
Nonlinear Analysis of Structures
The Arc Length Method: Formulation, Implementation and Applications

Nikolaos Vasios

PhD Student, Materials Science & Mechanical Engineering

Email Address: vasios@g.harvard.edu

Fall 2015

mailto:vasios@g.harvard.edu

Contents

List of Figures . iv

1 Introduction 1

1.1 Strong and Weak Formulation of the BVP . 1

1.2 The Finite Element Approximation . 3

2 Solving the Finite Element Equations 5

2.1 Newton’s Method . 5

2.2 The Arc Length Method . 8

2.2.i Crisfield’s Formulation . 11

2.2.ii The method’s drawbacks . 12

2.2.iii Solution Techniques . 13

3 Applications 17

3.1 Part I: Structural Mechanics . 17

3.1.i A simple truss problem . 17

3.1.ii A more involved truss problem . 22

3.2 Part II: Continuum Mechanics . 26

3.2.i Inflation of a Hyperelastic Spherical Membrane . 26

3.2.ii Inflating a System of N interconnected hyperelastic spherical membranes 28

3.3 Links to Codes, Videos . 32

ii Contents

List of Figures

1.1 A blob of an arbitrary shape subjected to a stress field and some displacement boundary
conditions in its reference and deformed state . 2

2.1 A schematic representation of the Newton iterations. a denotes a normalized displacement
whereas λ the load incrementation parameter. The increment is defined by ∆λ and the
solution is the point of intersection between the equilibrium path and the horizontal line λ+∆λ 7

2.2 The Newton’s method cannot accurately predict the solution after a limit point is reached . . 8

2.3 (a) A system that is unstable under load control (Snap–Through instability), (b) A system
that is unstable under displacement control (Snap–Back Instability), (c) A system that is
unstable under both displacement and load control . 9

2.4 A schematic representation of the Arc-Length method iterations. a denotes a normalized
displacement whereas λ the load incrementation parameter. The increment is defined by the
radius of the circle ∆l and the next point is the point of intersection between the path and
the circle. 11

2.5 Formulating a general rule that would indicate which is the direction that the solution evolves
‘forwards’ is not a straightforward procedure . 13

3.1 A simple structure consisting of 2 linearly elastic truss members that form an initial angle
θ0 with the horizontal plane. The structure is loaded with a force P that subjects the truss
members into compression . 18

3.2 A schematic representation of a possible deformed state for the structure consisting of two
truss members subjected into compression . 18

3.3 Force balance; the compressive/tensile forces developed internally in the trusses must be in
equilibrium with the externally applied force P . 18

3.4 Deformed and undeformed states in the case of finite deformations 19

3.5 A plot of the normalized force displacement curve for the simple truss problem 20

3.6 The deformation states that correspond to the three stable configurations during deformation 21

3.7 The converged points that one obtains using Newton’s method for the simple truss problem.
Newton’s method is not able to capture the snap–through instability 21

iv List of Figures

3.8 The converged points that one obtains using the Arc Length method for the simple truss
problem. The Arc Length method is more suitable for solving numerically such pronblems . . 22

3.9 A slight variation to the simple truss structure where we added a linearly elastic vertical
member with a different stiffness (in general). The compressive force is now applied at the
top of the upper member . 23

3.10 A schematic representation of a possible deformed state for the new structure subjected into
compression . 24

3.11 The normalized force–displacement curves (displacement a2) for various stiffness ratios w =
β/k. Extreme values of w can make the structure unstable under loading in both force and
displacement control . 26

3.12 Normalized p− v curves for the inflation of hyperplastic balloons according to the Gent model 28

3.13 The pressure–total system volume curve in the case of a system comprising of membranes a
and b . 30

3.14 The pressure–total system volume curve in the case of a system comprising of membranes b
and c . 31

3.15 The pressure–total system volume curve in the case of a system comprising of membranes a
and c . 31

1 Introduction

The vast majority of continuum mechanics problems can be formulated as Boundary Value Problems.

In such problems, we prescribe conditions in the boundary of our continuum body and we are interested in

determining the value as well as the distribution of some quantities inside the body. In structural mechanics

problems these quantities are usually displacements, velocities, stresses and strains but in general any other

quantity1 can be assumed to be unknown within the body, as long as the problem is formulated in a way

that takes the unknowns into account. The traditional formulation of the Boundary Value Problem (BVP)

consists of three distinct equation “families”, namely equilibrium, kinematics and constitutive equations. In

the following section, we will introduce the form of these equations using the finite deformation theory, in

the case of a continuum body in which the primary unknown is the displacement field.

1.1 Strong and Weak Formulation of the BVP

Let us consider the spatial configuration of a general continuum body, which initially (at t = 0) occupies

volume V0 with a mass density ρ0 defining its reference state. The body is then subjected to a combination

of body forces b per unit mass and traction forces t̂ per unit surface. The portion of the body’s outer surface

subjected to traction forces is called St. Moreover another portion of the body’s surface Su
2 is subjected

to known displacements û. As a result, after a time period ∆t the body deforms and occupies volume V

with a mass density ρ, surrounded by surface S. The equilibrium equations3 are expressed in terms of the

Cauchy stress tensor as:
∂σij
∂xj

+ ρbi = 0 (1.1)

The kinematic relationships are also introduced as:

Dij =
1

2

(
∂υi
∂xj

+
∂υj
∂xi

)
(1.2)

defining the deformation rate tensor D that corresponds to the velocity field υ. The deformable material is

governed by a general constitutive law of the form:

∇
σ =

∇
σ (L) (1.3)

1Other quantities could be the temperature distribution within the body, a given concentration of a phase or a substance,
the distribution of electric charge etc.

2Note that Su ∩ St = ∅ and Su ∪ St = S
3Assuming that dynamic phenomena are not present and therefore the acceleration field a vanishes

2 Introduction

ie

t0=σ0·n0

Su

ρ0 ,V0

b

i′e

t=σ·n

ρ ,V

Su

b

St St

Figure 1.1: A blob of an arbitrary shape subjected to a stress field and some displacement boundary conditions in its
reference and deformed state

where
∇
σ represents the Jaumann rate of σ commonly used to describe the constitutive behavior of solids

undergoing finite deformations and rotations and L is the velocity gradient tensor defined. We also introduce

the boundary conditions on S:

u = û = known on Su (1.4)

t̂ = σ · n = known on St (1.5)

Equations (1.1–1.5) constitute the Strong Formulation of the Boundary Value problem. The problem

consists of 15 unknowns, namely the displacement field (u), the velicity gradient tensor L and the stress

tensor σ. An alternative formulation can also be introduced as follows. We begin by replacing the three

equilibrium equations in (1.1) by a unique scalar equation4 over the entire body. This equation is obtained

by multiplying the differential equations in (1.1) by a virtual (arbitrary but continuous and differentiable)

velocity field δυ∗ and then integrating over the entire volume of the continuum body. Hence:∫
V (t)

[
∇ · σ + ρb

]
· δυ∗ dV = 0 (1.6)

In view of the chain rule we can write:

∇ · (σ · δυ∗) = (∇ · σ) · δυ∗ + σ : (∇ δυ∗)

and making use of the divergence theorem5 we can also write:∫
V (t)

