

Robotics Intermediate level

Curriculum

Table Of Content

Module 1: Robotics System Architecture

Module 2: Advanced Motor Control

Module 3: Sensor Integration & Fusion

Module 4: Embedded Programming for Robotics

BOTNESI
Academy

Module 5: Autonomous Navigation Logic

Module 6: Human–Robot Interaction

Module 7: Displays & Feedback Systems

Module 8: Automation & Control Logic

Module 9: Mini Projects (Intermediate Level)

Module 1: Robotics System Architecture

- Review of beginner concepts
- Robot subsystems (mechanical, electrical, control)
- Control flow in robotic systems
- Real-world robot design examples

 Activity: Robot block-diagram design

Module 2: Advanced Motor Control

- Motor speed control using PWM
- Smooth acceleration & braking
- Turning algorithms
- Power management basics

 Hands-on: Speed-controlled robot

Module 3: Sensor Integration & Fusion

- Using multiple sensors together
- Ultrasonic + IR combination
- Sensor accuracy & noise handling
- Decision logic using sensor data

 Hands-on: Smart obstacle avoidance robot

Module 4: Embedded Programming for Robotics

- Modular coding
- Functions & libraries
- Timing and delays vs millis()
- Debugging strategies

 Hands-on: Optimized robot control code

Module 5: Autonomous Navigation Logic

- Rule-based navigation
- Path decision making
- Line follower optimization
- Basic maze-solving logic

 Hands-on: Advanced line follower robot

Module 6: Human–Robot Interaction

- Bluetooth / mobile control
- Joystick control
- Manual vs autonomous switching
- Safety handling

 Hands-on: Mobile-controlled robot

Module 7: Displays & Feedback Systems

- LCD / OLED display usage
- Status indicators
- Debug information display
- User interaction basics

Hands-on: Robot status display system

Module 8: Automation & Control Logic

- Event-based robot behavior
- Time-based actions
- Emergency stop logic
- Fail-safe mechanisms

Hands-on: Intelligent robot behavior system

Module 9: Mini Projects (Intermediate Level)

Students build real-world robotics applications such as:

- Advanced Obstacle Avoiding Robot
- Maze Solving Robot
- Smart Line Follower Robot
- Bluetooth-Controlled Robot
- Automated Delivery Robot Prototype

Core Skills Developed

- Robotics system design
- Advanced motor & sensor control
- Structured embedded programming
- Logical decision making
- Debugging & optimization
- Team collaboration

Learning Outcomes

By the end of the program, students will:

- Design semi-autonomous robots
- Integrate multiple sensors effectively
- Implement intelligent navigation logic
- Control robots wirelessly
- Prepare for robotics competitions

Certification

- BotNest IoT Beginner Program Certificate
- Project-based assessment