

SSA Improvement / Collision Avoidance is NOT a Solution to the Orbital Debris Problem

Panel: Space Debris/Space Situational Awareness Sharing

AIAA Space 2010 Conference

Wade Pulliam, PhD

Tactical Technology Office
Defense Advanced Research Projects Agency

31 August 2010

Approved for Public Release, Distribution Unlimited

Why We Are Here?

Growth of the cataloged space object population (diameter > 10 cm)

And It Is Just Going To Get Worse

NASA's Orbital Debris Office Model

- Future debris environment (>10 cm)
- Assumes "business-as-usual"
- Projects 178 collisions in LEO over the next 200 years nearly one collision per year
- Debris density (i.e. risk) in LEO will increase by more than a factor of five

Higher Resolution SSA Is Not Enough

- While the vast majority of debris can be shielded against, no countermeasure currently exists for medium debris (> 5 mm to 10 cm).
- Knowledge of large objects (> 10 cm) addresses only ~1% of the risk from potentially mission-terminating impacts.
- Improving SSA resolution by 10X (> 1 cm) would still only address ~35% of the mission-terminating debris threat.
- Tracking smaller debris alone is not enough to eliminate the risk from orbital debris.

Increased Conjunction Information Is Not Enough

Payloads Screened	Daily Predicted Conjunctions	Threshold	Notes
120	5	> 10 cm	Screening Prior to Iridium-Cosmos Collision
330	25	> 10 cm	Screening Shortly After Iridium-Cosmos Collision
800+	50	> 10 cm	Current Screening: All Maneuverable Satellites
1,300	~75	> 10 cm	Goal for 2010: Screening All Active Satellites
1,300	~2,625	> 1 cm	Improved resolution SSA (projection)

he Joint Space Operations Center a Orbital Debris", C. Moss, Dec. 2009

- The 35:1 ratio of > 1cm objects to > 10 cm objects implies there may be tens as many collision avoidance maneuvers if we were able to track 1 cm objects with no improvement in position uncertainty ellipsoids.
- Even if we can detect smaller debris particles, we need more accurate trajectory knowledge to avoid expending fuel on false-positives.
- Improvements in state vector accuracy are required, but even that may not be sufficient.

Improvements To State Vector Accuracy Will Be Difficult

Change in Altitude per Revolution by Area to Mass Ratio (m²/kg) (at Solar Max)

Fengyun-1C Debris Estimated Area to Mass as a Function of Debris Characteristic Length

- "The Characteristics And Consequences Of The Break-up Of The Fengyun-1C Spacecraft", N. Johnson, etal. 2007
- It is hard to tell where an object is located, and even when it is located, it is hard to tell
 where the object will be in a subsequent orbit (majority of debris will change altitude by
 30m/rev.).
- This is worse for smaller objects (i.e. higher A/M ratios) larger covariance matrices make the probability of collision less precise.
- · More frequent updates are required to keep uncertainty low.

Enhanced SSA ≠ Reduced Future Debris Risk

- There are about 1,800 rocket bodies and 3,200 payloads in orbit.
- About 800 of those payloads are maneuverable roughly half in GEO.
- As a result, most of the mass in orbit (about 80%) cannot avoid catastrophic collision, even if warned in advance.
- The LEO risk will grow, even with enhanced collision avoidance warnings, and will at some point overwhelm our improvements in SSA.
- Large derelict objects must be removed now to reduce the future risk from orbital debris.

