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Abstract

Crystal Plasticity

Nikolaos Vasios

Supervisor: Professor N.Aravas

This work is concerned with the formulation of a rate–independent constitutive model for
single crystal plasticity and it’s computational implementation. The development of the
constitutive model is based on multiplicative decomposition of the deformation gradient
as well as on the physics of dislocation motion. Motivated by the theoretical predictions
and experimental observations on hydrogen–charged metal single crystals, we introduce
a comprehensive methodology to implement the effects of hydrogen concentration to the
constitutive model. Computationally, we emphasise on the formulation of a heuristic and two
optimization based stress–update algorithms that are able to incrementally determine the set
of active slip systems. The constitutive model is implemented in the Abaqus general purpose
finite element software, in the form of a User MATerial subroutine and is rigorously tested in
a series of uniaxial tension simulations. Through the FEM simulations we investigate three
different specimen designs for uniaxial tension and also determine the crystal’s tensile behavior
for various orientations. Finally, we perform a comparative study on stress–update algo-
rithms and also examine the proposed plasticity model accounting for hydrogen concentration.

Keywords: Crystal Plasticity; Stress–Update Algorithms; Orientation Sensitivity;
Hydrogen Concentration;
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Introduction

Single crystals, are monocrystalline solids whose structure consists of a single, continuous

and unbroken grain. They are characterized by their extraordinary mechanical properties,

which are mainly attributed to the absence of structural defects associated with grain bound-

aries. These properties and especially the inherent creep resistance of metal single crystals

is the main reason for their widespread implementation in turbines and the energy industry.

However, research on the mechanical behavior of single crystals is not entirely motivated by

the continuous need for innovative industrial applications.

From a mechanics point of view, mesoscale approaches to the multi–scale modelling of

granular materials are fundamentally based on the development of crystal plasticity theories

(Taylor 1934 [49], Mandel 1965 [39], Hill 1966 [28], Asaro 1983 [9]). A universal charac-

teristic of these theories is the explicit modelling of slip systems within the crystal lattice

to constitute a model that naturally accounts for plastic slip, dislocation motion and their

interactions. Even though the widespread implementation of a crystal–based multiscale plas-

ticity model is for the most part quite limited due to the unavailability of computational

resources, crystal plasticity theories provide a robust theoretical framework that leads to the

development of better phenomenological plasticity models.

This thesis is concerned with the formulation of a rate–independent crystal plasticity

model accounting for finite elastoplastic deformations. The first Chapter serves as a concise

introduction to the fundamental principles of Continuum mechanics, presented in the books

by Aravas [8], Asaro & Lubarda [10], Bigoni [14], Bonet & Wood [17], Gurtin & Anand [26],

Hjelmstad [30] and Malvern [38] and intends to establish a theoretical background. The

principles presented and the quantities defined are considered prerequisites to the study and

constitutive description of crystal plasticity. Subsequently, in an effort to approach single

crystals from a material’s science point of view, Chapter 2 presents the basic elements of

crystallography defining elementary concepts such as slip systems, planes and directions



2 Introduction

within a crystal lattice. We also introduce the method of stereographic projection, whose

applications, although not limited to crystallography are extremely useful to the development

of our constitutive model. The third chapter presents the constitutive model itself giving

particular emphasis on the multiplicative decomposition of the deformation gradient, the

hardening model, as well as on the numerical integration of elastoplastic equations. In

Chapter 4, based on the experimental observations of Delafosse [23] and Yagodzinskyy [52,

53] and the finite element simulations of Schebler [48] we are concerned with introducing a

modified formulation to the crystal plasticity model, to incorporate the effect of Hydrogen

concentration. The next two chapters present the computational issues encountered in the

context of the crystal plasticity model. In particular, Chapter 5 addresses the issue of

determining the set of active systems, which is a prerequisite to integrate the elastoplastic

equations. We present a heuristic and two optimization based stress–update algorithms and

also exhibit the special treatment required in the case of hydrogen charged crystals. In

Chapter 6, we introduce the finite element approximation of the boundary value problem

for finite deformations. We derive an approximate expression for the ‘local stiffness matrix’

and discuss the role of User MATerial subroutines. Finally, Chapter 7 presents the results of

the finite element simulations performed in the context of this work. Particular emphasis is

given on the interpretation of the FEA results as well as on their qualitative and quantitative

comparison with the existing experimental observations.

Standard notation is assumed throughout. Fraktur symbols like B, denote body config-

urations whereas Ralph Smith’s Formal script symbols like A denote sets. Boldface symbols

denote tensors the orders of which are indicated by the context1. All tensor components are

written with respect to a fixed Cartesian coordinate system with base vectors ei (i = 1, 2, 3),

and the summation convention is used for repeated Latin indices, unless otherwise indicated.

The prefix det indicates the determinant, a superscript T the transpose, a superposed dot

the material time derivative, and the subscripts s and a the symmetric and anti-symmetric

parts of a second order tensor. Let a, b be vectors, A, B second-order tensors, and C
a fourth-order tensor; the following products are used in the text a · b = ai bi, (a b)ij =

ai bj, (a b c d)ijkl = ai bj ck dl, (A · a)i = Aik ak, (a · A)i = ak Aki, A : B = Aij Bij,

(A·B)ij = Aik Bkj, (A B)ijkl = Aij Bkl, a·A·b = aiAij bj = (ab) : A, (C : A)ij = CijklAkl,
(A : C)ij = Akl Cklij, A : C : B = Aij CijklBkl and (C : D)ijkl = Cijpq Dpqkl. The inverse C−1

of a fourth-order tensor C that has the ‘minor’ symmetries Cijkl = Cjikl = Cijlk is defined so

that C : C−1 = C−1 : C = I, where I is the symmetric fourth-order identity tensor with

Cartesian components Iijkl = (δik δjl + δil δjk)/2, δij being the Kronecker delta.

1In an effort to be as consistent as possible, capital boldface symbols are used for 2nd order tensors
whereas lowercase boldface symbols are used to represent vectors. Cauchy and Kirchhoff stress measures are
the only exceptions, which although they represent 2nd order tensors, are denoted as σ and τ respectively



Chapter 1

Theory

1.1 Deformation Map

Let us consider a continuum body made up of an infinite collection of material points.

In order to provide a precise description of changes in shape, size and orientation of that

continuum body, we have to define an initial configuration at time t0 = 0 which we call

reference configuration and denote as B0. We also define the deformed configuration

Bt, as any other configuration of the continuum body at subsequent times t. The concept

of deformation is introduced as any geometry related deviation between the reference and

deformed configuration. We next postulate that the motion of the continuum body can be

described by introducing a smooth and differentiable mapping function x(X, t) so that any

material point X̂ ∈B0 maps to a single point x̂ ∈Bt at time t. In general:

x = x(X, t) : B0 →Bt (1.1)

Now assume that existing material points cannot be destroyed and new material points

cannot be added to the infinite collection. In this case, the mapping is reversible and also

bijective in the sense that a single material point in the undeformed shape, corresponds to

a single point in the deformed shape and vice versa. In math form:

x = x(X, t)⇒ X = X(x, t)

However, it is rather difficult to derive a physical interpretation of the mapping function if

the variation in both X and t is maintained. We can obtain two different interpretations

assuming a variation in one of those variables at a time, while the other is assumed to remain

constant. Deciding to follow a given material point we set on (1.1) X = X̂ = ct to get:
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0S
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tV

ie i′e

Figure 1.1: Reference state vs Deformed state

x = x(X = X̂, t)⇒ x = x̂(t)

which essentially defines the motion equation for material point X̂. Now assuming that

the mapping function is twice–differentiable in time, we can define the velocity υ̂(t) and

acceleration â(t) of material point X̂ as:

υ̂(t) =
dx̂(t)

dt
â(t) =

d2x̂(t)

dt2

Such expressions may be of great importance when we are interested in studying the dynamics

of a desired material point, but they do not facilitate the description of the kinematics of

deformation of the continuum body.

1.2 The Deformation Gradient

Now if we choose to evaluate the mapping function at a given time instance t = t̂, we get:

x = x(X, t = t̂)⇒ xt̂ = x(X) (1.2)

This expression essentially maps every material point from the reference state B0 at time t0
to a single point in the current (deformed) state Bt at t̂. Now imagine an arbitrary infinites-

imal material fiber dX originating from the point X in B0. If we are able to determine this

infinitesimal material fiber in the current configuration dx, we will get an immediate sense of

deformation infinitesimally close to the point X. Hence, by differentiating (1.2) with respect

to X and dropping the subscript t̂ we obtain:

x = x(X)⇒ dx =
∂x(X)

∂X
· dX
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The quantity ∂x(X)/∂X defines a second order tensor which is called the Deformation

Gradient.

F = x∇X =
∂x(X)

∂X
or: Fij =

∂xi
∂Xj

(1.3)

0V

tV

0S
tS

dX

X

( ),tF X

( ),d t+F X X

d+X X

dx

( ),tx X

d+x x

i′eie

Figure 1.2: The deformation gradient maps every point in the continuum from the reference to the
deformed state

The Deformation Gradient is one of the most important quantities defined in Continuum me-

chanics. The fact that it maps infinitesimal material fibers from the reference to the current

configuration, suggests that F contains all deformation related information infinitesimally

close to the point that the fiber originates. Alternatively, the definition (1.3) can also be

written in the form:

dx = F · dX (1.4)

The Deformation Gradient is from definition the Jacobian matrix of the transformation from

B0 to Bt and therefore assigns ‘quantities’ from the reference to the current state. It is

reasonable then to assume that changes of shape, size and orientation have to be expressed in

terms of F. In fact, with tensor analysis it can be shown that changes in length and relative

orientation of infinitesimal material fibers as well as surface and volume changes within the

continuum body are all given by expressions that involve the deformation gradient F. Next

we summarize these expressions without proving1 them as it is beyond the scope of this

discussion.

1The detailed proofs of the following expressions can be found in the book Mechanics of Materials (Aravas
2014 [8])
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dX

X
x

dx

N
nF

(a)

1dX

X 1dx

1N
1n

2dX
2N0θ

2dx

2n
θ

F

x

(b)

Figure 1.3: Stretch of an infinitesimal material fiber (a) and change of the relative orientation
between two infinitesimal material fibers (b)

Let us consider an arbitrary infinitesimal material fiber dX = ds0 N in the reference con-

figuration, that is transformed to dx = dsn in the deformed configuration. The infinitesimal

lengths ds0 and ds can be expressed in terms of dX and dx respectively as:

ds2
0 = dX · dX (1.5)

ds2 = dx · dx (1.6)

It can be proven that the stretch ratio λ of the material fiber defined as λ = ds/ds0 is given

by:

λ =
√

N · FT · F ·N where: N =
dX

ds0

(1.7)

The quantity FT ·F appears quite often in deformation analysis of continuum mediums and

defines the Right Cauchy–Green tensor as:

C = FT · F (1.8)

The Left Cauchy–Green tensor B can also be defined as:

B = F · FT (1.9)

The angle in the deformed state, between two infinitesimal material fibers (dX1,N1) and

(dX2,N2) (Figure 1.3b) is essentially the angle between the new unit vectors n1,n2. The

cosine is given by:

cos(n̂1, n̂2) =
N1 ·C ·N2

λ1 λ2

(1.10)

where λ1 and λ2 are the stretch ratios corresponding to dX1 and dX2 respectively and are

defined in (1.7). An infinitesimal surface dS0 whose normal vector in the reference state was

N̂ , transforms in the deformed configuration (Figure 1.4a) according to Nanson’s formula

as:
dS

dS0

= (detF)
√

N̂ ·C−1 · N̂ (1.11)

while the new normal vector n̂ is given by:

n̂ =
1√

N̂ ·C−1 · N̂
· (N̂ · F−1) (1.12)
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1dX
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X 0dV

x

dV
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Figure 1.4: Change of infinitesimal surface (a) and infinitesimal volume (b)

At this point is should be noted that the normal vector transforming from N̂ into n̂ does

not in general follow a material fiber. The transformation in (1.12) is derived by demanding

that n remains perpendicular to the infinitesimal surface, at all times during deformation.

