Name:

Test yourself: Angles in polygons!

Foundation	Higher
Each exterior angle of a regular polygon is 30°. Work out the number of sides of the polygon.	The diagram shows a regular 10-sided shape. Work out the size of the angle X .
Calculate the size of this	The diagram shows a regular hexagon and a regular octagon. shalculate the size of the angle marked X.

Work out the size of each	
interior angles of a regular	
octagon.	The pattern is made from two types of tiles, tile C and tile E . Both tile C and tile E are regular polygons. Work out the number of sides tile C has.
The size of each interior angle of a regular polygon is 156°. Work out the number of sides of the	ABCDE and EHJKL are regular pentagons. AEL is an equilateral polygon.

Solutions!

Foundation
Each exterior angle of a
regular polygon is 30°.
Work out the number of
sides of the polygon.
Firstly, we know the sum

Therefore $30 \times n=360$ where n is the number of sides of the polygon.
Dividing both sides by 30 :

$$
\begin{gathered}
\mathrm{n}=360 / 30 \\
\mathrm{n}=12
\end{gathered}
$$

$n=12$

Firstly, we know the sum of exterior angles adds up to 360°.
Therefore, the exterior angle $\mathrm{x} \mathrm{n}=360$ where n is the number of sides.
Exterior angle x $5=360$
Dividing both sides by 5:
Exterior angle $=360 / 5$
Exterior angle $=72^{\circ}$

The diagram shows a regular 10-sided shape.
Work out the size of the angle X.

Firstly, we know the equation for interior angles in a polygon is:

$$
\frac{(n-2) \times 180}{n}
$$

Where n is the number of sides. In this case $\mathrm{n}=10$
Interior angles

$$
\begin{gathered}
=\frac{(10-2) \times 180}{10} \\
=\frac{8 \times 180}{10}
\end{gathered}
$$

Interior angles $=144^{\circ}$

The diagram shows a regular hexagon and a regular octagon.
Calculate the size of the angle marked X.

Firstly, we know that all the angles around that point equals 360°. We need to find the interior angle in the 6 -sided shape and the 8 -sided shape and take it away from 360°.

Firstly, we know the equation for interior angles in a polygon is:

$$
\frac{(n-2) \times 180}{n}
$$

Where n is the number of sides. In this case $\mathrm{n}=6$ Interior angles

	$\begin{gathered} =\frac{(6-2) \times 180}{6} \\ =\frac{4 \times 180}{6} \end{gathered}$ Interior angles $=120^{\circ}$ Firstly, we know the equation for interior angles in a polygon is: $\frac{(n-2) \times 180}{n}$ Where n is the number of sides. In this case $\mathrm{n}=10$ Interior angles $\begin{gathered} =\frac{(8-2) \times 180}{8} \\ =\frac{6 \times 180}{8} \end{gathered}$ Interior angles $=135^{\circ}$ Finally, we need to subtract these angles from 360: $\begin{gathered} 360-135-120=105 \\ x=105^{\circ} \end{gathered}$
Calculate the size of exterior angle of a regular hexagon. Firstly, we know the sum of exterior angles adds up to 360°. Therefore, the exterior angle $\mathrm{x} \mathrm{n}=360$ where n is the number of sides. Exterior angle x $6=360$ Dividing both sides by 6: Exterior angle $=360 / 6$ Exterior angle $=60^{\circ}$	The diagram shows a square and 4 regular pentagons. Work out the size of the angle marked Y. Firstly, we know that all the angles around that point equals 360°. We know the interior angle in a square is 90°. We need to find the interior angle in the 5 -sided shape and take this value as well as 90° away from 360°. Firstly, we know the equation for interior angles in a polygon is: $\frac{(n-2) \times 180}{n}$ Where n is the number of sides. In this case $\mathrm{n}=5$ Interior angles

	$\begin{aligned} & =\frac{(5-2) \times 180}{5} \\ & \quad=\frac{3 \times 180}{5} \\ & \text { Interior angles }=108^{\circ} \end{aligned}$ Finally, we need to subtract two lots of 108° as there are two lots of the interior angle of the pentagon, and the 90° away from 360: $\begin{gathered} 360-108-108-90=54^{\circ} \\ x=54^{\circ} \end{gathered}$
Work out the size of each interior angles of a regular octagon. Firstly, we know the equation for interior angles in a polygon is: $\frac{(n-2) \times 180}{n}$ Where n is the number of sides. \ln this case $\mathrm{n}=8$ Interior angles $\begin{gathered} =\frac{(8-2) \times 180}{8} \\ =\frac{6 \times 180}{8} \end{gathered}$ Interior angles $=135^{\circ}$	The pattern is made from two types of tiles, tile C and tile E . Both tile C and tile E are regular polygons. Work out the number of sides tile C has. To find the number of sides of tile C we need to look at one point that includes edges from both Tile E and Tile C. The angles around a point consist of two interior angles of Tile C and one interior angle of tile E . We know that tile E is a triangle and has an interior angle of 60°. The value of two interior angles of tile C is $360-60=300^{\circ}$ Therefore, one interior angle of tile C would be: $300 / 2=150^{\circ}$

	The equation for interior angles in a polygon is: $\frac{(n-2) \times 180}{n}$ Where n is the number of sides. $150=\frac{(n-2) \times 180}{n}$ First, we can multiply both sides by n : $150 n=(n-2) \times 180$ Expand the right side: $150 n=180 n-360$ Collect like terms: $30 n=360$ Divide both sides by 30 . $\begin{aligned} & n=360 / 30 \\ & n=12 \end{aligned}$ There are 12 sides in Tile C.
The size of each interior angle of a regular polygon is 156°. Work out the number of sides of the polygon. Firstly, we know the equation for interior angles in a polygon is: $\frac{(n-2) \times 180}{n}$ Where n is the number of sides. $156=\frac{(n-2) \times 180}{n}$ First, we can multiply both sides by n : $156 n=(n-2) \times 180$ Expand the right side: $156 n=180 n-360$ Collect like terms: $24 n=360$ Divide both sides by 24. $\begin{aligned} & n=360 / 24 \\ & n=15 \end{aligned}$ There are 15 sides in this polygon.	ABCDE and EHJKL are regular pentagons. AEL is an equilateral triangle. Work out the size of angle $A B C$. Firstly, we know that all the angles around that point equals 360°. We know the interior angles in a triangle are 60°. We need to find the interior angle in the 5 -sided shape and take this value away from 360° twice as well as 60°. Firstly, we know the equation for interior angles in a polygon is: $\frac{(n-2) \times 180}{n}$ Where n is the number of sides. In this case $\mathrm{n}=5$ Interior angles $\begin{gathered} =\frac{(5-2) \times 180}{5} \\ =\frac{3 \times 180}{5} \end{gathered}$ Interior angles $=108^{\circ}$ Finally, we need to subtract two lots of 108° as there are two lots of the interior angle of the pentagon, and the 60° away from 360: $\begin{gathered} 360-108-108-60=84^{\circ} \\ x=84^{\circ} \end{gathered}$