[
∇ · σ

]
· δυ∗ dV =

∫
V

[
∇ · (σ · δυ∗)− σ : (∇ δυ∗)

]
dV

4Note that this replacement does not violate the generality
5Also known as Gauss’s theorem

1.2 The Finite Element Approximation 3

=

∫
S(t)

n · σ · δυ∗ dS −
∫
V (t)

σ : (∇ δυ∗) dV

=

∫
S(t)

t̂ · δυ∗ dS −
∫
V

σ : δL∗ dV (1.7)

where δL∗ is the velocity gradient tensor corresponding to the virtual velocity field δυ∗. Let us also decom-

pose δL∗ into its symmetric δD∗ and antisymmetric part δW∗ and take advantage of the symmetry of σ to

write6:

σ : δL∗ = σ : (δD∗ + δW∗) = σ : δD∗ + σ : δW∗ = σ : δD∗ (1.8)

Now combining equations (1.6),(1.7) and (1.8) we can express the alternative formulation of the BVP as:

G(∆u) =

∫
V (t)

σ : δD∗ dV −
∫
S(t)

t̂ · δυ∗ dS −
∫
V (t)

ρb · δυ∗ dV = 0 (1.9)

The above formulation is also called the Weak Formulation of the BVP and provides the basis for the

Finite Element approximation introduced in the following section.

1.2 The Finite Element Approximation

In a finite element setting, the solution is developed incrementally from tn to tn+1 with the primary

unknown of the problem being the displacement increment ∆u(x). Once ∆u is determined, the total

displacement field at the end of the current increment at t = tn+1 is calculated as:

un+1(x) = un(x) + ∆u(x) (1.10)

and consequently the current position of any material point within the continuum body can be directly

updated as:

xn+1 = X + un+1(x) (1.11)

Discretizing the continuum body into finite elements, we express the unknown displacement increment ∆u

as a function interpolation7 within each element as:

{∆u(x)}
3×1

= [N(x)]
3×n

{
∆uN

}
n×1

(1.12)

where [N(x)] is the interpolation matrix that consists of user–defined ‘shape’ functions, whereas
{

∆uN
}

is

the vector of nodal unknowns. Now recall that the virtual velocity field, δυ∗, must be compatible with all

kinematic constraints. The interpolation introduced in (1.12) however, constrains the displacement to have a

certain spatial variation and therefore δυ∗ must also be defined using the same function interpolation [Abaqus

Theory Manual]. Hence,

{δυ∗}
3×1

= [N(x)]
3×n

{
∆υ∗N

}
n×1

(1.13)

6Recall that the double dot product of a symmetric and an antisymmetric tensor equals to zero
7This approximation was first introduced by Galerkin

4 Introduction

The virtual strain rate tensor δD∗ is also expressed in array form as:

{δD∗}
6×1

= [B(x)]
6×n

{
∆υ∗N

}
n×1

(1.14)

where [B(x)] is the matrix containing the spatial derivatives of the shape functions Nα(x) in the sense

Bαβ = 1/2(Nα,β +Nβ,α). Finally we introduce the array notations of the rest quantities in the Weak form

(1.9) as:
σ −→ {σ}

6×1
t̂ −→ {t}

3×1
b −→ {b}

3×1

Substituting each term in (1.9) we derive:

b∆υ∗Ne cA
e

 ∫
V e
n+1

(
[B]Tn+1 {σ}n+1 − [N]Tn+1 {b}n+1

)
dV e −

∫
Se
n+1

[N]Tn+1 {t}n+1 dS
e

 = 0

where V e,Se are the volume and surface respectively of the finite element under consideration and Ae

represents the Assembly operation. Note however, that since the above expression must hold ∀ b∆υ∗Ne c, we

can derive:

A
e

 ∫
V e
n+1

[B]Tn+1 {σ}n+1 dV
e −

∫
Se
n+1

[N]Tn+1 {t}n+1 dS
e −

∫
V e
n+1

[N]Tn+1 {b}n+1 dV
e

 = 0

Now let’s define the external load vector comprising of the traction and body forces as:

{F}extn+1 = A
e

 ∫
Se
n+1

[N]Tn+1 {t}n+1 dS
e +

∫
V e
n+1

[N]Tn+1 {b}n+1 dV
e


At this point recall that {σ}n+1 is a non–linear (in general) function of the unknowns {∆uN}, so that we

write: {
R(∆uN)

}
n+1
≡A

e

∫
V e
n+1

[B]Tn+1 {σ}n+1 dV
e − {F}extn+1 = {0} (1.15)

where {R(∆uN)}n+1 is the residual vector expressing the difference between the internal σn+1 and external

tn+1, bn+1 forces. The solution of the ‘weak’ problem is the displacement field {∆uN} that satisfies the

system of equations in (1.15), or equivalently, the displacement field that at t = tn+1 equates the applied

loads {F}extn+1 to the internal forces {σ}n+1 yielding a residual smaller than a given tolerance.

The system of equations in (1.15) is a highly nonlinear system with respect to the nodal displacements for

two main reasons. First, the displacements are nonlinearly involved in the stresses through the constitutive

law in the sense σ = σ(D(u)). Secondly, and most importantly in this discussion here, in finite deforma-

tion theory where we account for deviations between the reference and the currency geometry, geometric

nonlinearities are introduced to the problem through the limits of integration since in general V e = V e(u).

2 Solving the Finite Element Equations

Recall the system of equations that we derived from the finite element approximation of the BVP (1.15).

We restate it below in a much more compact form as:

Fint(u)− Fext = 0 (2.1)

where,

Fint(u) = A
e

∫
V e

[B]T {σ(D(u)))} dV

and

Fext = A
e

∫
Se

[N]T {t} dSe +

∫
V e

[N]T {b} dV


At this point we remind ourselves that in the case of finite deformations, both Fint and Fext are in general

very nonlinear terms. The integration has to be carried over the current volume and surface (of the finite

element under consideration) that may in general depend on u1 in a highly non-linear fashion, V e = V e(u),

Se = Se(u). This suggests that the only way to solve (1.15) is numerically. Two of the most common

numerical methods used to solve these equations2 are Newton’s Method and the Arc Length Method.

2.1 Newton’s Method

In Newton’s method, the incremental loading is expressed as follows. The external load vector Fext is

gradually increased from 0 in order to reach a desired value F∗. Assuming that F∗ itself remains constant

during the analysis in terms of its ‘direction’ and only its magnitude is changing, we can write Fext =

q =known just to simplify our expression for the system of equations. Then we can control how the external

load vector increases or decreases by introducing a scalar quantity λ and express the system as follows

R(u) = Fint(u)− Fext ⇒ R(u) = Fint(u)− λFext = 0 (2.2)

Thus by increasing or decreasing λ we can control our load incrementation. We introduced the term

R(u) because we are interested in the general case were the system of equations is not in equilibrium and

1Therefore the limits of integration are also functions of the unknown displacement field
2And are implemented in most commercial finite element software packages

6 Solving the Finite Element Equations

therefore the difference expresses the residual vector, which we then use to find corrections to our solution.