Finally it can be shown that an infinitesimal volume dV0 transforms into dV (Figure 1.4b)

according to:
dV

dV0

= J = detF (1.13)

1.3 The Polar Decomposition Theorem

Any 2nd order invertible tensor can be expressed as the product of a symmetric and

an orthogonal tensor. In the context of continuum mechanics, F can be decomposed as

such, with the orthogonal tensor representing rigid rotations associated with the motion F,

whereas the symmetric tensor expresses ‘pure’ deformation. In math form:

F = R ·U = V ·R (1.14)

It can be shown [10] that tensors R , U , V are unique and expression (1.14) defines the Po-

lar Decomposition of F. Tensor R is orthogonal while U,V are symmetric and positive

definite. Tensors U and V are also commonly referred to as right and left stretch tensors

respectively. Symmetry and positive–definiteness of U and V also suggest that their eigen-

values are real and positive while also their eigenvectors define an orthonormal base. Let us

denote as Ni the eigenvectors of U defining a Lagrangian triad and as ni the corresponding

Eulerian base defined by the eigenvectors of V. The left and right stretch tensors can now

be expressed in terms of their principal directions as:

U =
3∑
i=1

λi Ni Ni (1.15a)

V =
3∑
i=1

λi ni ni (1.15b)
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F

R U

V R

iN

in

( )i
λN

( )i
λn

Figure 1.5: The Polar Decomposition of F

where λi represent the eigenvalues of U and V. Tensors U and V can also be expressed in

terms of the right and left Cauchy–Green tensors that we defined earlier as:

U =
√

C , V =
√

B

It is important to note however that the square root of a second order tensor can only

be evaluated as the square root of the tensor’s eigenvalues once the tensor is expressed in

terms of a coordinate system whose axes are aligned with the tensor’s principal directions.

Therefore, the process of determining the square root of an arbitrary invertible matrix A,

always involves solving an eigenvalue problem. The expression of U and V as the square

root of C and B respectively, suggests that the left and right Cauchy–Green tensors can also

be expressed with respect to their principal directions as:

C =
3∑
i=1

λ2
i Ni Ni

B =
3∑
i=1

λ2
i ni ni

Finally, the orthogonal tensor R can be expressed in terms of the Eulerian ni and Lagrangian

Ni directors as:

R = nN (1.16)
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1.4 Strain Measures

As aforementioned, the deformation gradient F contains every ‘information’ concerning

deformation for every material point within the continuum body. In addition, the polar

decomposition of F suggests that we can eliminate rigid rotations from F and express ‘pure–

deformation’ in terms of the stretch tensors U and V. A quite reasonable assertion would

therefore be to suggest that strain tensors must be coaxial2 with either U or V, leading to

the definition of two general strain measures:

E(m) = f (m)(λi) Ni Ni (1.17a)

e(m) = f (m)(λi) ni ni (1.17b)

All strain measures derived from (1.17a) are referred to as Lagrangian strains, after the triad

Ni, while strain measures derived from (1.17b) are Eulerian3 strains. Functions f(λi) have

to be chosen so that for small4 strains, the strain measures being defined are consistent with

the infinitesimal strain theory. Recalling that the stretch ratio λ is defined as the ratio of

the current to the original length of a material fiber, the infinitesimal strain theory suggests:

ε =
l − l0
l0

=
l

l0
− 1 = λ− 1 (1.18)

Now, in the simplest possible case of uniaxial straining, we can expand f (m)(λ) around λ = 1

(small strains) to derive:

E(λ)|λ→1 = f (m)(1) +
df (m)(λ)

dλ

∣∣∣∣
λ=1

(λ− 1) +O((λ− 1)2) (1.19)

To ensure the aforementioned consistency, expression (1.19) must reduce to λ − 1. This

demand leads to the following restrictions for the functions f (m)(λi):

f (m)(1) = 0 ,
df (m)(λ)

dλ

∣∣∣∣
λ=1

= 1

while simultaneously f ′(λ) > 0 ∀ λ > 0. A family of strains that satisfies all of the above

constraints is defined as follows:

f (m) =


1
m

(λm − 1) , m 6= 0

lnλ , m = 0
m ∈ Z (1.20)

The most commonly encountered strain tensors derived from the above strain family are

summarized below:

2Two arbitrary tensors A and B are coaxial if they can be diagonalized in the same coordinate system.
As a result of coaxiality, the commutative property holds in the sense: A ·B = B ·A

3Lagrangian Strains are coaxial with U, while Eulerian strains are coaxial with V
4Small strains correspond to λ ∼= 1 or equivalently to λ− 1 ∼= 0
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Table 1.1: Strain measures commonly encountered in continuum mechanics applications

Strain Definition

m = 0 Logarithmic/Hencky
E(0) = ln U

e(0) = ln V

m = −2 Almansi eA = e(−2) = 1
2
(δ −B−1)

m = 2 Green EG = E(2) = 1
2
(C− δ)

m = 1 Biot EB = E(1) = U− δ

Selection of the ‘proper’ strain measure for each application strongly depends on the physics

of the problem under consideration and should also be consistent with the stress measure

being selected5. Figure 1.6 comparatively demonstrates the evolution of the strain measures

defined in table 1.1 as a function of λ for a uniaxial straining experiment. As expected,

1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Stretch Ratio Λ

Strain

Almansi �m��2�

Logarithmic �m�0�

Biot �m�1�

Green �m�2�

Figure 1.6: A comparative graph for Biot, Logarithmic, Almansi and Green strain measures as a
funcion of λ for uniaxial straining

all strains are asymptotically equal at small strains, but diverge as the stretch ratio (and

deformation) increases.

1.5 Rate of Deformation

When studying the dynamics of a moving body, apart from it’s position x(t), we also need

it’s velocity υ(t) in order to describe its motion. In complete resemblance, when studying

the kinematics of deformation within a continuum body we are interested in determining

5It is wise to select stress and strain measures that represent work–conjugate pairs (see Section 1.6)
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the rate of deformation within the body apart from the deformation F itself. We begin by

defining the velocity field that corresponds to the motion x(X, t):

υ (x (X) , t) =
∂x(X, t)

∂t
(1.21)

Following the same rationale with Section 1.2, we observe that for a given time instance t

the velocity field υ (x, t) is a function of x. We are interested in determining the variation

of the velocity field dυ in an infinitesimal ‘neighbourhood’ dx around the point x under

consideration. Hence:

dυ = υ (x(X + dX), t)− υ (x(X), t) =
∂υ(x, t)

∂x
· dx (1.22)

The above relationship leads to the definition of the Velocity Gradient tensor as:

L = υ∇x =
∂υ(x, t)

∂x
(1.23)

and expression (1.22) can be rewritten as:

dυ = L · dx (1.24)

Now recall that in the previous section in (1.4) we had that dx = F ·dX. Taking into account

that dυ = dẋ and in general F = F(t) we can write:

dx = F · dX⇒ ∂

∂t
(dx) = Ḟ · dX⇒ dυ = Ḟ · F−1 · dx

with:

Ḟ · F−1 =
∂

∂t

[
∂x(X, t)

∂X

]
· ∂X

∂x
=

∂

∂X

[
∂x(X, t)

∂t

]
· ∂X

∂x
=
∂υ(X, t)

∂x
(1.25)

Expressions (1.23) and (1.25) clearly state that the velocity gradient tensor can be alterna-

tively expressed in terms of the deformation gradient as:

L = Ḟ · F−1 (1.26)

Recalling that any 2nd order tensor can be expressed as the sum of a symmetric and an

antisymmetric tensor, we also define the next two important rates. The Deformation

Rate D is defined as the symmetric part of L, while its antisymmetric part W defines the

Spin Tensor. In math form:

L = D + W (1.27)

D = symm (L) =
1

2

(
L + LT

)
⇒ D =

1

2

(
∂υi
∂xj

+
∂υj
∂xi

)
eiej (1.28)

W = skew (L) =
1

2

(
L− LT

)
⇒W =

1

2

(
∂υi
∂xj
− ∂υj
∂xi

)
eiej (1.29)
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1.5.i Physical Interpretation of D

Let us reconsider an arbitrary infinitesimal material fiber dX = ds0 N in the reference

configuration, that is transformed to dx = dsn in the deformed configuration and the

infinitesimal lengths ds0 and ds are given by expressions (1.5) and (1.6) respectively. We are

interested in determining the rate of change of the infinitesimal length ds, so we differentiate

(1.6) with respect to t to derive:

∂

∂t

(
ds2
)

=
∂

∂t
(dx · dx)⇒ 2ds

∂

∂t
(ds) =

∂

∂t
(dx) · dx + dx · ∂

∂t
(dx)⇒

2ds
∂

∂t
(ds) = dx · LT · dx + dx · L · dx⇒ 2ds

∂

∂t
(ds) = dx ·

(
L + LT

)
· dx⇒

2ds
∂

∂t
(ds) = 2dx ·D · dx⇒ ds

ds2

∂

∂t
(ds) =

dx

ds
·D · dx

ds
⇒

1

ds

∂

∂t
(ds) = n ·D · n (1.30)

Equation (1.30) suggests that direct components of D, (Dnn), express the rate of extension

per unit length of a material fiber which, in the current configuration, is momentarily aligned

with the direction of n.

Before proceeding with the physical interpretation of the shear components of D, we first

need to define the rate of change of a unit vector m that is attached to a material fiber

dx = dsm. Hence, using equation (1.30):

ṁ =
∂

∂t

(
dx

ds

)
=

1

ds

∂

∂t
(dx)− dx

ds2

∂

∂t
(ds) = L ·m− (m ·D ·m) =

= (W + D) ·m− (m ·D ·m) = W ·m + D ·m− (m ·D ·m) =

= W ·m + D ·m m ·m︸ ︷︷ ︸
1

− (m ·D ·m) = (W + D ·m m−m m ·D) ·m

The above expression suggests that the rate ṁ of a unit vector m attached to a material

fiber can be expressed as follows:

ṁ = Wm ·m = −m ·Wm (1.31)

where:

Wm = W + D ·m m−m m ·D (1.32)

Now let us consider two arbitrary unit vectors n and m that are attached to infinitesimal

material fibers dx1 and dx2 which, in the current state, intersect at x as illustrated in Figure

1.3b. Recalling that the cosine of angle θ between dX1 and dX2 can be expressed as the dot

product between m and n we write:

m · n = cos θ ⇒ θ̇ = − 1

sin θ

∂

∂t
(m · n) (1.33)
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Now let us evaluate the derivative ∂(m ·n)/∂t, in terms of D to determine the rate of change

of the relative orientation between those arbitrary fibers.

(m · n)˙ = ṁ · n + m · ṅ (1.31)
= −m ·Wm · n + m ·Wn · n =

= m · (Wn −Wm) · n (1.32)
= m · (D · n n− n n ·D−D ·m m + m m ·D) · n =

= m ·D · n− cos θ (Dnn +Dmm) + m ·D · n =

= 2 m ·D · n− cos θ (Dnn +Dmm) (1.34)

and by substituting (1.34) to (1.33) we derive:

θ̇ =
1

sin θ

[
(Dmm +Dnn) cos θ − 2 m ·D · n

]
(1.35)

Expression (1.35) is rather difficult to interpret in this general form, so we take m = e1 and

n = e2 where cos θ = 0 and sin θ = 1 to get:

θ̇ = −2e1 ·D · e2 = −2D12 ⇒ D12 = −1

2
θ̇

Now this result suggests that the shear components of D, (Dij), express the rate of decrease

of the angle between a pair of material fibers which, in the current configuration, intersect

at x and are momentarily aligned with the directions ei and ej
6. The latter also implies

that the rate of change of the relative orientation of the material fibers which, in the current

state, are momentarily aligned with the principal directions of D, is zero.

