
Design and Implementation of a Web
Audio/Video Recorder in HTML5

Ole Kristian Aamot
Aamot Research

November 15, 2024

Abstract

This paper discusses the design and implementation of a Web Au-
dio/Video recorder using HTML5. The recorder leverages modern web
technologies such as the MediaRecorder API and WebRTC for real-
time audio and video capture. The implementation prioritizes usabil-
ity, cross-platform compatibility, and privacy, with additional features
for saving and exporting recorded media in common formats like MP4
and WebM. The application showcases the flexibility of HTML5 in
building multimedia tools directly accessible through web browsers.

1 Introduction

The emergence of HTML5 has revolutionized web development by enabling
native support for multimedia functionalities. Among its key capabilities is
the ability to record and manipulate audio and video streams. This feature
eliminates the need for third-party plugins like Flash, making web appli-
cations more secure and efficient. This paper focuses on the design con-
siderations and technical implementation of a Web Audio/Video recorder,
highlighting its use cases in education, remote collaboration, and media pro-
duction.

2 Methodology

The project follows a modular design approach, emphasizing ease of integra-
tion with existing web platforms. The key technologies used include:

• MediaDevices API: To access the user’s microphone and camera.

1



• MediaRecorder API: For recording and processing audio/video streams.

• WebRTC: To enable low-latency data transmission.

• HTML5 and CSS3: For building an intuitive user interface.

The system architecture consists of three main components:

1. Capture Module: Interfaces with the device’s input hardware.

2. Recording Module: Encodes and stores media streams in real time.

3. Export Module: Allows users to save recordings in various formats.

3 Implementation

The implementation begins with an HTML5 front-end that provides a user-
friendly interface. The core functionality is driven by JavaScript, utilizing the
MediaRecorder API for media handling. Below is a snippet of the recording
logic:

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF -8">

<meta name="viewport" content="width=device -width ,

initial -scale =1.0">

<title >Web Audio/Video Recorder </title>

</head>

<body>

<h1>Audio/Video Recorder </h1>

<video id="preview" autoplay muted></video>

<button id="start">Start Recording </button >

<button id="stop" disabled >Stop Recording </button >

<script >

const preview = document.getElementById(’preview

’);

const startButton = document.getElementById(’

start ’);

const stopButton = document.getElementById(’stop

’);

let mediaRecorder;

let chunks = [];

2



navigator.mediaDevices.getUserMedia ({ video:

true , audio: true })

.then(stream => {

preview.srcObject = stream;

mediaRecorder = new MediaRecorder(stream

);

mediaRecorder.ondataavailable = event =>

chunks.push(event.data);

mediaRecorder.onstop = () => {

const blob = new Blob(chunks , { type

: ’video/webm ’ });

const url = URL.createObjectURL(blob

);

const a = document.createElement(’a

’);

a.href = url;

a.download = ’recording.webm ’;

a.click ();

};

});

startButton.addEventListener(’click ’, () => {

chunks = [];

mediaRecorder.start();

startButton.disabled = true;

stopButton.disabled = false;

});

stopButton.addEventListener(’click ’, () => {

mediaRecorder.stop();

startButton.disabled = false;

stopButton.disabled = true;

});

</script >

</body>

</html>

4 Results

The implemented recorder successfully captures high-quality audio and video
streams in real time. Testing across major browsers (Chrome, Firefox, and

3



Edge) confirms compatibility and smooth performance. The export func-
tionality supports WebM and MP4 formats, ensuring broad usability. User
feedback indicates that the interface is intuitive and easy to navigate.

5 Conclusion

This project demonstrates the potential of HTML5 in creating robust and
accessible multimedia applications. The Web Audio/Video recorder is a step
towards democratizing content creation tools by providing free, open-source
solutions accessible through web browsers. Future work will focus on enhanc-
ing features such as video editing, cloud integration, and advanced privacy
settings.

Acknowledgments

The author would like to thank the open-source community for their contri-
butions to HTML5 and related technologies.

References

[1] W3C Media Capture and Streams API, https://www.w3.org/TR/

mediacapture-streams/

[2] MDN Web Docs: MediaRecorder API, https://developer.mozilla.
org/en-US/docs/Web/API/MediaRecorder

4

https://www.w3.org/TR/mediacapture-streams/
https://www.w3.org/TR/mediacapture-streams/
https://developer.mozilla.org/en-US/docs/Web/API/MediaRecorder
https://developer.mozilla.org/en-US/docs/Web/API/MediaRecorder

	Introduction
	Methodology
	Implementation
	Results
	Conclusion