In this system of equations, we are interested in u and λ. At every increment, we change slightly the value

of λ and try to determine u so that the system in (2.2) is satisfied. Suppose that the last converged solution

is {u0, λ0}. The load increment is initiated by postulating:

λ′ = λ0 + ∆λ

where ∆λ is a known predefined incrementation parameter. This variation ∆λ immediately violates equation

(2.2) and thus we need to update the displacements u0 by

u′ = u0 + ∆u

so that:

R(u′) = R(u0 + ∆u) = 0⇒ Fint(u0 + ∆u)− (λ0 + ∆λ)q = 0 (2.3)

But, Fint(u0 + ∆u) can be expressed in terms of Fint(u0) by a Taylor series expansion as:

Fint(u0 + ∆u) = Fint(u0) +

[
∂F(u)

∂u

]
u0

·∆u = Fint(u0) + [KT]u0 ·∆u (2.4)

where [KT] = [∂F(u)/∂u] is the “Jacobian” matrix of the system of equations and is commonly referred to

as the Stiffness Matrix. Now combining equations (2.3) and (2.4), we can solve for ∆u as:

Fint(u0) + [KT]u0 ·∆u− (λ0 + ∆λ)q = 0⇒
0︷ ︸︸ ︷

Fint(u0)− λ0q +[KT]u0 ·∆u−∆λq = 0⇒

∆u = [KT]−1u0
· (∆λq) (2.5)

From equation (2.5) we can calculate the displacement correction ∆u. In general however, even though

we postulated that ∆u would be such that (2.3) is satisfied, the linear approximation in Taylor epxansion

prevents the immediate achievement (linear-response) of equilibrium. Thus, if we evaluate the system (2.3)

at the new point (u′, λ′) we will obtain a non-zero residual vector R̂(u′). Using this residual vector, we can

calculate a new displacement correction δu as follows:

R(u0 + ∆u + δu) = 0⇒ Fint(u0 + ∆u) + [KT]u′ · δu− (λ+ ∆λ)q = 0⇒

[KT]u′ · δu = −(Fint(u0 + ∆u)− (λ+ ∆λ)q)⇒ [KT]u′ · δu = −R̂(u′)⇒

δu = −[KT]−1u′ · R̂(u′) (2.6)

Hence, a new displacement correction is determined and evaluating the system (2.3) at the new points

(u′ + δu, λ′) would in general result to a new and smaller residual vector R̂(u′′). We continue to provide

displacement corrections until a norm (usually Euclidean) of the residual vector is less than the specified

tolerance. A schematic representation of the Newton-Raphson method is shown in Figure 2.1.

The quadratic convergence rate of Newton method guarantees convergence within few iterations and is

the main reason for its universal implementation in almost all commercial FEA software. Fast convergence

makes Newton’s method ideal when solving large systems of non-linear equations, where each iteration

2.1 Newton’s Method 7



a
δa(1) δa(2) δa(3)

Δa(1)

Δa(2)

Δa(3)

Δa(4)

Δ

ai ,i

ai+1 ,i+1

R(1)
R(2)

Figure 2.1: A schematic representation of the Newton iterations. a denotes a normalized displacement whereas λ the
load incrementation parameter. The increment is defined by ∆λ and the solution is the point of intersection between
the equilibrium path and the horizontal line λ+ ∆λ

‘costs’ in terms of computational time. Convergence aside however, Newton’s method is also associated

with a major drawback. The method fails to accurately follow the ‘equilibrium’ path once the tangent

stiffness reaches zero. That happens due to the formulation of Newton’s method, and in particular that it

restricts the parameter λ to change monotonically every increment3. The definition of a limit point then

(saddle points excluded), suggests that in order to remain on the equilibrium path you need to change your

loading pattern depending on whether the limit point is a local maximum or maximum in the u− λ space.

This problem can be better conceptualized in Figure 2.2.

In terms of mechanical systems then, this method is able to solve any non-linear system of equations

very efficiently but only up to the critical point (if any). In the case shown in Figure 2.2,Newton’s method

fails in load–control. Now in many cases, one way to circumvent problems like these is to use displacement

control, where you can continuously increase the displacements u and still remain on the equilibrium curve.

In general however, apart from Snap–Through behaviors under load control, a problem may exhibit Snap–

Back behaviors under displacement control or even both as shown in Figure 2.3. The main problem is, that in

most actual applications, the structural response, and therefore the equilibrium path, for the structure under

3In most structural mechanics problems for instance, we continuously increase the external loads

8 Solving the Finite Element Equations



a

ai ,i
ai+1 ,i+1

Equilibrium Path

Newton’sActual Beh avior

Figure 2.2: The Newton’s method cannot accurately predict the solution after a limit point is reached

consideration is unknown, and therefore one does not know what type of behavior to expect. As a general

rule, if the problem under consideration requires information after its critical/failure points then Newton’s

method is not a good choice. Buckling analysis and non-linear materials that exhibit work softening are

just two example problems that cannot be solved using Newton’s method. Furthermore, very often, strong

nonlinearities that arise in finite deformation problems may eventually lead to such behaviors and thus it is

necessary to introduce a numerical technique to solve such problem with strongly nonlinear behaviors.

2.2 The Arc Length Method

The Arc-Length method [Riks E., 1979] is a very efficient method in solving non-linear systems of equations

when the problem under consideration exhibits one or more critical points. In terms of a simple mechanical

loading-unloading problem, a critical point could be interpreted as the point at which the loaded body

cannot support an increase of the external forces and an instability occurs.

Recall once again the system of the non-linear (in general) equations that we are interested in solving:

Fint(u)− Fext = 0⇒ Fint(u)− λq = 0 (2.7)

Suppose that the point (u0, λ0) is such to satisfy the system of equations and thus belongs to the ‘equilibrium

path’ that we are trying to identify. Unlike the Newton-Method, the Arc Length method postulates a

simultaneous variation in both the displacements ∆u and the load vector coefficient ∆λ. The main difference

is that both ∆u and ∆λ are unknowns in contrast to Newton’s method where ∆λ was given and we had to

iteratively solve for ∆u. We can write:

R(u′, λ′) = Fint(u0 + ∆u)− (λ0 + ∆λ)q = 0 (2.8)

If the above equation is satisfied for (u0 + ∆u, λ0 + ∆λ) then this point also belongs to the ‘equilibrium

path’ and we can successfully update the solution. In most cases however, immediate satisfaction of (2.8)

2.2 The Arc Length Method 9



a a

a




Snap-Through

under load control

Snap-Back
under displacement
control

Δ

Δa

(a) (b)

(c)

Figure 2.3: (a) A system that is unstable under load control (Snap–Through instability), (b) A system that is unstable
under displacement control (Snap–Back Instability), (c) A system that is unstable under both displacement and load
control

is not achievable. As a result we need to provide the necessary corrections (δu, δλ), aiming that the new

point (u0 + ∆u + δu, λ0 + ∆λ+ δλ) will satisfy (2.8). Hence,

R(u′′, λ′′) = Fint(u0 + ∆u + δu)− (λ0 + ∆λ+ δλ)q = 0 (2.9)

Using a Taylor series expansion and retaining only the linear terms, we can rewrite the last equation in the

following form:

Fint(u0 + ∆u) +

[
∂Fint(u)

∂u

]
u0+∆u

· δu− (λ0 + ∆λ+ δλ)q = 0 (2.10)

From now on, we will represent the “Jacobian matrix” of the system defined by [∂Fint/∂u] by the quantity

[KT]. Implementing the new notation, the system of equations takes the form:

[KT]u0+∆u · δu− δλq = −[Fint(u0 + ∆u)− (λ0 + ∆λ)q] = −R(u′, λ′) (2.11)

Recall that δu and δλ are the unknowns for whom we need to solve. If the u vector however, has dimensions

Nx1 then we have a total of N equations that we need to solve for N+1 unknowns (N unknowns δu and 1

unknown δλ). Equations (2.11) then are not sufficient to determine δu, δλ. The supplementary equation

10 Solving the Finite Element Equations

that completes the system is called the Arc Length Equation and has the following form:

(∆u + δu)T · (∆u + δu) + ψ2(∆λ+ δλ)2(qT · q) = ∆l2 (2.12)

where ψ and ∆l are user defined parameters. In a sense ∆l defines how far to search for the next equilibrium

point and it is analogous (but not directly equivalent) to the load increment ∆λ we used in Newton’s method.