Concluding this discussion regarding the physical interpretation of D, it is interesting to

note that even though the components of D can be though to express the rate of deformation

infinitesimally close to the point of interest, there is no strain tensor E such that Ė = D.

1.5.ii Physical Interpretation of W

Recall equations (1.31) and (1.32) which are used to define the rate of change of an

arbitrary unit vector m. In the special case where the unit vector m is along a material

fiber that is momentarily aligned with one of the principal directions7 of D, equation (1.32)

suggests that Wm = W. This implies that the spin tensor W could be thought as the

spin of the material fibers that instantaneously coincide with the principal directions of

D. According to Aravas and Aifantis [5] however, we could also derive another interesting

physical interpretation of W as follows. Since W is from definition an anti–symmetric tensor,

it can be written in the form:

W = w3 (−e1 e2 + e2 e1) + w1 (−e2 e3 + e3 e2) + w2 (−e3 e1 + e1 e3)

6And are therefore perpendicular to each other
7The principal directions of D are aligned with different material fibers at different times in general
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Figure 1.7: Orientation of a unit vector m in the current configuration

where ei are the unit vectors along the coordinate axes. Let us also express the arbitrary

unit vector m shown illustrated in Figure 1.7 as:

m = cos θ3 cosφ3 e1 + sin θ3 cosφ3 e2 + sinφ3 e3

The rate of change of θ3 can be found to be:

θ̇3 =w3 + tanφ3 (−w2 sin θ3 + w1 cos θ3) +
1

2
(D22 −D11) sin 2θ3 +D12 cos 2θ3

+ tanφ3 (−D13 sin θ3 +D23 cos θ3) (1.36)

The local mean rate of rotation about the x3–axis is defined as:

〈θ̇3〉 =
1

2π2

π/2∫
−π/2

2π∫
0

θ̇3 dθ3 dφ (1.37)

which when combined with (1.36) yields:

〈θ̇3〉 = w3 (1.38)

Similarly, considering the rotations about the axes x1 and x2, it can be shown:

〈θ̇1〉 = w1 (1.39)

〈θ̇2〉 = w2 (1.40)

Equations (1.38–1.40) demonstrate that the spin tensor W is the average spin of all directions

around a material point8.

8This physical interpretation of W is demonstrated in greater detail in the Appendix of [5]
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1.6 Stress Measures

In the vast majority of continuum mechanics applications we mainly consider two general

types of forces [10], body forces9 and surface traction. Body forces are defined as a density

of force in the sense that a body force density b acting on a volume element dV would result

in a force b dV . Surface traction on the other hand is reasonably defined as the force acting

per unit area of the body and is denoted as t. In order to completely describe the surface

traction however, it is necessary to provide the unit normal n to the surface element that t

acts on.

We consider the tetrahedron shown in Figure 1.8 in the current configuration, known as

the Cauchy tetrahedron. Let ni be the unit normals to the three faces of the tetrahedron

along the directions ei. The tetrahedron occupies volume dV , whereas the faces with normals

ni have surface areas dAi respectively. Finally, the surface area of the oblique face is dA

and its corresponding unit normal is denoted as n. Now let us express the traction forces ti

2e

3e

1e

2n

1n

3n

t

n

Figure 1.8: The traction vector t acting on an arbitrary triangular volume dV in the current
configuration

acting on surfaces dAi with respect to the coordinate system ei as:

ti = σi1 e1 + σi2 e2 + σi3 e3 = σij ej (1.41)

and try to determine t on dA. Applying Newton’s 2nd law of motion to the tetrahedron we

write:

ΣF = ρ a dV ⇒ t dA− ti dAi + ρb dV = ρ a dV ⇒ t = ti
dAi
dA︸︷︷︸
ni

+ρ(a− b)
dV

dA︸︷︷︸
1
3
h

9Indicative body force examples would be gravitational forces, electrostatic forces, magnetic forces etc.
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where h is the ‘height’ of the tetrahedron or the shortest distance between the oblique face

and the origin. In the limit case where h→ 0 the above equation can be restated as:

t = ti ni ⇒ t = n ·
σ︷ ︸︸ ︷

ei σij ej ⇒ t = n · σ (1.42)

Equation (1.42) suggests that any traction vector acting on any arbitrary infinitesimal sur-

face of the continuum body can be expressed in terms of the quantities σij, leading to the

definition of the Cauchy stress as:

σ = σijeiej (1.43)

The component σij expresses the j–th component of force per unit area in the current

configuration, on a surface element of the current configuration whose normal is currently

in the i direction. We also define the Kirchhoff stress in the current configuration from σ

as:

τ = Jσ (1.44)

The Kirchhoff stress tensor τ is widely used in numerical algorithms for metal plasticity,

since plastic deformation of common metals is isochoric. Both Cauchy and Kirchhoff stress

are defined in the current state and are therefore a measure of force per unit deformed area.

The unit normal n of a surface element in the current state however, is constantly changing

with deformation making it difficult to determine. In contrary, the unit normal N of a

surface element in the reference state is easier to determine, since the undeformed geometry

is known. This resulted to the definition of the Nominal stress from σ as:

T = J F−1 · σ (1.45)

where in this case the component Tij expresses the j–th component of force per unit area in

the reference configuration, on a surface element of the current configuration whose normal

was in the i direction in the undeformed state.

The Nominal stress is derived from the Cauchy stress by expressing the unit normal n in

terms of N which can be achieved recalling equations (1.11–1.12). Note however that from

its definition the Nominal stress is not symmetric in general since F is not symmetric10.We

also define the 1st Piola–Kirchhoff stress as the transpose of the Nominal stress as:

P = J σT · F−T = TT (1.46)

The 2nd Piola–Kirchhoff stress S is defined in the reference configuration and expressed

in terms of the Kirchhoff and Cauchy stress as:

S = F−1 · τ · F−T = J F−1 · σ · F−T (1.47)

10Symmetry of the Cauchy stress is derived as a result of the Axiom of Balance of Angular Momentum
which is discussed in the following section
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In finite deformation elastoplasticity where the deformation gradient F is regularly decom-

posed into an elastic Fe and a plastic Fp component11 we define the Mandel stress as

follows:

Σ = Ce · Se (1.48)

where Ce is the Right Cauchy–Green tensor corresponding to Fe and Se is the 2nd Piola

Kirchhoff elastic stress.

The reason behind the definition of all these stress and strain measures (see Section

1.4) lies in the primary hypothesis that the reference and current states may, in general, be

significantly different. Selecting stress and strain pairs for engineering applications however

is not an arbitrary process. Stresses and strains are to be chosen in pairs that are work–

conjugate, in the sense that the product of stress and strain rate must express a form of

virtual work. Table 1.2 summarizes some work–conjugate stress–strain rate pairs that are

commonly encountered in bibliography.

Table 1.2: Work Rate Conjugate Stress–Strain rate pairs

Stress Strain Rate Work Rate

Rate of work per unit deformed volume σ D σijDij

Rate of work per unit undeformed volume

τ D τijDij

T Ḟ TijḞij

P ḞT PijḞji

S ĖG SijĖ
G
ij

Σ ĖG ΣijĖ
G
ij

- B12 ĖB BijĖ
B
ij

1.7 Axioms of Continuum Mechanics

1.7.i Conservation of Mass

The total mass of any subregion dV within a deformable body must be conserved. This

statement constitutes the first axiom of continuum mechanics and can be expressed in inte-

gral form as follows:

ṁ = 0⇒ d

dt

∫
V

ρdV = 0 ∀ V ⇒
∫
V

ρdV =

∫
V0

ρ0dV0 ∀ V ⇒
∫
V

ρdV =

∫
V0

ρ0

J
dV ∀ V ⇒

11The multiplicative decomposition of the deformation gradient in crystal plasticity is discussed in further
detail in Section 3.1.i

12B stands for the Biot or Jaumann stress defined as B = symm
[
RT ·P

]
and has not a particular physical

interpretation. Is is work–conjugate to the Biot strain defined in Section 1.4
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∫
V

(
ρ− ρ0

J

)
dV = 0 ∀ V ⇒ ρ J = ρ0 (1.49)

where J = detF. This result suggests that the mass density of the continuum body is

constrained, in the sense that the product ρ J must be constant at all times within the

continuum during deformation. In addition, we can take the rate form of (1.49) to derive:

d

dt
(ρ J) =

d

dt
(ρ0)⇒ ρ̇ J + ρ J̇ = 0 (1.50)

But notice that

J̇ = J Lkk = J Dkk = J υk,k = J∇ · υ (1.51)

Thus, combining (1.50) and (1.51) we end up with:

ρ̇+ ρ∇ · υ = 0 (1.52)

which defines the Continuity Equation.

1.7.ii Balance of Linear Momentum

The linear momentum l of a continuum deformable body that occupies volume V is

defined as:

l =

∫
V

ρυdV (1.53)

and the rate of linear momentum, denoted as l̇, can be directly derived from (1.53) using

Reynold’s transport theorem:

l̇ =

∫
V

ρ υ̇dV =

∫
V

ρ adV (1.54)

The total forces ΣF acting on an arbitrary subregion V of the continuum body is generally

expressed as the sum of body forces and surface loads as:

ΣF =

∫
V

ρbdV +

∫
S

t dS (1.55)

The Axiom of Balance of Linear Momentum demands that the total forces acting on any

subregion V of the body must be equal with the rate of linear momentum of that subregion.

The latter is expressed as:

ΣF = l̇ ∀ V (1.56)

Substituting (1.54) and (1.55) to (1.56) and performing the algebraic calculations leads to

the following equation: ∫
V

(σ ·∇ + ρb− ρ a) dV ∀ V ⇒
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Since the above equation must hold for any subregion V within the continuum body, we can

take advantage of the localization theorem to derive:

σ ·∇ + ρb = ρ a (1.57)

Expression (1.57) is referred to as the equilibrium equations which along with the kinematics

and constitutive equations form the Boundary Value Problem (BVP).

1.7.iii Balance of Angular Momentum

The angular momentum H of a continuum deformable body that occupies volume V is

defined as:

H =

∫
V

ρ r× υ dV (1.58)

where r stands for the position vector of the material point. Again, using Reynold’s transport

theorem, the rate of angular momentum is expressed as:

Ḣ =

∫
V

ρ (ṙ× υ + r× υ̇) dV =

∫
V

ρ (υ × υ + r× a) dV =

∫
V

ρ r× a dV (1.59)

The sum of moments acting in an arbitrary subregion V of the continuum body is generally

expressed as:

ΣM =

∫
V

ρ r× b dV +

∫
S

r× t dS (1.60)

The principle of conservation of angular momentum demands that the sum of moments

in any subregion within the deformable continuum body must equal the rate of angular

momentum of that subregion, which is expressed as

Ḣ = ΣM ∀ V (1.61)

Substituting (1.59) and (1.60) to (1.61) and performing the algebraic calculations13 eventu-

ally yields:

eijk σjk = 0 (1.62)

Evaluating the above expression14 for i = 1, 2, 3 leads to:

σ = σT (1.63)

suggesting that the Cauchy stress tensor σ is symmetric.

