Simultaneous equations!

Foundation Level

$x+y=7$
$3 x-2 y=4$

$$
\begin{aligned}
& 4 x-y=3 \\
& x+2 y=5
\end{aligned}
$$

$$
3 x+2 y=10
$$

$$
5 x-4 y=6
$$

$x-2 y=-3$
$3 x+y=7$
$2 x+3 y=8$
$x-y=2$

Higher Level (Q4 \& Q5 are a challenge but not expected at GCSE)

$x^{2}+y^{2}=10$
$2 x-3 y=5$
$x^{2}+x y=10$ $2 x-y=3$
$x^{2}+y^{2}=29$ $y-x=3$
$2 x^{2}-3 x y+y^{2}=4$ $3 x^{2}+2 x y-4 y^{2}=5$
$x^{3}+y^{3}=28$ $x+y=4$

Solutions!

Foundation Level		
$\begin{aligned} & 2 x+y=7(1) \\ & 3 x-2 y=4(2) \end{aligned}$ For Substitution: We need to be able to plug in an equation in terms of x and y into the other equation so there is only one unknown. In this question we can change equation 1 to $y=7-2 x$. We can then plug this into equation 2 and solve for x. Plug the x value into one of the equations to find y. For Elimination: We need to cancel out either the x or y so that we only have one unknown in the equations. We need the x or y to be of a common multiple in both equations. In this case we can make both equations have $2 y$ or $-2 y$ in it. To cancel the y we then need to add $2 y$ and $-2 y$ to make 0 $[2 y+(-2 y)=0]$ We can now solve!	By Substitution: $\begin{aligned} & 2 x+y=7(-2 x \text { to both sides }) \\ & y=7-2 x \\ & 3 x-2(7-2 x)=4 \\ & 3 x-14+4 x=4 \\ & 7 x-14=4(+14 \text { to both sides }) \\ & 7 x=18(\div \text { both sides by } 7) \\ & x=18 / 7 \end{aligned}$ Substitute x into equation 1: $\begin{aligned} & 2(18 / 7)+y=7 \\ & 36 / 7+y=7(-36 / 7 \text { from both sides }) \\ & y=13 / 7 \end{aligned}$ $x=18 / 7 \text { when } y=13 / 7$ By Elimination: $\begin{aligned} & 2 x+y=7 \text { (Multiply equation } 1 \text { by } 2) \\ & 4 x+2 y=14[(1) x 2] \\ & 3 x-2 y=4(2) \\ & 4 x+2 y+3 x-2 y=14+4 \text { (Add the } \end{aligned}$ two equations above) $\begin{aligned} & 7 x=18(\div \text { by } 7 \text { to both sides }) \\ & x=18 / 7 \end{aligned}$ Substitute x into equation 1: $\begin{aligned} & 2(18 / 7)+y=7 \\ & 36 / 7+y=7 \text { (-36/7 from both sides) } \\ & y=13 / 7 \end{aligned}$ $x=18 / 7 \text { when } y=13 / 7$	Label the equations 1 and 2. Make y the subject of equation 1. Substitute the equation for y into equation 2. Expand the equation. Collect like terms. Solve for x . Plug the x value into one of the 2 equations. (Tip: Choose the easiest to substitute x into. For this one, choose equation 1). Expand the brackets. Solve for y . Finally write the solution. Change one of the equations so there is a common multiple of (in this case) y . Cancel out the y (in this case we do this by adding the equations together). Collect like terms. Solve for x . Plug the x value into one of the 2 equations. (Tip: Choose the easiest to substitute x into. For this one, choose equation 1). Expand the brackets. Finally write the solution.