Collecting up equations (2.11) and (2.12) we can write the system of equations we need to solve in a much

more compact form as: [
[KT] −q

2∆uT 2ψ2∆λ(qT · q)

]
·
[
δu
δλ

]
= −

[
R
A

]
(2.13)

where,

R = Fint(u0 + ∆u)− (λ0 + ∆λ)q

A = −
(
∆uT ·∆u + ψ2∆λ2(qT · q)−∆l2

)
The system of equations in (2.13) is solved for δu, δλ and updates the previous corrections ∆u,∆λ to be

∆u′ = ∆u + δu and ∆λ′ = ∆λ + δλ respectively. The method continues to provide such incremental

corrections δu, δλ until convergence is achieved in (2.9). When ψ = 1, the method is also called the

Spherical Arc-Length Method because (2.12) suggests that the points ∆u′,∆λ′ belong to a circle with

radius ∆l. In its most general form for arbitrary ψ, equation (2.12) can be geometrically interpreted as a

hyper-ellipse in the multidimensional displacement-load space (u−λ). The user decides which value should

be assigned to the ‘radius’ and the next converged point is then obtained as the point of intersection between

the equilibrium path and that sphere. This iterative process to determine the next point of intersection is

shown below in the 2D (a− λ) space where the sphere essentially degenerates into a circle.

A slide–show video that illustrates how the Arc Length method’s iterations really work to solve a nonlinear

system of equations can be found [here]. The video was made using Python to create png pictures and then

Matlab to create a video out of these pictures. All the codes developed and used in the context of this

project can be found in the last chapter of this document.

This method is widely proven to cope quite well in problems with a snapping behavior (limit points) and

is implemented in most commercial finite element software (i.e. ABAQUS4). This way of formulating the

Arc–Length method however and in particular the system of equations outlined in (2.13) is not the most

efficient one and as a result, most commercial software use a different approach to this method. The reason

for this is that expression (2.13) essentially introduces a completely new system of equations to be solved

simultaneously for δu and δλ. As a result, the techniques commonly used by finite element software such

as ABAQUS to solve the system of equations in all other cases (static analysis with Newton’s method,

Dynamic Analysis etc) cannot be used in this case where the system of equations is different than the one

we introduced in our description of Newton’s method ((2.6)). Despite the capabilities of this method in cases

where Newton’s method fails, this particular formulation obstructed the immediate implementation of the

method in such software because sacrificing the solver’s efficiency and at the same time having to modify all

4Simulia ABAQUS refers to this method as the Riks method, naming it after E.Riks who first introduced the method in [Riks
E., 1979]. The particular implementation of the method however is different than the one presented in this section

https://www.youtube.com/watch?v=j4IaRcUM0Mk&feature=em-upload_owner#action=share

2.2 The Arc Length Method 11



a
δa(1) δa(2) δa(3)

Δa(1)

Δa(2)

Δa(3)

Δa(4)

Δ
(

4)

Δ
(

3)

Δ
(

2)

Δ
(

1)
Δl

ai ,i

ai+1 ,i+1

Figure 2.4: A schematic representation of the Arc-Length method iterations. a denotes a normalized displacement
whereas λ the load incrementation parameter. The increment is defined by the radius of the circle ∆l and the next
point is the point of intersection between the path and the circle.

the convergence criteria wasn’t an option. It was necessary that the implementation of the method would

be based on a different formulation that would ideally include no modifications to the system of equations

to be solved.

2.2.i Crisfield’s Formulation

Four years later, in 1983, Crisfield published a paper [Crisfield M.A., 1983] where he presented an alternative

formulation for the Arc Length method which could be readily implemented in any commerical finite element

software that was able to solve nonlinear problems using Newton’s method. In this section we present this

formulation, found in [Crisfield M.A., 1983]. Recall the expression (2.11) that need to be solved for the

unknowns δu and δλ. Crisfield expressed the equation as:

δu = −[KT]−1u0+∆u ·
[
Fint(u0 + ∆u)− (λ0 + ∆λ)q

]
+ δλ

(
[KT]−1u0+∆u · q

)
⇒

δu = δū + δλδut (2.14)

12 Solving the Finite Element Equations

where,

δū = −[KT]−1u0+∆u ·
[
Fint(u0 + ∆u)− (λ0 + ∆λ)q

]
δut =

(
[KT]−1u0+∆u · q

)
Note that δû and δut can be calculated immediately since they only require known information. Once the

displacement correction is expressed as in (2.14), it can be substituted in the arc-length equation (2.11).

Doing so, would ultimately lead to:

α1δλ
2 + α2δλ+ α3 = 0 (2.15)

where the coefficients α1 α2 and α3 are given by:

α1 = δuT · δu + ψ2(qT · q)

α2 = 2(∆u + δū)T · δut + 2ψ2∆λ(qT · q)

α3 = (∆u + δū)T · (∆u + δū) + ψ2∆λ2(qT · q)−∆l2

Now, with (2.15), we essentially end up with a simple quadratic equation for δλ which can easily be solve to

find δλ. Then, once the δλ is known, it can be substituted in (2.14) to update the displacement variation and

complete the iteration. With this particular formulation, every iteration, the program has to find δū and δut,

which can be done by making use of the existing solver since the stiffness matrix involved (Jacobian) is the

same as in other methods. Subsequently, one has to make use of δū and δut to solve the quadratic equation

with respect to δλ and update the variations ∆u and ∆λ. It is finally a matter of checking of convergence

and repeating the aforementioned steps until convergence is achieved and the increment is completed.

2.2.ii The method’s drawbacks

Crisfield’s implementation however, leads to one of the method’s most important drawbacks. The quadratic

equation in (2.15) would in general lead to two distinct solutions for δλ which will in turn lead to two distinct

solutions for δu. Thus, every iteration, the solver determined two sets of solutions, namely (δu1, δλ1) and

(δu2, δλ2). This is no surprise since a circle (or a hyperellipse) would always intersect a curve in two points

if its center is located on the curve.