13The divergence theorem is also required to convert surface integrals to volume integrals
14Note that expression (1.62) is essentially 3 equations since i is a free index



20 Theory

1.7.iv Conservation of Energy

Postulating that the continuum body undergoes only mechanical and thermal phenom-

ena15, it’s total energy can be expressed as the sum of it’s kinetic and internal energies as

follows:

E = K + U =

∫
V

1

2
ρυ · υ dV +

∫
V

ρ u dV (1.64)

where υ stands for the velocity field of the continuum body and u represents the body’s

internal energy per unit mass. Now the supply of power to the body can be expressed as the

sum of a thermal generation component, a surface heat flux component and a component

due to external forces as:

I = R +Q+ P =

∫
V

ρ r dV −
∫
S

q · n dS +

∫
V

ρb · υ dV +

∫
S

t · υ dS (1.65)

where r expresses the generated heat per unit mass and q is the thermal power provided per

unit of surface. The conservation of energy axiom demands that the supply of power to the

body must equal the rate of total energy in the body, which can be expressed as:

I = Ė ∀ V (1.66)

Substituting Ė16 and I from (1.64–1.65) and performing the algebraic calculations17 yields:

ρ u̇ = σ : D + ρ r −∇ · q (1.67)

1.7.v Entropy

The entropy S of a subregion V in the continuum body is introduced as:

S =

∫
V

ρ s dV (1.68)

where s is the entropy per unit mass. We next define the entropy input rate Is in a subregion

V , as the sum of two main components; a heat generation component and a surface heat

flux component.

Is =

∫
V

ρ r

θ
dV −

∫
S

1

θ
q · n dS (1.69)

where θ is the absolute temperature. The 2nd law of thermodynamics requires that the rate

of entropy must always be greater or equal18 to the entropy input rate in any subregion V

15This assumption can be easily relaxed by assuming other phenomena (i.e. electrostatic, magnetic etc.)
as well. In this subsection we only assume mechanical and thermal phenomena in the continuum for the
sake of simplicity

16Reynold’s transport theorem is required to evaluate Ė from E
17The divergence theorem is also required to convert surface integrals to volume integrals
18Equality is satisfied only in reversible processes
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of the continuum body. In math form:

Ṡ ≥ Is ∀ V (1.70)

This inequality can be restated as:

ṡ ≥ r

θ
− 1

ρ
∇ ·

(q

θ

)
(1.71)

by substituting expressions (1.68) and (1.69). The above constraint is also referred to as the

Clausius–Duhem Inequality. We can also take advantage of the energy balance in (1.67)

to derive:

σ : D− 1

θ
q ·∇θ − ρ (ψ̇ + sθ̇) ≥ 0 (1.72)

where ψ is the Helmholtz free energy defined as ψ = u−s θ. The Clausius–Duhem inequality

is of major importance in the development of a specific constitutive model, by providing

restrictions to the constitutive functions being used as well as to their dependent variables.

1.8 Objectivity and Rates

Consider the motion x = x(X, t) with a deformation gradient F(X, t) and superpose a

rigid body motion so that:

x(X, t) = Q(t) · x(X, t) + c(t)

where Q(t) is a proper orthogonal tensor with Q(0) = δ and the translation c(t) is such

that c(0) = 0. The two motions x and x are schematically illustrated in Figure 1.9. The

deformation gradient F corresponding to the new motion x can be readily expressed by

differentiating the above equation as:

F(X, t) = Q(t) · F(X, t)

We introduce the concept of Objectivity19 in the sense that the qualitative and quanti-

tative characteristics of an Objective quantity are unaffected when the quantity is observed

under a variety of conditions. For instance, material properties of a continuum body are

invariant from the observer’s motion and are therefore objective quantities.

More precisely, assuming that the two motions x and x are recorded by two different

observers we can define objective tensors in the following sense:

1. Lagrangian tensors defined in B0 are objective if only they remains unaffected by the

observer’s motion in the sense:

a(X, t) = a(X, t)

19Also referred to as the concept of Frame Invariance
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F

= ⋅F Q F

Q
0S

dX
0V

dx

tV

tV

tS

tS

dx

Figure 1.9: Reference state and the deformed states before and after superposing a rigid body motion

A(X, t) = A(X, t)

2. Eulerian tensors defined in Bt are objective if only they transform according to:

a(x, t) = Q(t) · a(X, t)

A(x, t) = Q(t) ·A(X, t) ·QT (t)

3. Two–point second order tensors are objective if only they transform according to:

A = Q(t) ·A or A = A ·QT (t)

Using these definitions it is easy to show that the deformation gradient F is two-point objec-

tive, Cauchy σ and Kirchhoff τ stresses are both Eulerian objective, while the Deformation

rate D is also Eulerian objective. The Nominal stress T is two point objective, whereas S

and Σ are Lagrangian objective. Furthermore, if a 2nd order tensor A is Lagrangian objec-

tive then can be proved that the rate Ȧ is also Lagrangian objective. In contrast, if A is

an Eulerian objective tensor, the rate Ȧ is not an objective tensor20. However, the rates of

Eulerian objective tensors like the Cauchy and Kirchhoff stresses are often required in con-

tinuum mechanics, especially in the constitutive laws accounting for finite deformations and

rotations. The latter resulted into the definition of the so–called Co-rotational Eulerian

Objective rates, the most popular of which [17] are presented in Table 1.3.

20For instance, the rate of Cauchy stress σ̇ is not objective, even though the Cauchy stress itself is Eulerian
objective
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Table 1.3: Objective rates of an Eulerian 2nd order tensor A

Rate Definition

Truesdell
◦
A = Ȧ− L ·A−A · LT + tr[L] A

Oldroyd
�
A = Ȧ− L ·A−A · LT

Cotter–Rivlin
∗
A = Ȧ + LT ·A + A · L

Green–Naghdi
4
A = Ȧ−

(
Ṙ ·RT

)
A + A ·

(
Ṙ ·RT

)
Jaumann

∇
A = Ȧ−W ·A + A ·W

The axiom of objectivity demands that the stress and strain rates being used in a con-

stitutive law are such that the constitutive model is objective. Therefore, the definition of

a constitutive law21 in terms of the Cauchy stress requires the implementation of one of the

objective rates defined in Table 1.3, since σ is Eulerian objective. The Jaumann rate is the

most commonly encountered objective stress rate in the constitutive laws of solids, mainly

because it is the easiest to implement in a computational model. In the context of the rate–

independent constitutive model for crystal plasticity and its computational implementation,

which are the main focus of this thesis, we implement the Jaumann rate of Kirchhoff stress
∇
τ in the constitutive stress rate–strain rate law in section 3.6. The Jaumann rate of Cauchy

stress
∇
σ is also implemented in the Finite Element Equations to evaluate the Elemental

Stiffness matrix as presented in Section 6.2.

21It is implied that the constitutive law is introduced in rate form
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Chapter 2

Crystallography

2.1 The Crystal Lattice

The vast majority of metals form crystalline solids when they solidify from the liquid

state1. Crystalline solids, as opposed to their amorphous counterparts (i.e. glass) and fluids,

exhibit a periodic arrangement of atoms in space. This periodicity enables us to consider the

solid as a spatial superposition of the smallest possible repeating unit, which we call the unit

cell. The periodical arrangement of unit cells in the three dimensional space subsequently

defines the crystal lattice and the position vector r of any arbitrary point within the lattice

is:

r = u a + v b + w c (2.1)

,where a,b, c are the crystal’s reference axes or crystal axes, whom length and orientation

depends on the crystal under consideration. The consideration of all possible angle and length

combinations between the crystal axes leads to the definition of the 14 Bravais Lattices

illustrated in Figure 2.1 that follows. Every Bravais lattice is assigned with a crystal axes

system to enable the description of any position vector as equation (2.1) suggests. The latter

defines a total of 7 discrete crystal axes systems that form the basis for the classification of

each crystal to its corresponding crystal system. The 7 crystal axes systems are presented

in Table 2.1 below, along with their corresponding relationships for their axes lengths and

angles.

In the context of crystallography, we often refer to crystallographic directions and planes

to facilitate the study of crystals and their properties. We therefore need to find a convenient

way to describe them with respect to the appropriate crystal axes system. As far as crystal

1This section is mainly based on Chapter 2 of Book [27]
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Figure 2.1: The Bravais Lattices

directions are concerned, we implement the notation [uvw] to refer to the crystal direction

r = ua+vb+wc. This notation is essentially a compact form of expression (2.1), where u, v, w

are the smallest possible integers that can describe the desired direction. Negative vector

components are indicated with a bar above the number2 and crystallographic directions that

belong to the same direction families are referred to as < uvw > for the sake of brevity3.

Crystallographic planes on the other hand are described using Miller indices. Miler

indices are able to describe the orientation of a desired plane irrespectively of its distance

from the point of origin. Hence, parallel planes are denoted with the same Miller indices

whom in order to find we have to do the following:

• Find the points of intersection between the desired plane and the crystal axes

• Inverse these numbers

2i.e. the crystal direction r̂ = −a + b− 3c should be denoted as [1̄13̄]
3In the special case of cubic crystals, the directions aligned with the diagonals of the cube are thought

to form a direction family which is denoted as < 111 >
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• Reduce the triad to the smallest possible integers h, k, l

• The Miller indices are k, k, l respectively

The Miller indices h, k, l are then enclosed in parenthesis and the corresponding plane is

referred to as (hkl). Note however, that the notation (hkl) representing a plane Π is not

exclusive, since all planes parallel to Π are defined using the same Miller indices. Particular

planes, along which the atom arrangement is identical, are assumed to be Equivalent and

are denoted all together using curly brackets as {hkl}.

Table 2.1: The 7 Crystal Axes Systems

Crystal System Axes and Angles4 Examples

Triclinic
a 6= b 6= c

K2CrO7
α̂ 6= β̂ 6= γ̂ 6= 90

Monoclinic
a 6= b 6= c

β − S,CaSO4
α̂ = γ̂ = 90 6= β̂

Orthorhombic
a 6= b 6= c

α− S, Fe3C
α̂ = β̂ = γ̂ = 90

Tetragonal
a = b 6= c

T iO2
α̂ = β̂ = γ̂ = 90

Cubic
a = b = c

Fe,Cu,Ni,Au
α̂ = β̂ = γ̂ = 90

Hexagonal 5 a1 = a2 = a3 6= c
Zn,Mg

α̂ = β̂ = 90, γ̂ = 120

Rhombohedral
a = b = c

Sb,Bi
α̂ = β̂ = γ̂ 6= 90

Now for simplicity purposes let us visualize atoms in the crystal lattice of metals, as rigid

and equally sized spheres. Individual crystal structures can now be interpreted as different

ways that these spheres can be arranged to fill the space. According to Goldschmidt and

Laves, filling of space is subjected to 3 basic principles:

• Atoms in crystal structures are packed in such a way so as to efficiently fill the space

(close packing)

• The spaces occupied by atoms are such to produce the maximum possible symmetry

in the structure

4Note that a, b, c represent the crystal axes while α̂, β̂, γ̂ the corresponding angles between them.
5The Hexagonal crystal system consists of three equal axes that lie on the same plane along with a fourth

axis c which is perpendicular to that plane
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• Atoms are packed in such a way, so as to maximize their coordination number (CN)

(i.e. maximum # of neighbours)

These principles suggest that atoms are arranged in such a way, that dense structures are

formed. The vast majority of metals crystallize into one the following dense cubic crystal

structures:

• Body Centered Cubic (BCC)

• Face Centered Cubic (FCC)

• Hexagonal Close Packed (HCP)

The unit cells of the BCC and FCC structures are illustrated in Figure 2.2, where the spheres

represent atoms as aforementioned and the size of the spheres is proportional to the distances

between them.