$\begin{aligned} & 3 x+2 y=10(1) \\ & 5 x-4 y=6(2) \end{aligned}$	By Elimination: $\begin{aligned} & 3 x+2 y=10 \text { (Multiply equation } 1 \text { by } 2) \\ & 6 x+4 y=20[(1) \times 2] \\ & 5 x-4 y=6(2) \\ & 6 x+4 y+5 x-4 y=20+6 \text { (Add the two } \\ & \text { equations above) } \\ & 11 x=26(\div \text { both sides by } 11) \\ & x=26 / 11 \end{aligned}$ Substitute x into equation 1 : $3(26 / 11)+2 y=10$ $78 / 11+2 y=10(-78 / 11$ from both sides) $2 \mathrm{y}=32 / 11(\div$ both sides by 2$)$ $y=16 / 11$ $x=26 / 11 \text { when } y=16 / 11$	Change one of the equations so there is a common multiple of either x or y (in this case you find a common multiple of y). Cancel out the y (add the equations together). Collect like terms. Solve for x . Plug the x value into one of the 2 equations. (This example plugs y into equation 1). Expand the brackets. Solve for y . Finally write the solution.
$\begin{aligned} & x-2 y=-3(1) \\ & 3 x+y=7(2) \end{aligned}$	By Substitution: $\begin{aligned} & x-2 y=-3(+2 y \text { to both sides }) \\ & x=2 y-3 \\ & 3(2 y-3)+y=7 \\ & 6 y-9+y=7 \\ & 7 y-9=7(+9 \text { to both sides }) \\ & 7 y=16(\div \text { both sides by } 9) \\ & y=16 / 7 \end{aligned}$ Substitute y into equation 1 : $x-2(16 / 7)=-3$ $x-32 / 7=-3(+24 / 7$ to both sides) $x=11 / 7$ $x=11 / 7 \text { when } y=16 / 7$	Label the equations 1 and 2. Make x the subject of equation 1. Substitute the equation for x into equation 2. Expand the equation. Collect like terms. Solve for y . Plug the y value into one of the 2 equations. This example plugs y into equation 1. Expand the brackets. Solve for x . Finally write the solution.

Solutions!

Higher Level (Q4 \& Q5 are a challenge but not expected at GCSE)

$\begin{aligned} & x^{2}+y^{2}=10(1) \\ & 2 x-3 y=5(2) \end{aligned}$	$\begin{aligned} & 2 x-3 y=5(+y \text { to both sides) } \\ & 2 x=5+3 y(\div 2 \text { to both sides) } \\ & x=\frac{5+3 y}{2} \\ & \left(\frac{5+3 y}{2}\right)^{2}+y^{2}=10 \\ & \frac{25+30 y+9 y^{2}}{4}+y^{2}=10 \\ & 25+30 y+9 y^{2}+4 y^{2}=40 \\ & 13 y^{2}+30 y-15=0 \\ & y=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\ & y=\frac{-(30) \pm \sqrt{(30)^{2}-4(13)(-15)}}{2(13)} \\ & y=\frac{-30 \pm \sqrt{1680}}{26} \\ & y=\frac{-30 \pm 4 \sqrt{105}}{26} \\ & y=\frac{-15+2 \sqrt{105}}{13}(y 1) \\ & y=\frac{-15-2 \sqrt{105}}{13}(y 2) \end{aligned}$ Substitute y1 into equation 2 : $\begin{aligned} & 2 x-3\left(\frac{-15+2 \sqrt{105}}{13}\right)=5 \\ & \left(\frac{-45+6 \sqrt{105}}{13}\right)+5=2 x \\ & \frac{20+6 \sqrt{105}}{13}=2 x \\ & x=\frac{10+3 \sqrt{105}}{13} \end{aligned}$ Substitute y2 into equation 2 : $\begin{aligned} & 2 x-3\left(\frac{-15-2 \sqrt{105}}{13}\right)=5 \\ & \left(\frac{-45-6 \sqrt{105}}{13}\right)+5=2 x \\ & \frac{20-6 \sqrt{105}}{13}=2 x \\ & x=\frac{10-3 \sqrt{105}}{13} \\ & x=\frac{10+3 \sqrt{105}}{13} \text { when } y=\frac{-15+2 \sqrt{105}}{13} \\ & x=\frac{10-3 \sqrt{105}}{13} \text { when } y=\frac{-15-2 \sqrt{105}}{13} \end{aligned}$	Label the equations 1 and 2. Make x the subject of equation 2. Substitute the equation for x into equation 1. Expand the equation. Move everything to one side. Solve for y. In this case we would have to use the quadratic formula. Plug each y into equation 2 Expand the brackets. $+3 y$ to both sides. \div both sides by 2 Expand the brackets. $+3 y$ to both sides. \div both sides by 2 Finally write the two solutions.