The issue that arises then, is to develop a robust algorithm that would be able to accurately determine

the correct set of (δu, δλ) to update the solution. In general, we would like to choose the set, so that the

solution ‘evolves forwards’. This term ‘forward evolution’ is commonly used in the context of this method

since choosing the wrong set would make the solution move back towards a previously converged point, and

not in the desired (forward) direction. It is interesting to note, that an effective solution to this problem

that works for all applications is yet to be found and as a result, many times programs like ABAQUS fail to

converge to the correct solution or fail to ‘evolve forwards’. In an effort to illustrate the difficulty in choosing

the correct set of (δu, δλ), we schematically illustrate the application of the Arc Length method in a snap–

through and a snap–back case in Figure 2.5 below. In non-linear problems with a snap–through behavior, it is

safe to argue that‘next’ points in the ‘load-displacement’ equilibrium path will always cause the displacement

2.2 The Arc Length Method 13

Δi

aiai+1 ai+1
(1) (2)

i+1
(1)

i+1
(2)

Δ(1)

Δ(2)

Δa(2)Δa(1)



a

(a) The Arc Length Method applied on a problem with
a Snap–Through behavior. The two solutions that cor-
respond to the candidates for the next point are located
bilaterally adjacent to the current point

Δi

aiai+1 ai+1
(1) (2)

i+1
(2)

i+1
(1)

Δ(2)

Δ(1)

Δa(2)

Δa(1)



a

(b) The Arc Length Method applied on a problem with a
Snap–Back behavior. The two solutions that correspond
to the candidates for the next point are both located at
the same region adjacent to the current point

Figure 2.5: Formulating a general rule that would indicate which is the direction that the solution evolves ‘forwards’
is not a straightforward procedure

to increase, and therefore the correct solution is the one that leads to a positive displacement variation ∆u.

Clearly though, this is not a criterion that could be applied to other cases (i.e. snap–back problems) since

there is no general rule that mandates the fact that displacement should always increase. Furthermore, even

in snap–through problems, what would be the definition of a positive ∆u? In a finite element model, there

are many diegrees of freedom and every iteration a displacement correction is calculated for every single

one of them. It is reasonable then that during deformation, some degrees of freedom experience a positive

δui and others a positive δuj . The formulation of a global criterion that would robustly chose the correct

solution for every degree of freedom of a general model and at the same time that would be suitable for a

wide range of nonlinear problems is a challenging task. New methods and techniques are proposed every

now and then, each one making the method more efficient for a particular application but not generally

robust.

2.2.iii Solution Techniques

An efficient rule to follow in order to choose the next point correctly even when extreme ‘snap-back’ cases

occur is the following. We compute the two displacement corrections δu1 and δu2 corresponding to δλ1 and

δλ2 respectively. Subsequently we calculate the projections (dot-products) of these generalized correction

vectors on the previous corrections. We eventually choose the δλ and the corresponding δu that lead to the

largest value for the dot product and thus form the closest correction to the previous one (hoping that it

will be in the right direction). In math form:

DOT (i) = (∆u + δui, λ+ ∆λ+ δλi) · (∆u, λ+ ∆λ)⇒

DOT (i) = (∆u + δui)T ·∆u + ψ2∆λ(∆λ+ δλ)(qT · q) i = 1, 2 (2.16)

14 Solving the Finite Element Equations

Application of this rule leads to a more robust selection of the right correction every time but is again

associated with yet another drawback. Since the initial corrections (∆u,∆λ) are equal to zero at the

beginning of each increment (which we will discuss later), the corresponding DOT products will be zero as

well for both solutions. We have to find a way to initiate the method at the beginning of every increment

while still make use of the dot product rule after the first iteration. At every step of the method apart

from the beginning of each increment we can outline the steps to be followed as:

a. Every converged increment store the converged displacement and load corrections as (∆un,∆λn).

b. Calculate the sign of the product (∆un+1 + δui)T ·∆un + ψ2∆λn(∆λn+1 + δλ)(qT · q)

c. We choose the δλ that leads to the largest DOT product and thus is closer to the previous correction

d. In the special case where the two solutions give the same dot products, then choose either one

This method for choosing the correct solution is able to help the solution evolve forwards in most cases

and we put it to the test against several problems that exhibit snap–back behavior in the next chapter. By

comparing the new correction with the previously converged correction we make sure that the next point

does not make the solution evolve backwards. However, applications where this algorithm fails are known to

exist and as a general rule, the sharper the transition of the equilibrium path at the onset of a limit point,

the harder it is to make sure that the solution evolves forward.

Up until to this point we have postulated that the initial load and displacement variations ∆u and ∆λ are

given and our only concern is to determine and choose the correct iterative corrections to these variations

δu and δλ. However, it is not clear what should be considered at the beginning of every increment with

regards to the initial variations ∆u,∆λ, and as a result it is still unknown how to initiate the method. The

Arc-Length method initiation for every increment as well as the iterative loops until convergence is achieved

are outlined in the pseudocode that follows:

2.2 The Arc Length Method 15

1. Initiate Increment

2. Set ∆u = 0 and ∆λ = 0

3. δū = 0 and δut =
(
[KT]−1u · q

)
4. Solve arc length equation for δλ1 and δλ2

5. Choose the correct solution

6. Update u, λ as u′ = u + δu and λ′ = λ+ δλ

7. Check for convergence ||R (u′, λ′) || < tol

8. If convergence criteria are met then GOTO Step 10

9. Initiate Iterations

i. Set ∆u = δu and ∆λ = δλ

ii. Calculate δū and δut

iii. Solve arc length equation for δλ1 and δλ2

iv. Choose the correct solution

v. Update u, λ as u′ = u + ∆u + δu and λ′ = λ+ ∆λ+ δλ

vi. Check for convergence ||R (u′, λ′) || < tol

vii. If convergence criteria are met then GOTO Step 10

viii. GOTO Step 9

10. Proceed to next Increment

16 Solving the Finite Element Equations

Finally, we still need to address a final issue that arises in step 5. of the previous algorithm. If we set

∆u = 0 and ∆λ = 0 and we do not have any information regarding the last converged increment (i.e.

beginning of the analysis) it is impossible to determine the correct solution using the DOT rule since both

DOT products will be equal to zero. A way around this issue in such cases is to determine the correct

solution based on the sign of the determinant. In particular,

a. Calculate the determinant of the Jacobian, namely [KT], and also it’s sign

b. Solve the arc length equation for δλ1 and δλ2

c. Choose the δλi whose sign is the same as the determinants

3 Applications

3.1 Part I: Structural Mechanics

In this chapter, we examine a number of conceptually easy and fairly simple problems inspired by the

fields of structural and continuum mechanics, in an effort to illustrate potential applications where numerical

solutions using Newton’s method fail and using the Arc Length Method is more appropriate. Our discussion

will be initially limited to truss problems that are fairly simple and straightforward to study, mainly because

truss structures do not require a spatial discretization in the form of finite elements. Towards the end of

this chapter we will also discuss the quasi–static inflation of a hyperplastic spherical membrane and also of

a system of interconnected membranes.

3.1.i A simple truss problem

We first consider the simplest possible structure comprised of two truss members with initial length L0 and

cross section A0 that initially form an angle θ0 with the horizontal axis as shown in Figure 3.1. The truss

members are homogenous and are assumed to be made of an isotropic and linearly elastic material. We also

assume that it is impossible for the members to buckle1 and hence, they can only shrink under compression.