Figure 2.2: The arrangement of atoms in the two most popular crystal structures of metals, BCC
(left) and FCC (right)

2.2 Slip Systems, Dense Planes and Directions

Let us define the dense planes of a crystal structure, as the ones at which the denser

possible arrangement of atoms (spheres) is achieved. Subsequently, we also define the direc-

tions along which the atoms are sorted in the denser possible manner as dense directions.

In most dense crystal structures, atoms osculate along dense planes and directions. It should

be noted however, that dense planes and directions are typical of the specific structure since

they depend on the exact atom arrangement. For instance, planes of the {111} plane family

are the dense planes and crystallographic directions < 110 > are the dense directions of the

FCC structure. On the other hand, the dense planes of the BCC structure are the {110}
whereas their dense directions are the < 111 >.
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The combination of dense planes and directions in the sense {abc} < hkl > defines the

structure’s slip systems. Slip systems are greatly important to the plasticity of metal single

crystals, since atomic slip can only occur along dense directions located on dense planes.

The latter also justifies the fact that dense directions are also commonly referred to as slip

directions, whereas dense planes as slip planes. FCC metals contain 12 {111} < 110 > slip

systems whereas metals of the BCC structure only 5 systems of the family {110} < 111 >.

The relative position of dense planes and directions forming the slip systems of BCC and

FCC crystals are schematically illustrated in Figures 2.3a and 2.3b respectively.

<111>

{110}

(a)

<110>

{111}

(b)

Figure 2.3: The Slip systems of a BCC (a) and a FCC (b) crystal

FCC crystals present the greatest challenge in terms of developing a constitutive model

that accounts for their inelastic behavior, since they possess the greatest number of avail-

able slip systems. From this point on, we focus our attention entirely on FCC crystals.

Table 2.2 presents the 12 slip systems of FCC crystals denoting the slip (dense) planes and

the corresponding slip direction.

Table 2.2: The 12 Slip Systems of FCC Metals

Slip System Slip Plane Slip Direction

1 [011̄]

2 (111) [1̄01]

3 [11̄0]

4 [01̄1]

5 (11̄1̄) [1̄01̄]

6 [110]

Continues on next page
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Table 2.2 – Continued

Slip System Slip Plane Slip Direction

7 [011]

8 (1̄11̄) [101̄]

9 [1̄1̄0]

10 [01̄1̄]

11 (1̄1̄1) [101]

12 [1̄10]

Before we conclude the present discussion on the Slip systems of crystal structures it is

necessary to address the concept of optimally oriented systems and the effect of slip system

orientation to the deformation of a single crystal. For this reason, let us consider the case

of a uniaxial tension experiment of a single crystal where the stress tensor has the following

simple form:

σ = σ p p (2.2)

where p stands for the unit vector along the loading direction. Taking into consideration

that plastic deformation can only occur on a given slip system, we consider a slip plane with

unit normal n, along which lies the slip direction defined by the unit vector s. The resolved

shear stress on that system, given equation (2.2), can be readily expressed as:

τ = s · σ · n⇒ τ = σ (s · p) (p · n) (2.3)

We next define angle φ as the angle between p and n and also angle λ as the one between

s and p. Using these definitions and assuming that vectors p , s ,n are introduced as unit

vectors we write:

s · p = cosλ

p · n = cosφ

And the resolved shear stress on the slip system (s,n) in (2.3) can be restated in the form:

τ = σ cosφ cosλ (2.4)

Figure 2.4 constitutes a schematic illustration of the aforementioned uniaxial tension setting,

indicating the directions p, s,n and angles φ, λ. The cosine product cosφ cosλ defines the

Schmid factor, which is essentially a measure of optimal orientation for a given slip system.

For a given loading direction, slip systems with the greatest Schmid factor, are subjected to

greater τ for the same applied macroscopic σ. A system can then be declared (in terms of the

Schmid factor) as optimally oriented for plastic slip, if the Schmid factor of that system is

the greatest. In a uniaxial tension experiment at which only one system is initially optimally

oriented, the crystal is said to embody an easy glide orientation. Once the first system is

active, the crystal rotates until the slip direction is aligned with the loading axis and the
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corresponding Schmid factor becomes zero. In reality however, crystal rotation eventually

triggers the activation of a second slip system, which then changes the rotation direction.

The concept of crystal rotation with plastic deformation is addressed in further detail in

Section 3.2.i.

p

s

n

λ
φ

(3)n

(2)n

(1)n

σ
n τ

φ λ s

Figure 2.4: A single crystal specimen subjected to uniaxial tension, highlighting the slip and normal
unit vectors of an arbitrary slip system

Evidently, description and understanding of the basic concepts of crystals (i.e. slip sys-

tems, dense planes and directions etc.) involves the process of visualizing both the crystal

structure and the desired directions in the three dimensional space, which is rather difficult

and not always straightforward. We therefore have to find a simple and convenient method

to refer to such concepts. The method of Stereographic Projection is amongst the most

popular methods used for that purpose and is presented in the following section.

2.3 Stereographic Projection

Stereographic projection is a graphical method that is used to map geometric information

from the 3-dimensional space into a plane. This method can be used to project crystallo-

graphic directions into a plane, facilitating the supervision of crystal orientation. However,

it should be noted that this projection is general and it’s applications are not limited to

crystallography.

The projection is defined on the entire sphere apart from the projection point. The
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projection is also smooth, bijective and conformal in the sense that angles are preserved.

Lengths and areas however are not preserved, consisting it a non–isometric projection. The

stereographic projection of any crystal direction can be obtained by following the steps

presented in Table 2.3 and schematically illustrated in Figure 2.5.

( )3n

( )1n

P

Q

ρ

R

( )2n

m

O

Figure 2.5: A schematic representation of stereographic projection

Table 2.3: Steps to obtain the stereographic projection ρ of an arbitrary crystal direction m

1. The cubic crystal is centered inside an imaginary sphere with radius |r| = 1
and center O

2. We define a coordinate system n(i) originating from the center of the sphere

3. The crystal direction to be projected m, intersects the sphere at a point P

4. The horizontal axis also intersects the sphere at a different point Q

5. We draw the line PQ

6. The line PQ intersects the meridian plane at a new point R

7. The vector (OR) = ρ is the stereographic projection of m

From a mathematical point of view it can be proven that the transformation between

a general vector m and its stereographic projection ρ is the following:

ρ =
m− (m · n(3))n(3)

1 + m · n(3)
(2.5a)
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m =
2ρ+ (1− ρ · ρ)n(3)

1 + ρ · ρ
(2.5b)

Equation (2.5a) can also be written in the following form:

ρ = ρ1n
(1) + ρ2n

(2) = |ρ|
(
cos Θ n(1) + sin Θ n(2)

)
(2.6)

In crystal plasticity, we take advantage of the projection mainly to monitor the trans-

formations6 of crystal directions and vectors, as the crystal undergoes plastic deformation.

Initially, we choose three specific crystal directions to be aligned with the crystal base n(i)

and we then calculate the stereographic projection of the directions that present the greatest

interest to our study. Plotting the evolution of the calculated projections in a polar domain,

defines the inverse pole figure diagram7. However, the projection can also be used to

plot different crystal directions as points within a circle, defining the pole figure diagram.

An example of a pole figure diagram is presented in Figure 2.6 displaying the projections of

some commonly encountered crystal directions.
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Figure 2.6: A pole figure diagram showing the stereographic projections of several crystal directions

As shown in the pole figure diagram, the total projection region is divided into several

curvilinear triangles. We focus on the first quartile on which lie the projections of all crystal

directions with positive indices. The first quartile consists of 6 curvilinear triangles in total,

which are presented in greater detail in Figure 2.7 below. The 6 curvilinear triangles are

equivalent, since they only differ in terms of the order of indices of the crystal direction being

6i.e. rotation
7The inverse pole figure diagram can be used to monitor the rotation of the imposed loading direction

during the uniaxial tension of a single crystal
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Crystal Direction
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Figure 2.7: The stereographic projection region for crystal directions with positive indices [a b c]
(left). The region is divided into 6 curvilinear triangles. The standard triangle on which lie the
stereographic projection of all crystal directions with indices in a descending order (right)

projected. The standard triangle presented in Figure 2.7 (right), is the region of the pole

figure diagram on which lie the the stereographic projections of all crystal directions with

indices in a descending order. From now on, we will present the pole figure and inverse pole

figure diagrams using only the standard triangle, since we can easily manipulate8 any crystal

direction so that its projection lies in the standard triangle.

2.3.i Cartesian and Spherical Coordinates

The process of determining the crystal direction that corresponds to a specific plot point in

a pole figure diagram, as well as the calculation of the polar components for the projection

of a given direction are just two examples that require to switch between the cartesian

and spherical coordinate systems. Apart from crystallography itself, the aforementioned

procedures are frequently required in the calculations within a crystal plasticity model. In

this subsection, we present the relationships defining a point’s spherical coordinates given

their values in the cartesian system and vice–versa.

Figure 2.8 illustrates the description of a point P using the cartesian and spherical coor-

dinate systems respectively. The relationships defining the cartesian coordinates (x1, x2, x2)

of a point P given (r, θ, φ) are [8]:

x1 = r sin θ cosφ (2.7a)

x2 = r sin θ sinφ (2.7b)

x3 = r cos θ (2.7c)

8Changing the order of indices. This can be achieved by multiplying the crystal direction with a properly
defined matrix
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Figure 2.8: Cartesian (x1, x2, x3) and spherical (r, θ, φ) coordinates of a point P

The relationships to define the spherical coordinates (r, θ, φ) given (x1, x2, x2) are [8]:

r =
√
x2

1 + x2
2 + x2

3 (2.8a)

θ = cos−1 x3√
x2

1 + x2
2 + x2

3

(2.8b)

φ = tan−1 x2

x1

(2.8c)

Finally the unit vectors of the spherical base can be expressed in terms of the cartesian base

as [8]:

er(θ, φ) = sin θ cosφ e1 + sin θ sinφ e2 + cos θ e3 (2.9a)

eθ(θ, φ) = cos θ cosφ e1 + cos θ sinφ e2 − sin θ e3 (2.9b)

eφ(θ, φ) = er × eθ = − sinφ e1 + cosφ e2 (2.9c)

Inverting the above equations leads to the corresponding expressions defining the cartesian

base from the spherical as [8]:

e1 = sin θ cosφ er + cos θ cosφ eθ − sinφ eφ (2.10a)

e2 = sin θ sinφ er + cos θ sinφ eθ + cos θ e3 (2.10b)

e3 = cos θ er − sin θ eθ (2.10c)
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Chapter 3

Constitutive Modelling

Constitutive laws for finite deformation isothermal elastoplasticity are generally expressed

in rate form as
∗
σ = F (D,I ), where

∗
σ represents an objective1 stress rate, D is the

deformation rate defined in Section 1.5 and I is an abbreviation for the internal variables

of the model under consideration. In the case of metal plasticity, a concave yield surface2 is

also introduced to distinguish elastic from plastic material response, in the sense that stress

states located ‘inside’ the yield surface (Φ(σ) < 0) indicate elastic material response whereas

stress states directly on the yield surface (Φ(σ) = 0) result into elastoplastic behavior. The

constitutive model may also require a flow rule, defining the evolution of the yield surface

as a function of the total accumulated plastic strain.

