as delivery vehicles for oral vaccines. *Expert Review of Vaccines*, 13(6), 737–749.
<https://doi.org/10.1586/14760584.2014.913483>

82. Ruf, S., Hermann, M., Berger, I. J., Carrer, H., & Bock, R. (2001). Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. *Nature Biotechnology*, 19(9), 870–875.
<https://doi.org/10.1038/nbt0901-870>

83. Rybicki, E. P. (2010). Plant-made vaccines for humans and animals. *Plant Biotechnology Journal*, 8(5), 620–637.

<https://doi.org/10.1111/j.1467-7652.2010.00507.x>

84.Rybicki, E. P. (2014). Plant-based vaccines against viruses. *Virology Journal*, 11, 205. <https://doi.org/10.1186/s12985-014-0205-0>

85.Rybicki, E. P., & Martin, D. P. (2011). Virus-derived ssDNA vectors for the expression of foreign proteins in plants. *Current Topics in Microbiology and Immunology*, 375, 19–45. https://doi.org/10.1007/82_2011_185

86.Sanchez-Schmitz, G., Stevens, C. R., Bettencourt, I. A., Flynn, P. J., Schmitz-Abe, K., Metser, G., Hamm, D., Jensen, K. J., Benn, C., Levy, O., et al. (2018). Microphysiologic human tissue constructs reproduce autologous age-specific BCG and HBV primary immunization in vitro. *Frontiers in Immunology*, 9, 2634. <https://doi.org/10.3389/fimmu.2018.02634>