Moreover, the fact that trusses can only carry axial forces and can only deform by shrinking or extending,

implies that there is no need to discretize this problem2. The truss members are connected with a hinge

about which they are allowed to rotate, and their lower ends are fixed. A force P is applied at the hinge

point subjecting the truss members into compression. With little examination, it is clear that the only

degree of freedom is the vertical displacement u of the hinge point and our primary goal in this problem is

to determine the relationship between P and u.

We will not make any assumptions regarding the magnitude of deformations. The displacement of the

hinge u can be arbitrarily large as long as the truss members shrink enough for the displacements to be

compatible. A possible deformed configuration for the truss is shown in Figure 3.2. We start from the

equilibrium equation, which is expressed in terms of force balance between the externally applied force P

and the internally developed forces FL, keeping in mind that the equation must be written with respect to

1Accounting for buckling in this problem would require to model the trusses as beams and therefore a spatial discretization
using finite elements would be necessary. These types of problems can be easily solved using a multipurpose finite element
software such as ABAQUS

2Trusses in this case can be though as springs

18 Applications

Pk,L0 k,L0

0 0

Figure 3.1: A simple structure consisting of 2 linearly elastic truss members that form an initial angle θ0 with the
horizontal plane. The structure is loaded with a force P that subjects the truss members into compression

P

k,L0

 

L L

k,L0

∆

u

∆

Figure 3.2: A schematic representation of a possible deformed state for the structure consisting of two truss members
subjected into compression

the deformed state. According to Figure 3.3 we can write:

P
FL

FL

y

x

 

 

Figure 3.3: Force balance; the compressive/tensile forces developed internally in the trusses must be in equilibrium with
the externally applied force P

3.1 Part I: Structural Mechanics 19

ΣF = 0⇒
{

0 = 0
P = 2FL sin(θ)

}
⇒ P = 2FL sin(θ) (3.1)

The constitutive equation is

σ = E ε⇒ FL
A0

= E
L0 − L
L0

⇒ FL =

k︷ ︸︸ ︷
E A0

L0
(L0 − L)⇒ FL = k(L0 − L) (3.2)

where k is a measure of each member’s stiffness. Now, we only have to determine the kinematics equations

that would relate the hinge’s displacement u with the initial and deformed lengths of the truss members.

We expect the kinematics equation to be nonlinear as a result of the preliminary assumption that the

displacement u can be arbitrarily large. Based on Figure 3.9, we take the Pythagorean theorem for (ABC)

and:



L

k,L0

∆

u

∆

L0cos(0)

0A

B

C

Figure 3.4: Deformed and undeformed states in the case of finite deformations

L2 =
(
∆′
)2

+ (L0 cos(θ0))
2 = (L0 sin(θ0)− u)2 + (L0 cos(θ0))

2 = L2
0 − 2L0 u sin(θ0) + u2 ⇒

L

L0
=

√
1− 2

u

L0
sin(θ0) +

(
u

L0

)2

(3.3)

Now combining equations (3.1)–(3.3) all together we get:

P = 2k(L− L0) sin(θ) = 2k(L− L0)

(
sin(θ0)−

u

L0

)
⇒

P

2kL0
=

(
L

L0
− 1

)(
sin(θ0)−

u

L0

)
=

 1√
1− 2 u

L0
sin(θ0) +

(
u
L0

)2 − 1

(sin(θ0)−
u

L0

)
⇒

20 Applications

P

2kL0
=

 1√
1− 2 u

L0
sin(θ0) +

(
u
L0

)2 − 1

(sin(θ0)−
u

L0

)
(3.4)

We now define the normalized load λ and displacement a as follows:

λ =
P

2kL0
, a =

u

L0

Now, the expression can be written as:

λ(a) =

(
1√

1− 2a sin(θ0) + a2
− 1

)
(sin(θ0)− a) (3.5)

Now if we plot this expression we would get a normalized force–displacement curve λ−−a that characterizes

the structures behavior and a representative plot is shown in Figure 3.5 below.

0.0 0.5 1.0 1.5 2.0 2.5
α

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8



0 = π/3

Exact

Figure 3.5: A plot of the normalized force displacement curve for the simple truss problem

From the structural mechanics point of view it is rather interesting to interpret this type of snap–through

behavior under load–control and some typical deformation stages that correspond to curve in Figure 3.5 are

shown schematically in Figure 3.6.

For reasons that were extensively described in a previous chapter, it is impossible to capture the structures

behavior using Newton’s method in solving this problem numerically. An example of the result that we obtain

3.1 Part I: Structural Mechanics 21

Pk,L0 k,L0

0 0

P

k,L0 k,L0

0 0

Figure 3.6: The deformation states that correspond to the three stable configurations during deformation

0.0 0.5 1.0 1.5 2.0 2.5 3.0
α

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8



0 = π/3

Newton
Exact

Figure 3.7: The converged points that one obtains using Newton’s method for the simple truss problem. Newton’s
method is not able to capture the snap–through instability

if we insist in using Newton’s method is shown in Figure 3.7 below. On the other hand, as we would expect,

using the Arc–Length method, we are able to capture the actual response in this problem, making the Arc

Length method most suitable for such applications. The converged points in the case of the Arc Length

method are shown in Figure 3.8.

22 Applications

0.0 0.5 1.0 1.5 2.0 2.5 3.0
α

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8



0 = π/3

Arc-Length
Exact

Figure 3.8: The converged points that one obtains using the Arc Length method for the simple truss problem. The Arc
Length method is more suitable for solving numerically such pronblems

3.1.ii A more involved truss problem

Now that we got a first taste on the benefits of the Arc Length method over Newton’s method in a

very simple problem, we consider a slightly more complicated truss configuration. We have the same truss

members arranged just as they were before, but this time we place another truss member vertically and on

top of the previous structure. The new truss member has a different undeformed length l0 and cross section

A′0. We also assume that in general, the newly introduced truss member is made of a different material and

it’s stiffness is:

β =
E′A′0
l0

The setup can be better conceptualized in Figure 3.9 that follows. The boundary conditions are the same

as before for the lower truss members apart from the the fact that now the force P is applied at the upper

part of the structure. Both hinge points are constrained in order to eliminate any displacement in the

horizontal direction3 and thus they are only able to move vertically.