While the concept of crystal elastoplasticity is based on the same principles, the inherent

deformation anisotropy of single crystals, introduces additional complexities to the constitu-

tive model. The ‘physical’ description of crystal plasticity leads to the definition of a unique

form for the plastic part of the velocity gradient tensor Lp. Furthermore, in contrast to poly-

crystalline metal plasticity, elastic–plastic behavior of single crystals cannot be determined

using a unique yield criterion. As discussed in Chapter 2, FCC crystals which are the main

focus of this thesis, comprise of 12 slip systems on which plastic slip is accomplished resulting

to the definition of 12 distinct yield functions to determine the behavior of the corresponding

system. Finally, a flow rule must be introduced based on the ‘physics’ of dislocation glide and

their interactions while simultaneously being in agreement with experimental observations.

1A more detailed reference on co–rotational rates can be found in Section 1.8
2A scalar function of the stress components σij of the form Φ(σij)



38 Constitutive Modelling

3.1 Kinematics of Crystal Deformation

In the vast majority of metals, plastic deformation is mainly3 produced by dislocation

glide. Dislocations are linear type defects, existing in thermodynamic equilibrium within

the crystal lattices of all metals. The macroscopic non–reversible plastic deformation is

attributed to the superposition of numerous dislocation movements occurring on the slip

systems of each grain within the metal’s microstructure. The fact that dislocations are only

able to glide along preferable directions indicates that the deformation produced as result of

a single plastic slip is highly anisotropic.

Isotropic plasticity is only present in metals whose microstructure consists of numerous

randomly sized and oriented grains. The inherent ‘variety’ of grain orientations, essentially

eliminates the anisotropy induced from plastic slip on each grain, and macroscopically renders

an isotropic–like behavior.

A single crystal however, is a monocrystalline solid whose crystal lattice is continuous

and unbroken forming a single grain and therefore a unique crystal lattice orientation. As

a result, the microscopic anisotropy associated with dislocation glide, is propagated in the

macroscale in the form of anisotropic plasticity. The finite number of dislocation glide

possibilities4 suggests that macroscopic plasticity must be microscopically interpreted as a

superposition of discrete dislocation glides upon the available slip systems.

The plastic deformation of metal single crystals can be thought to be similar with that of

a simple shear motion, since dislocations can only glide upon the slip systems of each crystal

structure, and thus along slip directions, and on slip planes. More precisely, at any given

time that a single crystal deforms plastically, dislocations glide on multiple (in general) slip

systems simultaneously, which we call active systems. The physically based assumption,

that crystal plasticity is the result of simultaneous simple shears5 along the crystal’s active

systems allows us to express the velocity gradient associated with plastic slip as (Aravas [5]):

Lp
i =

Nas∑
α=1

γ̇α(t)sα0 mα
0 (3.1)

where sα0 ,m
α
0 are the unit vectors along the slip and normal directions of slip system α

respectively, defined in the reference configuration B0. The summation in 3.1 is carried over

the active systems at the time of calculation (Nas)6. Now recalling (eq.1.28–1.29) that the

deformation rate D and spin tensor W are defined as the symmetric and skew parts of L

respectively, we can also define:

Dp
i = symm(Lp

i ) =
Nas∑
α=1

γ̇α(t) symm [sα0 mα
0 ]⇒ Dp

i =
Nas∑
α=1

γα(t) Mα
0 (3.2)

3Plasticity in metals can also be attributed to mechanisms such as twinning and martensitic transforma-
tion [27]

4along the crystal’s dense directions
5A concise description of the simple shear motion can be found in Appendix A of this thesis
6Number of Active Systems
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Wp
i = skew(Lp

i ) =
Nas∑
α=1

γ̇α(t) skew [sα0 mα
0 ]⇒Wp

i =
Nas∑
α=1

γα(t) Ωα
0 (3.3)

3.1.i Decomposition of F for Single Crystal Plasticity

Metal single crystals, just like isotropic metals, interpret the total deformation resulting

from the application of external forces into a purely elastic (reversible) and into a purely

plastic (irreversible) part. The theory of finite inelastic deformations is fundamentally based

in the assumption that at a specific length scale of observation exists an intermediate con-

figuration Bi, free of internal and external forces7. Such a configuration, is in most cases

impossible to reproduce in the real world, but it is vital from the perspective of continuum

mechanics to formulate a comprehensive description of inelastic deformations. The inter-

mediate configuration in finite deformation elastoplasticity is obtained from the deformed

configuration by elastic destressing to zero stress. In this sense, Bi is obtained from B0

by enforcing an irreversible plastic deformation and differs from Bt by a reversible elastic

deformation.

The aforementioned definition however, is insufficient to determine a unique intermediate

configuration, since the superposition of arbitrary rigid translations and rotations is always

possible without stressing the body. In the context of crystal plasticity, the intermediate

configuration is defined as the imaginary8 state where the embodiment of plastic slip does

not alter the initially defined crystal orientation with respect to a global coordinate system.

In this case, the intermediate configuration is said ro be isoclinic.

Ignoring the inherent discrete dislocation substructure [37], we assume that plastic defor-

mation occurs in the form of smooth shearing on slip planes and slip directions to enable the

formulation of a continuum plasticity model (Hill [28]). A continuum approach combined

with the proper definition of reference B0, isoclinic Bi and deformed Bt configurations

leads to the multiplicative decomposition of the deformation gradient F as follows:

F = Fe · Fp (3.4)

where:

F : B0 →Bt

Fp : B0 →Bi

Fe : Bi →Bt

7Such a configuration may or may not be able to exist in some length scales. Consider for instance the case
of inelastic deformation of a heterogenous deformable body, which is bound to develop interfacial residual
stresses. In the unloaded state, such a body will simultaneously be globally relaxed and microscopically
stressed obstructing the definition of the intermediate configuration. In such cases, the body must be
divided into small pieces, in order to relieve such internal stress fields, suggesting that a ‘change’ in length
scale is necessary

8In most cases, the intermediate state cannot be physically achieved and thus constitutes an imaginary
mathematical concept
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Figure 3.1 illustrates a schematic representation of the multiplicative decomposition of the

total deformation gradient, while displaying the corresponding reference B0, isoclinic Bi

and deformed Bt states.
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e p= ⋅F F F eF

pF

am

as

αγ

am

as

0

0 0

0

Figure 3.1: The multiplicative decomposition of the deformation gradient

The slip direction vector sα0 is embedded in the lattice and transforms during deformation

according to sα = Fe · sα0 . In contrast, the unit normal to the slip plane mα
0 transforms as

mα = mα
0 · Fe−1, so that it constantly remains perpendicular to the slip plane.

As aforementioned, the definition of the isoclinic configuration is fundamentally based

on the existence of a ‘material’ coordinate system that will remain unaffected by Fp. Apart

from the defining the system itself however, it is also important to express its components

with respect to a global reference system9. A concise methodology to define such a ‘material’

system, is presented in the section that follows.

3.2 Global versus Crystal Axes

A relatively easy way to define the crystal’s relative orientation in the case where a

unique loading direction makes sense10 is by defining two sets of coordinate systems, namely

a crystal system and a global system. Let n(i) be the unit vectors of the crystal base

and ei the unit vectors of the global Cartesian coordinate system. In order to position the

crystal in space we assume that two arbitrary unit vectors p and s are known with respect to

9This is extremely useful for the computational implementation of the constitutive model which we address
in Chapters 5 and 6

10i.e. The case of a uniaxial tension experiment
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both the crystal and the global axes. Two such vectors could be the loading direction p and

the slip direction s, although other choices are also possible since the following methodology

is general. Hence:

(1)n

(2)n

(3)n

1e

2e

3e

p

s

Figure 3.2: The local crystal system n(i) and the global coordinate system ei

p = p(1)n(1) + p(2)n(2) + p(3)n(3) = p1e1 + p2e2 + p3e3 (3.5)

s = s(1)n(1) + s(2)n(2) + s(3)n(3) = s1e1 + s2e2 + s3e3 (3.6)

These load and slip vectors, define a plane. A third vector m can be introduced, normal to

that plane as:

m ≡ q× p =

∣∣∣∣∣∣∣
n1 n2 n2

s(1) s(2) s(3)

p(1) p(2) p(3)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
e1 e2 e3

s1 s2 s3

p1 p2 p3

∣∣∣∣∣∣∣⇒

m = m(1)n(1) +m(2)n(2) +m(3)n(3) = m1e1 +m2e2 +m3e3 (3.7)

Since all components p(i), pi, s
(i), si are known, we can also calculate the components m(i),mi

as:

m(1) = s(2)p(3) − p(2)s(3) m1 = s2p3 − p2s3

m(2) = −s(1)p(3) + p(1)s(3) m2 = −s1p3 + p1s3

m(3) = s(1)p(2) − p(1)s(2) m3 = s1p2 − p1s2

In order to derive an analytical expression for the transformation between the crystal base

vectors n(i) defining the crystal coordinate system and the global system’s base vectors ei,
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we write equations (3.5), (3.6), and (3.7) in matrix form as: p(1) p(2) p(3)

s(1) s(2) s(3)

m(1) m(2) m(3)


︸ ︷︷ ︸

[A]

·

 n(1)

n(2)

n(3)

 =

 p1 p2 p3

s1 s2 s3

m1 m2 m3


︸ ︷︷ ︸

[B]

·

 e1

e2

e3

⇒

 n(1)

n(2)

n(3)

 = [A]−1 · [B]︸ ︷︷ ︸
[Q]

·

 e1

e2

e3

 = [Q] ·

 e1

e2

e3

 ≡
 n

(1)
1 n

(1)
2 n

(1)
3

n
(2)
1 n

(2)
2 n

(2)
3

n
(3)
1 n

(3)
2 n

(3)
3

 ·
 e1

e2

e3


and in a more compact form:

n(i) = Qijej = Q · ej (3.8)

where:

[Q] = [A]−1·[B] , [Q]−1 = [Q]T , Q = Qijn
(i)n(j) = Qijeiej

and matrix [A] is defined as the the matrix of the 3 vector components with respect to the

crystal system, whereas matrix [B] contains the components of the same vectors with respect

to the global system.

3.2.i Rotation of a unit vector during plastic deformation

Let us consider a unit vector p defined in the reference configuration B0 of a continuum

body, that is known with respect to the crystal system and essentially represents a crystal

direction11. Assuming that the body experiences plasticity Fp, we need to determine the

current position of the crystal direction p′ in terms of Fp. Initially, we assume that the

crystal direction p is expressed:

p = pi n
(i) (3.9)

The deformation gradient associated with the plastic deformation is expressed in terms of

the global system as:

Fp = F p
ij ei ej (3.10)

Using the transformation defined in (3.8) we can also express Fp with respect to the crystal

axes as:

Fp = F̂ p
ij n(i) n(j) (3.11)

where

[F̂ p] = [Q][F p][Q]T (3.12)

11The vector p under consideration is not a material fiber itself. It just happens to be aligned with a
specific material fiber that would be different in general, after deformation
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Now recall that any vector can be ‘repositioned’ from the reference to the current configu-

ration using the definition of the deformation gradient. In this case, we use Fp so:

p′ = Fp · p (3.13)

Combining equations (3.11–3.13) we derive:

{p′} = [Q][F p][Q]T {p} (3.14)

Equation (3.14) defines the current position of the vector that was initially p. Once we

normalize p′, we can use the stereographic projection (see Section 2.3) to plot the initial

and current position as points in an inverse pole figure diagram.