$\begin{aligned} & x^{2}+x y=10 \\ & 2 x-y=3(2) \end{aligned}$	$\begin{aligned} & 2 x-y=3 \text { (+y to both sides) } \\ & 2 x=3+y(-3 \text { from both sides }) \\ & 2 x-3=y \\ & x^{2}+x(2 x-3)=10 \\ & x^{2}+2 x^{2}-3 x=10 \\ & 3 x^{2}-3 x=10 \\ & 3 x^{2}-3 x-10=0 \\ & x=\frac{-b \pm \sqrt{b^{2}-4 a}}{2 a} \\ & x=\frac{-(-3) \pm \sqrt{(-3)^{2}-4(3)(-10)}}{2(3)} \\ & x=\frac{3+\sqrt{129}}{6}(x 1) \\ & x=\frac{3-\sqrt{129}}{6}(x 2) \end{aligned}$ Substitute x1 into equation 2: $\begin{aligned} & 2\left(\frac{3+\sqrt{129}}{6}\right)-y=3 \\ & \left(\frac{3+\sqrt{129}}{3}\right)-y=3 \\ & \frac{3+\sqrt{129}}{3} 3=y \\ & y=\frac{-6+\sqrt{129}}{3} \end{aligned}$ Substitute $\times 2$ into equation 2: $\begin{aligned} & 2\left(\frac{3-\sqrt{129}}{6}\right)-y=3 \\ & \left(\frac{3-\sqrt{129}}{3}\right)-y=3 \\ & \frac{3-\sqrt{129}}{3}-3=y \\ & y=\frac{-6-\sqrt{129}}{3} \\ & x=\frac{3+\sqrt{129}}{6} \text { when } y=\frac{-6+\sqrt{129}}{3} \\ & x=\frac{3-\sqrt{129}}{6} \text { when } y=\frac{-6-\sqrt{129}}{3} \end{aligned}$	Label the equations 1 and 2. Make y the subject of equation 2. Substitute the equation for y into equation 1. Expand the equation. Move everything to one side. Solve for x . In this case we would have to use the quadratic formula. Plug each x into one of the 2 equations. (Tip: Choose the easiest to substitute x into. For this one choose equation 2). Expand the brackets. -3 and $-y$ to both sides. Expand the brackets. -3 and $-y$ to both sides. Finally write the two solutions.

$\begin{aligned} & x^{2}+y^{2}=29 \\ & y-x=3 \end{aligned}$	$\begin{aligned} & y-x=3 \text { (+x to both sides) } \\ & y=x+3 \end{aligned}$ $\begin{aligned} & x^{2}+(x+3)^{2}=29 \\ & x^{2}+6 x+9+x^{2}=29 \\ & 2 x^{2}+6 x-20=0 \\ & x^{2}+3 x-10=0 \\ & x^{2}-2 x+5 x-10=0 \\ & x(x-2)+5(x-2)=0 \\ & (x-2)(x+5)=0 \\ & x-2=0 \text { or } x+5=0 \\ & x=2(x 1) \text { or } x=-5(x 2) \end{aligned}$ Substitute x 1 into equation 2 : $\begin{aligned} & y-x=3 \\ & y-2=3 \text { (+2 to both sides) } \\ & y=5 \end{aligned}$ Substitute $x 2$ into equation 2 : $\begin{aligned} & y-x=3 \\ & y-(-5)=3 \\ & y+5=3(-5 \text { from both sides }) \\ & y=-2 \\ & x=2 \text { when } y=5 \\ & x=-2 \text { when } y=-5 \end{aligned}$	Label the equations 1 and 2. Make y the subject of equation 2. Substitute the equation for y into equation 1. Expand the equation. Move everything to one side. Solve for x . In this case we would have to use factorising. Plug each x into equation 2. Finally write the two solutions.
$\begin{aligned} & 2 x^{2}-3 x y+y^{2}=4(1) \\ & x-y=2(2) \end{aligned}$	$\begin{aligned} & x-y=2 \text { (+y to both sides) } \\ & x=y+2 \\ & 2(y+2)^{2}-3 y(y+2)+y^{2}=4 \\ & 2\left(y^{2}+4 y+4\right)-3 y^{2}-6 y+y^{2}=4 \\ & 2 y^{2}+8 y+8-3 y^{2}-6 y+y^{2}=4 \\ & 2 y+8=4 \\ & 2 y=-4 \\ & y=-2 \end{aligned}$ Substitute y into equation 2 : $x-(-2)=2$ $x+2=2 \text { (+2 to both sides) }$ $x=0$ $\mathrm{x}=0 \text { when } \mathrm{y}=-2$	Label the equations 1 and 2. Make x the subject of equation 2. Substitute the equation for x into equation 1. Expand the equation. Solve for y . Plug y into equation 2. Solve for x . Finallv write the solution.

$\begin{aligned} & x^{3}+y^{3}=28(1) \\ & x=3 y(2) \end{aligned}$	$x=3 y$
	$(3 y)^{3}+y^{3}=28$
	$27 y^{3}+y^{3}=28$
	$28 y^{3}=28(\div 28$ to both sides)
	$y^{3}=1$ (cube root)
	$y=1$
	$x=3(1)$
	$x=3$
	$x=3$ when $\mathrm{y}=1$

Label the equations 1 and 2.
Substitute equation 2 into equation 1.

Solve for y.

Plug y into equation 2 to find x.

Finally write the two solutions.