In this case, the problem has 2 degrees of freedom, and we can chose them to be the vertical displacements

of the two hinge points. The force subjects the upper member to compression, but the lower part of the top

truss is able to move by subjecting the lower truss members into compression as well. Therefore, using the

3Although it is not necessary in terms of the mechanics of the problem since it is already guaranteed by symmetry. However,
in terms of numerical simulations, it is necessary to impose this boundary conditions in order to get the expected behavior

3.1 Part I: Structural Mechanics 23

P

k,L0 k,L0

0 0

,l0

Figure 3.9: A slight variation to the simple truss structure where we added a linearly elastic vertical member with a
different stiffness (in general). The compressive force is now applied at the top of the upper member

notation u1, u2 depicted in Figure 3.10 and assuming that all truss members have the same length, we can

express the deformation of the upper truss member as:

e =
u2 − u1
L0

= a2 − a1 (3.6)

where recall that a is defined as the displacement normalized with its initial length. Then, the equilibrium

and constitutive equations for the upper truss member suggest that:

P = βLe⇒ P = βL(a2 − a1)⇒
P

βL
= a2 − a1 (3.7)

Now at this point, recall that when we solved the previous problem, we determined a relationship λ(a) →
P (a). This however implies that the displacement a2 depends on P 4. Therefore, we write:

a2 = a1(P) +
P

βL
(3.8)

Unfortunately, it is impossible to invert expression (3.5) due to its complexity and as a result we are unable

to determine a closed form solution for this problem. Clearly, as soon as the problem became slightly more

4This can become clear if we could invert the expression P = P (a2) ⇒ a2 = a2(P)

24 Applications

P

,l0

k,L0

 

L Lk,L0

u1
l

u2

Figure 3.10: A schematic representation of a possible deformed state for the new structure subjected into compression

complicated, analytical solutions cannot be determined. However, we are still interested in determining the

P −u curve for this problem, and examine the effect of the stiffness ratio of the two truss members, namely:

w =
β

k

Our only choice when it comes to solving this problem is to formulate a system of equations and implement

a numerical algorithm to solve it incrementally. Now in this problem we won’t even try to solve the problem

using Newton’s method since it is guaranteed to fail, being unable to capture unstable responses as we

illustrated in the previous subsection. Hence, we will implement the Arc-Length method. Denoting by FB

the internal force developed in the upper truss member, we can write the constitutive law as:

FB = βL(a2 − a1) (3.9)

Now by demanding the developed forces in the top rod as well as in the hinge point to be in equilibrium we

derive:

Hinge Point: FB = 2FL sin θ

Top rod: FB = P
(3.10)

Now by recalling equation (3.5) and combining it with equations (3.10) and (3.9) we end up with the

3.1 Part I: Structural Mechanics 25

following 2x2 system of equations with respect to the normalized displacements ai as:

2kL

(
1√

B(a1,θ0)
− 1

)
(sin θ0 − a1)− βL(a2 − a1) = 0

βL(a2 − a1)− P = 0

(3.11)

where,

B(a1, θ0) = 1− 2a1 sin θ0 + a21

Now define again the normalized load as λ = P/2kL, and also the stiffness ratio between the truss members

as w = β/k. Recall that we are already using the normalized displacements as ai = ui/L. We can now

modify the above system and write it in the following normalized form as:(
1√

B(a1, θ0)
− 1

)
(sin θ0 − a1)− w(a2 − a1) = 0 (3.12)

w(a2 − a1)− λ = 0 (3.13)

The above system has essentially the the general form Fint(u)− λq = 0 hypothesized in (2.7). In order to

visualize the similarities we can write the system of equations as:

Fint(u) = Fint(a1, a2) =


(

1√
B(a1,θ0)

− 1

)
(sin θ0 − a1)− w(a2 − a1)

w(a2 − a1)

 =

[
F1(a1, a2)
F2(a1, a2)

]

and,

q =

{
0
1

}
and finally:

Fint(u)− λq = 0⇒
[
F1(a1, a2)
F2(a1, a2)

]
− λ

{
0
1

}
=

{
0
0

}
(3.14)

The next step is to implement the Arc Length method and solve the system of equations. In Figure 3.11 we

plot the normalized load λ versus the normalized displacement a2 for various stiffness ratios w.

The resulting curves have an interesting interpretation. On the one hand, if the stiffness ratio is very large

(w = 50), then the upper truss member is much stiffer than the rest of the truss members and as a result it

does not deform significantly. As expected then, the force displacement curve in this case is almost identical

to the previous problem.

On the other hand, if the decrease the stiffness of the upper truss member with respect to the other

members, the curve eventually snaps back and the structure is unstable in both force and displacement

control conditions.

26 Applications

0.0 0.5 1.0 1.5 2.0 2.5

a

−0.4

−0.2

0.0

0.2

0.4

0.6

λ

θ0 = π/3

w =0.25
w =0.5
w =1
w =50

Figure 3.11: The normalized force–displacement curves (displacement a2) for various stiffness ratios w = β/k. Extreme
values of w can make the structure unstable under loading in both force and displacement control

3.2 Part II: Continuum Mechanics

3.2.i Inflation of a Hyperelastic Spherical Membrane

In this problem, we consider the quasi static inflation of a hyperelastic spherical membrane with initial radius

and thickness R and H respectively. We assume that H << R so that bending and shear forces do not

contribute significantly in the membrane’s deformation and can therefore be neglected. When the membrane

is subjected to a uniform pressure p, a biaxial state of stress is achieved and the principal stretches are given

by

λr =
h

H
, λθ = λφ =

r

R
(3.15)

where r and h represent the deformed (current) radius and thickness of the balloon respectively. The stress

field that develops into the membrane in order to equate the pressure is taken to be that of a thin–walled

spherical container subjected to an internal pressure pi = p and is of the form:

σr = 0 , σ = σθ = σφ =
p r

2h
(3.16)

The fact that σr = 0 arises from the thin–waled assumption that results into a plane stress field for the

membrane. Assuming that the membranes we are trying to model are made of an incompressible hyperelastic

3.2 Part II: Continuum Mechanics 27

material5 we write:
dV

dV0
= 1⇒ λr λθ λφ = 1⇒ λr =

1

λθ λφ
(3.17)

and introducing the strain energy function W we can write the constitutive law for the membrane’s material

as:

σ = λθ
∂W (λθ, λφ)

∂λθ
(3.18)

Next, we introduce a specific form for the strain energy function assuming that the material’s response can

be modelled using the incompressible Gent model. Thus:

W (λθ, λφ) =
−µJm

2
log

(
1−

λ2θ + λ2φ + λ−2θ λ−2φ − 3

Jm

)
(3.19)

where µ is the initial shear modulus and Jm is a constant related to the strain saturation of the material

(as the stresses become infinite). Note that the nonlinear pressure-volume response of an inflated spherical

membrane depends greatly on the constitutive material model. Although in this study we have focused on

a Gent model to achieve a final steep increase in pressure, when using a Varga, neo-Hookean, or three-term

Ogden model no strain stiffening is observed upon inflation [Overvelde et al.]. Now combining equations

(3.15), (3.16) and (3.19) and plugging the result into (3.18) yields:

σθ =
p r

2h
= µJm

1− λ6θ
2λ6θ − λ4θ(3 + Jm) + 1

(3.20)

Dropping the subscript θ and expressing h as h = H R2/r2 leads to the following form for expression (3.20):

σ =
pR

µH
=

2 Jm
λ3

1− λ6
2λ6 − λ4(3 + Jm) + 1

(3.21)

The current (deformed) volume inside the membrane is expressed in terms of λ as:

v =
4π

3
(λR3)⇒ λ3 =

v

Vi
(3.22)

where Vi stands for the initial volume inside the membrane prior to any deformation. In order to simplify

expressions we next define the following dimensional variables:

p̂ =
pR

µH
, α = λ3 (3.23)

where p̂ is assumed to represent a dimensionless pressure. Let us now write equation (3.21) in the form

F (λ, p̂) = 0, which is a traditional way of introducing nonlinear equations that favors the implementation

of numerical techniques. Then:

p̂ =
2 Jm
α

1− α2

2α2 − α4/3(3 + Jm) + 1
(3.24)

Now if we plot this expression for different values of Jm we would get the curves shown in Figure 3.12.