3.3 The Elasticity Matrix

The constitutive relationship for the elastic behavior of an FCC metal single crystal is

taken to be that of an linearly elastic solid with cubic symmetry. In this case the constitutive

law can be parameterized with respect to 3 independent material constants and with respect

to the crystal axes can be written in the form (Aravas [8]):

σ11

σ22

σ33

σ12

σ13

σ23


=



C11 C12 C12

C11 C12

C11

sym C44

C44

C44


·



ε11

ε22

ε33

2ε12

2ε13

2ε23


⇒ {σ} = [Le] · {ε} (3.15)

where, Le = Leijkln(i)n(j)n(k)n(l) and:

Le1111 = Le2222 = Le3333 ≡ C11

Le1122 = Le2211 = Le1133 = Le3311 ≡ C12

Le1212 = Le2112 = Le1221 = Le2121 =

= Le1313 = Le3113 = Le1331 =

= Le2323 = Le3131 = Le3223 = Le2332 = Le3232 = C44

The above equations suggest that we can write the elasticity matrix Le with respect to the

crystal axes and in terms of Cij as:

Le =C11

(
n(1) n(1) n(1) n(1) + n(2) n(2) n(2) n(2) + n(3) n(3) n(3) n(3)

)
+

C12

(
n(1) n(1) n(2) n(2) + n(2) n(2) n(1) n(1) + n(1) n(1) n(3) n(3) + n(3) n(3) n(1) n(1)

)
+



44 Constitutive Modelling

C44

(
n(1) n(2) n(1) n(2) + n(2) n(1) n(1) n(2) + n(1) n(2) n(2) n(1) + n(2) n(1) n(2) n(1)

)
+

C44

(
n(1) n(3) n(1) n(3) + n(3) n(1) n(1) n(3) + n(1) n(3) n(3) n(1) + n(3) n(1) n(3) n(1)

)
+

C44

(
n(2) n(3) n(2) n(3) + n(3) n(2) n(2) n(3) + n(2) n(3) n(3) n(2) + n(3) n(2) n(3) n(2)

)
(3.16)

However, we are interested in deriving an expression for the elastic response with respect to

any global coordinate system instead of the local crystal system. Recalling that the global

axes ei can be expressed in terms of the crystal axes ni using equation (3.8) we write:

Leijkl = QimQjnQkpQlqLemnpq (3.17)

3.4 Hardening of Single Crystals

A typical stress–strain curve of an FCC metal crystal exhibits three distinct deformation

stages. Initially, in Stage I, plastic slip is attributed to the activation of only one out of the

twelve possible slip systems12 [11, 27]. The orientation of that system (α) is such that the

resolved shear stress reaches the critical value ταcr prior to all other systems and it is therefore

referred to as an optimally oriented system. Dislocation glide in Stage I is unhindered

producing weak hardening hI , since only one system is active and dislocation interactions are

not present. Hence, Stage I is also referred to as easy glide stage. Clearly, the optimally

oriented system as well as the extent (in terms of deformation) of Stage I, both depend on the

relative orientation of the crystal in regard to the loading direction. The latter only makes

sense in a uniaxial tension experiment as complex stress fields would (in general) trigger the

simultaneous activation of several slip systems and thus Stage I could not be manifested.

Furthermore, the abundance of available slip systems in FCC crystals restricts the extent of

Stage I (γαSI < 10%) since other slip systems quickly activate as well, signaling its conclusion.

The activation of an equivalent or a secondary system, as well as of other systems there-

after indicate the initiation of Stage II. In Stage II, dislocations glide in intersecting planes

and interact with each other, obstructing further plastic slip. The main dislocation inter-

actions occurring in Stage II are ”dislocation junctions”, ”forest hardening” and ”Lommer-

Cottrel immobilization” [27]. As a result, the hardening hII in Stage II is significantly greater

compared to hI . The hardening rate ∂hII/∂γ however is constant, justifying the fact that

Stage II is commonly called the linear hardening stage. The dislocation density increases

dramatically with deformation in Stage II displaying values up to 109/mm2. In this state,

dislocations are immobilized being unable to glide in the same plane as before, and Stage

III commences.

At the onset of Stage III, namely the dynamic recovery stage, thermally activated

cross slip of screw dislocations is observed [11, 27] allowing dislocations to change slip planes

and therefore circumvent obstacles. Cross-slip of screw dislocations ultimately reduces their

12Recall from Section.2.1 that FCC crystals comprise of 12 slip systems resulting from all possible combi-
nations between their 4 dense planes {111} and 3 dense directions < 110 >
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density, since dislocations gliding on same planes and opposite directions ‘cancel out’. The

latter also results into a decreasing hardening rate (∂hIII/∂γ) in Stage III illustrating the

‘dynamic recovery’. Figure 3.3 schematically illustrates the three distinct stages of crystal

deformation which, when combined, form the σ − ε curve corresponding to uniaxial tension

of an FCC metal crystal.

Returning to the mechanics of crystal plasticity, the yield criterion of each slip system α

is defined in terms of the resolved shear stresses and is expressed in rate form as:

Φ̇α = τ̇α − τ̇αcr ≤ 0 (3.18)

The consistency condition then takes the following form for every slip system α ∈P:

• Φ̇α < 0 −→ γ̇α = 0 (3.19)

• Φ̇α = 0 −→ γ̇α ≥ 0 (3.20)

Stage I Stage II Stage III

Onset of 
Secondary Slip

FCC

Ih
1

IIh
1

IIIh
1

St
re

ss

Strain
Figure 3.3: The deformation stages of FCC metal single crystals

In the context of developing an analytical expression for the hardening of FCC crys-

tals that is consistent with experiments, Mandel [39] and Hill [28] proposed the following

associated flow rule:

τ̇αcr =
Nas∑
β=1

hαβγ̇β α = 1, 2, . . . , N (3.21)
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The particular hardening model defines the critical resolved shear stress rate of a slip system

α to be linearly dependent to the the slip rates of all active systems γ̇β. The quantity hαβ

defines the instantaneous hardening moduli which must be able to accurately account for

‘active hardening’13 and ‘latent hardening’14. The analytical and experimental characteri-

zation of [hαβ] is extensively discussed in the works of Bassani and Wu [11] & [12]. Earlier

analytical models have also been proposed by Taylor [50] (isotropic model hαβ = h), Koiter

[34] (independent hardening model hαβ = h δαβ), Budiansky & Wu [19] (geometrical hard-

ening model hαβ = hMα : hMβ 15), and Hutchinson [32] & Asaro [9] (latent hardening

hαβ = q h+ (1− q)h δαβ). In all cases h stands for the active hardening function that mono-

tonically decreases with strain. The following analytical relationship for h was proposed by

Asaro [9]:

h(γα) = h0 sech2

(
h0 γ

α

τI − τ0

)
(3.22)

where τ0 stands for the initial critical resolved shear stress on each slip system before any

plasticity occurs, τI is the saturation stress and h0 is the hardening modulus at first yield.

Then, Asaro [9] suggests a value of 1 ≤ q ≤ 1.4 to build the multislip hardening moduli

as hαβ = q h + (1 − q)h δαβ. However, Bassani & Wu [12] state that this simplified model

is inconsistent with the experimental observations. In fact they ([11]-[12]) suggest that the

hardening model should be such that the following inequality restrictions are met:

τβcr
(
γα|γβ = 0

)
< ταcr

(
γα|γβ = 0

)
(3.23a)

τβcr
(
γα|γβ > γ0

)
> ταcr

(
γα|γβ = 0

)
(3.23b)

hβα(γα, 0) < hαα(γα, 0) (3.23c)

hαα(γα, 0) < hαα(γα, γβ) (3.23d)

hαα(γα, γβ)� hββ(γα, γβ) if γβ � γα (3.23e)

where α stands for the primary slip system and β denotes the secondary system. Now clearly

the analytical models for hαβ presented in previous paragraphs are unable to simultaneously

satisfy all these inequality restrictions. Bassani & Wu [12] then suggest that in order to

describe complex slip phenomena, the hardening moduli should take into account the accu-

mulated plastic deformation on every slip system and, if possible, the history of plastic slip.

Hence, the moduli hαβ should be introduced as a functional of plastic slip within all systems,

ideally as:

hαβ = hαβ
(
H (γδ)|δ = 1, 2, . . . , N

)
α , β = 1, 2, . . . , N (3.24)

and the following form proves to be quite flexible [12]:

hαα = F (γα) G
(
γβ|β 6= α

)
α = 1, 2, . . . , N (3.25a)

hβα = q hαα α = 1, 2, . . . , N (3.25b)

13The hardening of system α due to slip activity on system α
14The hardening of system α due to slip activity on other systems
15Mα = symm [sαmα]



3.4 Hardening of Single Crystals 47

where function F (γα) stands for the instantaneous hardening under single slip whereas

G(γβ|β 6= α) represents the hardening induced from dislocation interactions. The latter

should equal unity (G ≡ 1) in pure single slip conditions where γα > 0 & γβ = 0 ∀ β 6= α.

The off-diagonal components hβα with β 6= α represent hardening of system β due to slip

on system α and are taken to be a fraction of the active hardening components hαα 16 con-

trolled by parameter q. In the special case where system β is inactive, hardening provided

by hβα defines the so called latent hardening17. However, the implementation of latent

hardening phenomena as suggested by expression (3.25b), results into a non–symmetric hard-

ening moduli. If required, the symmetric alternative could be easily adopted in the sense

hβα = q(hαα + hββ). It should be also noted that the particular model defined by equations

(3.25a)-(3.25b) is in excellent agreement with experimental results, for a small positive value

of q or even q = 0 [11],[12].

Functions F and G which are primarily used to build the active hardening components

hαα can be physically interpreted as follows. To ease perception let us consider the uniaxial

tension of an FCC crystal whose slip system α is optimally oriented for single slip. At the

onset of Stage I where only system α is activated and therefore γα > 0 and γβ = 0 ∀ β 6= α,

function G = 1 and hαα = F (γα). Hence, function F represents the hardening phenomena

during easy glide, under purely single slip conditions. Subsequently, when secondary slip

systems activate18, function G characterizes the forest hardening effects due to slip interac-

tions in Stage II between the primary α and secondary active systems β 6= α. Bassani & Wu

[12] propose the following simple form for easy glide hardening:

F (γα) = (h0 − hs)sech2

(
h0 − hs
τI − τ0

γα
)

+ hs (3.26)

where τ0 stands for the initial critical resolved shear stress prior to any plastic deformation,

τI is the Stage I stress where large plastic flow initiates, h0 is the hardening modulus corre-

sponding to τ0 and hs is the easy glide (linear-like) hardening. In the special case of purely

single slip conditions, equations (3.21),(3.25a) and (3.26) can be combined and analytically

integrated to yield the following expression:

ταcr(γ
α) = τ0 + (τI − τ0) tanh

(
h0 − hs
τI − τ0

γα
)

+ hs γ
α (3.27)

The particular form of expressions (3.26) and (3.27) facilitates the physical interpretation of

the parameters involved but could equivalently written in the following more compact form:

F (γα) = h∗ sech2

(
γα

γ∗

)
+ hs (3.28)

ταcr(γ
α) = τ0 + τ ∗ tanh

(
γα

γ∗

)
+ hs γ

α (3.29)

16No sum on α
17Latent hardening of an inactive system β is defined as the hardening of that system due to slip on other

systems and owes its existence to dislocation interactions
18∃β 6= α : γβ > 0 & γα > 0
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where τ ∗ = τI − τ0, γ∗ = τ ∗/(hs − h0) and h∗ = τ ∗/γ∗. In regards to the cross–hardening

function (G), the following form proposed by Bassani & Wu [12] equals unity when all

arguments are zero (in single slip conditions) and asymptotically approaches finite values in

finite multislip conditions:

G
(
γβ|β = 1, 2, . . . , N : β 6= α

)
= 1 +

N∑
β=1
β 6=α

fαβ tanh
γβ

γ0

(3.30)

where γ0 represents the amount of slip after which the interactions between slip systems α

and β reach peak strength. Bassani & Wu [12] propose the same γ0 for all pairs of systems

since the interaction magnitude of various slip interactions solely lies in the choice of the

components fαβ, namely the cross–hardening amplitude factors. Table 3.1 [12] presents

the rationale for assigning values to the amplitude factors, taking all possible dislocation

interactions into account. For instance, coplanar interactions tend to be weaker compared

to their anti–planar counterparts and thus the associated amplitude factors must take this

into account.

