Test yourself: Trigonometry!

Foundation \mathbf{X}

Solutions

Calculate the size of angle Y

We need to use $\tan (\mathrm{Y})$ since the 11 cm is the opposite (because it is the side that is opposite the angle X) and the 8 cm length is the Adjacent (because it's the side that's right next to it.
Adjacent means next to it!)
Therefore:

$$
\tan Y=\frac{11}{8}
$$

We need so get rid of tan, by doing the inverse sin to both sides. (You can’t just divide by tan to get rid of it since it's a trig function!)

$$
\begin{gathered}
Y=\tan ^{-1}\left(\frac{11}{9}\right) \\
Y=\mathbf{5 3 . 9 7}^{\circ}
\end{gathered}
$$

Work out the area of triangle BCD.

REMEMBER: labelling triangles is helpful but remember that whenever you're substituting it's okay to name something the same so long as you inform the examiner or make it very clear! To make things easier, the solution below will use the letters in the formula and the labels on the triangles.

First let's find the length of CD using the cosine rule:

$$
c=\sqrt{a^{2}+b^{2}-2 a b \cos \theta}
$$

$\mathrm{c}=\mathrm{CD}$?
$a=A C=5 \mathrm{~cm}$
$b=A D=4 \mathrm{~cm}$
$\theta=80^{\circ}$
Substituting the values, $C D=5.84 \mathrm{~cm}$ (2 d.p)
Next, Find CB using the same rule:
HINT (forget about the line CD for now)

$$
c=\sqrt{a^{2}+b^{2}-2 a b \cos \theta}
$$

Let:
$\mathrm{c}=\mathrm{CB}$?
$\mathrm{a}=\mathrm{AC}=5 \mathrm{~cm}$
$\mathrm{b}=\mathrm{AB}=(4+2)=6 \mathrm{~cm}$
$\theta=80^{\circ}$
Substituting the values, $C B=7.11 \mathrm{~cm}$ (2 d.p)

Finally, use the area formula on the triangle BCD

$$
\text { Area }=\frac{1}{2} a b \sin C
$$

Where:
$\mathrm{a}=\mathrm{CD}=5.84 \mathrm{~cm}$
$\mathrm{b}=\mathrm{CB}=7.11 \mathrm{~cm}$
$\mathrm{C}=30^{\circ}$

Substituting the values, $\mathbf{A r e a} \mathbf{= 1 0 . 3 8} \mathbf{c m}^{\mathbf{2}}$

What is the value of θ ?

We need to use $\cos (\theta)$ since the 16 cm is the Hypotenuse (since it's the longest side!) and the 4 cm length is the Adjacent (because it's the side that's right next to it. Adjacent means next to it!)

Therefore:

$$
\cos \theta=\frac{4}{16}
$$

We need so get rid of cos, by doing the inverse sin to both sides. (You can't just divide by cos to get rid of it since it's a trig function!)

$$
\begin{gathered}
\theta=\cos ^{-1}\left(\frac{4}{16}\right) \\
\theta=75.2^{\circ}
\end{gathered}
$$

Work out the length of $A B$

First, we need to use angle facts.
"Alternative angles are always equal" - The angle marked in red is also 40° by alternative angles.

Next, we need to find the value of the orange angle with 2 easy facts:

- Angles in a triangle sum to 180
- Angles that are opposite each other when two lines cross are equal.
So,
Angle EFD $=180-85-40=55^{\circ}$
Therefore, Angle ABF is also 55°.
Now, we use the sine rule for angles to obtain the answer.

$$
\begin{gathered}
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{{ }^{c}} \\
\frac{\sin 40}{6}=\frac{\sin 55^{6}}{A B} \\
A B=\frac{6 \times \sin 55}{\sin 40}=7.65 \mathrm{~cm}(2 \mathrm{~d} . \mathrm{p})
\end{gathered}
$$

Calculate angle QPR.

This is a direct use of the Cosine rule for angles:
Use this formula:

$$
\cos A=\frac{a^{2}+b^{2}-c^{2}}{2 a b}
$$

Let:
$\mathrm{a}=13 \mathrm{~cm}$
$b=18 \mathrm{~cm}$

Therefore:

$$
\tan \theta=\frac{5}{14}
$$

We need so get rid of tan, by doing the inverse sin to both sides. (You can't just divide by tan to get rid of it since it's a trig function!)
\(\left.\begin{array}{c}\theta=\tan ^{-1}\left(\frac{5}{14}\right)

\boldsymbol{\theta}=19.65^{\circ}\end{array}\right]\)| What is the value of y ? |
| :--- |
| 34 cm |

We need to use $\cos (y)$ since the 34 cm is the Hypotenuse (since it's the longest side!) and the 19 cm length is the Adjacent (because it's the side that's right next to it. Adjacent means next to it!)

Therefore:

$$
\cos y=\frac{19}{34}
$$

We need so get rid of cos, by doing the inverse sin to both sides. (You can't just divide by cos to get rid of it since it's a trig function!)

$$
\begin{gathered}
y=\cos ^{-1}\left(\frac{19}{34}\right) \\
y=\mathbf{5 6 . 0 3}^{\circ}
\end{gathered}
$$

$\mathrm{c}=20 \mathrm{~cm}$ (This is the side that is opposite to the angle we want)
A = "Angle QPR"

$$
\cos (A)=\frac{13^{2}+18^{2}-20^{2}}{2(13)(18)}
$$

$$
A=Q \hat{P} R=\cos ^{-1}\left(\frac{13^{2}+18^{2}-20^{2}}{2(13)(18)}\right)=\mathbf{7 8 . 5 4}^{o}
$$

Write an algebraic expression for the length of $B C$

This is a hard algebra question, but it is still just a direct use of the cosine rule for sides.

Use this formula:

$$
c=\sqrt{a^{2}+b^{2}-2 a b \cos \theta}
$$

Let:
$\mathrm{a}=\mathrm{x}+1$
$b=2 x+1$
$\theta=60^{\circ}$
$\mathrm{c}=\mathrm{BC}$?

Let's substitute! (This solution will not go through how to expand brackets and collect like terms, see other worksheets to practise this skill):
$B C=\overline{(x+1)^{2}+(2 x+1)^{2}-2(x+1)(2 x+1) \cos 60}$
$=\sqrt{\left(x^{2}+2 x+1\right)+\left(4 x^{2}+4 x+1\right)-2\left(2 x^{2}+3 x+1\right) \cos 60}$
$\cos (60)=\frac{1}{2}$
$B C=\sqrt{\left(5 x^{2}+6 x+2\right)-\left(4 x^{2}+6 x+2\right)\left(\frac{1}{2}\right)}$ $=\sqrt{\left(5 x^{2}+6 x+2\right)-\left(2 x^{2}+3 x+1\right)}$
$=\sqrt{3 x^{2}+3 x+1}$