We note however that we just made the plot of the p − −λ curves using the analytical expressions and

did not use our numerical technique (Arc Length Method). We are mostly interested in solving problems to

which we don’t know the answer and one of them is the case where several of these hyperelastic spherical

membranes are connected in series and we inflate one of them. We consider this problem in the next

subsection.
5This is an assumption that we traditionally make when we study hyperelastic rubber like materials, such as balloons

28 Applications

0 10 20 30 40 50

u/V = λ3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

pR
/(
µ
H
α
)

Jm = 30

J = 0.9 Jm

J = 1.0 Jm

J = 1.1 Jm

J = 1.2 Jm

Figure 3.12: Normalized p− v curves for the inflation of hyperplastic balloons according to the Gent model

3.2.ii Inflating a System of N interconnected hyperelastic spherical membranes

We would like to generalize equation (3.24) in the case of N spherical membranes connected together and

which, in general, have different material constants (Hi, Ji). The description of such a system of membranes

would result into a system of N equations with respect to N unknowns, namely the αi’s. First, let us

introduce the system of equations, considering N membranes with constants Hi, Ji (i = 1, 2, . . . , N).

Fi(αi, p̂i) =
2 Jm
αi

1− α2
i

2α2
i − α

4/3
i (3 + Ji) + 1

− p̂i = 0 (3.25)

Notice that the dimensionless pressure p̂i depends on the membrane since its definition involves the constant

Hi. We could avoid that dependency on the specific membrane however, by introducing the following ratio:

qi =
Hm

Hi
(3.26)

Now using equation (3.26) we can rewrite the equations (3.25) in the form:

Fi(αi, p̂) =
2 Ji
αi

1− α2
i

2α2
i − α

4/3
i (3 + Ji) + 1

− qi p̂ = 0 (3.27)

In the case of interconnected spherical membranes, we can define the total volume within the membranes v

as the sum of volumes enclosed by each individual membrane as:

v =
N∑
i=1

vi (3.28)

3.2 Part II: Continuum Mechanics 29

which can also be readily expressed (Only in the special case where the membranes have initially the same

radius R) in terms of the ai’s, once we recall the definition in (3.22). Hence:

N α =
N∑
i=1

ai ⇒ αN = N α−
N−1∑
i=1

ai (3.29)

The last equation, serves as a constraint to the system of equations in (3.27). Notice that without this

constraint, each equation in (3.27) is autonomous and provides the p–v description for each membrane

alone. Now however, we have the following, coupled system of equations:

Fint(α1, α2, . . . , αN−1, α)− q p = 0 (3.30)

where:

F int
i =

2 Ji
αi

1− α2
i

2α2
i − α

4/3
i (3 + Ji) + 1

i = 1, 2, . . . , N − 1

F int
N =

2 JN
α̃

1− α̃2

2α̃2 − α̃4/3(3 + JN) + 1
for the last eq.

where

α̃ = α−
N−1∑
i=1

ai (3.31)

Knowing that we are going to solve this system of equations using the Arc Length Method we would like to

have an expression for the (Stiffness matrix) Jacobian of the system. The Jacobian [K] is defined as:

Kij =
∂Fi
∂αj

(3.32)

in our case however, equations Fi for i = 1, 2, . . . , N − 1 depend only on the corresponding ai. In other

words they do not depend on aj for j 6= i. That means that matrix [K] will look like a diagonal matrix,

since all off diagonal entries will be equal to zero with the only exception being the last row. Schematically:

[K] =


K11 0 0 0

0 K11 0 0
...

...
. . .

...
KN1 KN1 . . . KNN

 (3.33)

In the context of this problem, we have created a program in Python that is able to solve the system

of equations for a general system of N membranes, and the program is able to build the Jacobian matrix

and the system of equations automatically. The only input required by the used is the material parameters

associated with each membrane. Below, we present results for a system comprising of 2 interconnected

membranes and the 3 cases for the material constants considered are taken from [Overvelde et al.] and are:

we consider the three possible ways of combining these membranes (a+b,b+c,a+c) and for each case we

solve the system of equations with the Arc Length method. The results are presented in the form of p− v
curves and are shown below:

30 Applications

Membrane Ji qi
a Ja = 30 qa = 1

b Jb = 0.9Ja qa = 1.1

c Jc = 1.2Ja qa = 1.05

0 20 40 60 80 100

(va + vb)/(Va + Vb)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

pR
/µ
H
α

Membranes a and b

Figure 3.13: The pressure–total system volume curve in the case of a system comprising of membranes a and b

3.2 Part II: Continuum Mechanics 31

0 20 40 60 80 100

(vb + vc)/(Vb + Vc)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

pR
/µ
H
α

Membranes b and c

Figure 3.14: The pressure–total system volume curve in the case of a system comprising of membranes b and c

0 20 40 60 80 100

(va + vc)/(Va + Vc)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

pR
/µ
H
α

Membranes a and c

Figure 3.15: The pressure–total system volume curve in the case of a system comprising of membranes a and c

32 Applications

3.3 Links to Codes, Videos

The programs developed in the context of this project to implement the Newton’s method, the Arc Length

Method in every application (trusses, membranes etc) as well as codes that developed to produce and make

the video to which we provide the link in chapter 2, are available to download through the following links.

• Newton’s method for the Simple Truss Problem [Get It Here]

• Arc Length method for the Simple Truss Problem [Get It Here]

• Arc Length method for the 2nd truss problem with 2 d.o.f. [Get It Here]

• Video [Get It Here]

https://drive.google.com/open?id=0B3PHYP5P0zKkaVo4UjI1b2lLd3c
https://drive.google.com/open?id=0B3PHYP5P0zKkVnRQV3ZWbTgwNk0
https://drive.google.com/open?id=0B3PHYP5P0zKkTU1UM0dEUlZVbHM
https://drive.google.com/open?id=0B3PHYP5P0zKkR0NkNlg3ZGNUZEE

Bibliography

[Abaqus Theory Manual] Abaqus Theory Manual, version 6.12, Dassault Systemes.

[Crisfield M.A., 1983] Crisfield M.A., (1983), ‘A fast incremental / iterative solution procedure that handles

snap-through’, Computers And Structures, 13:55–62

[Overvelde et al.] Overvelde JTB, Kloek T, D’haen JJA, Bertoldi K., (2015), ‘Amplifying the response of

soft actuators by harnessing snap-through instabilities’, The Proceedings of the National Academy of

Sciences of the United States of America,112:10863-10868

[Riks E., 1979] Riks E. (1979), ‘An incremental approach to the solution to the solution of buckling ans

snapping problems’, Int. J. Solids Struct., 15:524–551

	List of Figures
	Introduction
	Strong and Weak Formulation of the BVP
	The Finite Element Approximation

	Solving the Finite Element Equations
	Newton's Method
	The Arc Length Method
	Crisfield's Formulation
	The method's drawbacks
	Solution Techniques

	Applications
	Part I: Structural Mechanics
	A simple truss problem
	A more involved truss problem

	Part II: Continuum Mechanics
	Inflation of a Hyperelastic Spherical Membrane
	Inflating a System of N interconnected hyperelastic spherical membranes

	Links to Codes, Videos