Table 3.1: Strength amplitude factors fαβ defining the intensity of cross–hardening interactions
on FCC crystals. N=No junction (a1), H=Hirth lock (a2), C=Coplanar junction (a3), G=Glissile
junction (a4), S=Sessile junction (a5) (Bassani and Wu [11, 12])

1 2 3 4 5 6 7 8 9 10 11 12

1 0

2 C 0

3 C C 0

4 S G H 0

5 G N G C 0

6 H G S C C 0

7 N G G G S H 0

8 G S H N G G C 0

9 G H S G H S C C 0

10 H S G G G N H S G 0

11 S H G S H G G G N C 0

12 G G N H S G S H G C C 0

FCC single crystals display five different interaction types, leading to the definition of

5 independent fαβ components. These distinct slip interactions between systems α and β

are subject to the type of dislocation junction formed, which consequently translates into

the relative orientation of the systems. This classification of interactions results into the

definition of the five distinct constants αi (where i = 1, 2, . . . , 5) as follows:

• α1 (No Junction): the Burgers vectors of systems α and β are unaffected by this

interaction
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• α2 (Hirth Lock): the Burgers vectors resulting from the interaction between systems

α and β is not energetically admissible

• α3 (Coplanar Junction): the Burgers vector resulting from the interaction between

systems α and β is on the same plane as the original ones

• α4 (Glissile Junction): the Burgers vector resulting from the interaction between sys-

tems α and β is energetically admissible and on one of the two slip planes

• α5 (Sessile Junction): the Burgers vector resulting from the interaction between sys-

tems α and β is energetically admissible but not on neither of the two slip planes

where α5 > α4 > α3 > α2 > α1. The hardening model proposed by Bassani & Wu [12] is

then summarized as:

τ̇αcr =
Nas∑
β=1

hαβγ̇β

hαα =

[
(h0 − hs)sech2

(
h0 − hs
τI − τ0

γα
)

+ hs

]1 +
N∑
β=1
β 6=α

fαβ tanh
γβ

γ0


hβα = q hαα α 6= β

Now note that if the off diagonal ratio parameter q is chosen to be zero, then the hardening

moduli is diagonal and the results adequate to reproduce experimental observations according

to Bassani & Wu [12]. If the complete hardening moduli is desired however, then only small

positive values of q are to be chosen (q ∈ [0, 0.3]). If the symmetric model is chosen instead

hαβ = q(hαα + hββ) then q should be chosen as q = 0.1 at most. Assigning greater values to

q may violate the uniqueness of the solution (the active systems set cannot be determined).

3.5 Integration of Elastoplastic Equations

Traditionally the constitutive equations of material models accounting for finite elasto-

plastic deformations19 are expressed in rate form and their computational implementation20

19The rate form of the constitutive relationships is not limited to finite deformation elastoplasticity. Consti-
tutive equations of nonlinear heat transfer problems, coupled thermal-mechanical problems, coupled electric-
mechanical etc, are also expressed in rate form and their development is fundamentally based in the theory
of Continuum Mechanics

20The Computational implementation involves the numerical approximation of the constitutive model
introducing the Finite Element method which is discussed in further detail in Chapter 6
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requires numerical integration. The computational solution of all non-linear problems is de-

veloped incrementally. Each increment is defined by its time interval ∆t = tn+1 − tn along

which the constitutive equations have to be integrated. All deformation related quantities

at t = tn are passed in from the previous increment21 and they have to be integrated to tn+1.

In rate–independent crystal plasticity, given Fn,F
p
n, γ

α
n , τ

α
cr|n at tn along with ∆t and

Fn+1 we have to update the plastic part of the deformation gradient Fp
n+1, the Cauchy stress

tensor σn+1, the set of active slip systems An+1 as well as the plastic strains γαn+1 and critical

stresses ταcr|n+1 of every slip system α ∈P, at tn+1. However, before being able to proceed

with the integration of elastoplastic equations, we first have to restate them in a ‘integrable’

form. Recalling equation (1.26) we can express the velocity gradient tensor L in terms of Ḟ

as:

L = Ḟ · F−1 (3.31)

Now recall the multiplicative decomposition of F that we introduced in (3.4). We write:

F = Fe · Fp (3.32a) F−1 = Fp−1 · Fe−1 (3.32b)

Substituting (3.32a–3.32b) into (3.31) gives:

L = Ḟ · F−1 = ˙Fe · Fp ·
(
Fp−1 · Fe−1

)
=

=
(
Ḟe · Fp + Fe · Ḟp

)
·
(
Fp−1 · Fe−1

)
=

= Ḟe · Fe−1 + Fe ·
(
Ḟp · Fp−1

)
· Fe−1 (3.33)

The last equation suggests that the velocity gradient is additively decomposed as

L = Le + Lp (3.34)

where:

Le = Ḟe · Fe−1 (3.35a)

Lp = Fe · (Lp
i ) · Fe−1 (3.35b)

Lp
i = Ḟp · Fp−1 (3.35c)

The quantity Lp
i is from its definition the velocity gradient corresponding to Fp in the isoclinic

configuration. Hence, in order to contribute to the total velocity gradient L, it needs to be

‘pushed–forwards’ from the isoclinic to the current configuration via Fe as equation (3.34)

suggests. In Section 3.1 we showed that the velocity gradient associated with dislocation

glide on every slip system, Lp
i , has the following form:

Lp
i =

Nas∑
α=1

γ̇αsα0 mα
0 (3.36)

21They are treated as known
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Thus, by combining (3.35c) and (3.36) we get:

Ḟp (γ̇α) = (
Nas∑
α=1

γ̇αsα0 mα
0 ) · Fp (γ̇α) (3.37)

Equation (3.37) defines an Ordinary Differential Equation with the unknown being the tensor

function Fp (γ̇α). The solution of a 1st order tensor ODE of the form

Ż(t) = A · Z(t) t ∈ [t1, t2]

is the following (Gurtin et al.p.669 [26]):

Z(t) = exp [(t2 − t1) A] · Z(t1)

Equation (3.37) needs to be integrated over the time increment defined by tn and tn+1.

Therefore, if we assume that γ̇α remains constant during the time interval of the increment

under consideration t ∈ [tn, tn+1] we can integrate (3.37) to derive:

Fp
n+1 = exp(

Nas∑
α=1

∆γαsα0 mα
0 ) · Fp

n (3.38)

while Fp−1
n+1 can be readily expressed by taking the inverse of the above expression:

Fp−1
n+1 = Fp−1

n · exp(
Nas∑
α=1

−∆γαsα0 mα
0 ) (3.39)

Assuming that ∆γα’s are known22 for every slip system α ∈ Nas ≡ A , we can successfully

update Fp
n+1. With both Fn+1,F

p
n+1 known, we can also update Fe

n+1 from (3.32a) as:

Fe
n+1 = Fn+1 · Fp−1

n+1 = Fn+1 · Fp−1
n · exp [B(∆γα)]⇒

Fe
n+1(∆γα) = Fe

trial · exp[B(∆γα)] (3.40)

Fe
trial = Fn+1 · Fp−1

n (3.41a)

B =
Nas∑
α=1

−∆γα sα0 mα
0 (3.41b)

Now that all components of the deformation gradient
(
Fn+1,F

e
n+1,F

p
n+1

)
are known, we can

also update the rest of the variables as follows. The right Cauchy-Green deformation tensor

corresponding to Fe
n+1 is updated as:

Ce
n+1(∆γα) = (Fe

n+1(∆γα))T · Fe
n+1(∆γα) (3.42)

22In reality, neither the current set of active systems (which we denote as An+1) nor ∆γα’s are known at
this point. The algorithms required to determine An+1 and ∆γα are presented in detail in Chapter 5
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Leading to the straight forward update of the elastic Green Strain tensor:

Ee
n+1(∆γα) =

1

2
(Ce

n+1(∆γα)− δ) (3.43)

The 2nd Piola-Kirchhoff elastic stress is given in terms of the elasticity matrix Le and Ee
n+1

as:

Sen+1(∆γα) = Le : (Ee
n+1(∆γα)) (3.44)

With Sen+1 now known, we can update the non-symmetric (in general) Mandel stress Σ

defined in the intermediate configuration as well as the Kirchhoff stress tensor τ as:

Σn+1(∆γα) = Sen+1(∆γα) ·Ce
n+1(∆γα) (3.45)

τ n+1(∆γα) = Fe
n+1(∆γα) · Sen+1(∆γα) ·

(
Fe
n+1(∆γα)

)T
(3.46)

The Kirchhoff stress tensor τ can then be used to update the Cauchy true stress tensor σ

since from definition the two stress measures are related as:

σn+1(∆γα) = Jn+1 τ n+1(∆γα) , where: Jn+1 = det[Fn+1] (3.47)

Stresses are then incrementally updated using equations (3.38–3.47) completing the integra-

tion of equations. Note however, that all ∆γα’s are needed before being able to proceed with

stress integration. In fact, stress integration and calculation of ∆γα ∀α ∈ An+1 are treated

as a single problem with its computational implementation commonly being referred to as

stress-update algorithms. A more thorough description of stress update algorithms for

finite deformation and rate independent crystal plasticity are presented in Chapter 5.

3.6 Rate Independent Tangent Modulus

3.6.i Elasticity

We postulate that an elastic potential Φ exists (Aravas [6]) in the isoclinic configuration

so that:

Se = ρi
∂Φ

∂Ee
or equivalently, Se = ρ0

∂Φ

∂Ee
(3.48)

where Se = JeFe−1 · σ · Fe−T is the 2nd Piola-Kirchhoff stress, Se = (J/Je)Se and ρi stands

for the mass density in the isoclinic configuration. We can now derive the rate form of the

above hyperelastic constitutive equation by taking the derivative with respect to time to

find:

Ṡe = Le : Ėe where Le = ρ0
∂2Φ

∂Ee∂Ee
(3.49)

According to the results of Dafalias [22] & Needleman [41], we can ”push” the above expres-

sion in the current configuration where it takes the following form:

∗
τττ= Leτ : De (3.50)
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where,

∗
τ = τ̇ + τ ·W∗ −W∗ · τ (3.51)

W∗ = W −Wp (3.52)

Leτ = Le + T (3.53)

and:

Leijkl = F e
imF

e
jnF

e
kpF

e
lqLemnpq (3.54)

Tijkl =
1

2
(τik δjl + τil δjk + δik τjl + δil τjk) (3.55)

Recall however, that Le is related to Le by (3.17), whereas the moduli Le is generated from

the elastic constants Cij with respect to the crystal axes as suggested by (3.16)23. We next

introduce the Jaumann objective rate24 to write equation (3.50) in the following form:

∇
τ = Leτ : De + τ ·Wp −Wp · τ (3.56)

3.6.ii Plasticity

Taking into consideration the decomposition of the deformation rate as D = De + Dp,

the Constitutive relationship in (3.56) can be rewritten in the form:

∇
τ = Leτ : (D−Dp) + τ ·Wp −Wp · τ (3.57)

But the plastic deformation rate Dp and spin tensor Wp are both defined in terms of the

slip activity within each slip system in the sense:

Dp =
Nas∑
α=1

γ̇α Mα Wp =
Nas∑
α=1

γ̇α Ωα (3.58)

with:

Mα =
1

2
(sα mα + mα sα) (3.59a)

Ωα =
1

2
(sα mα −mα sα) (3.59b)

At this point recall that sα,mα represent the slip direction vector and the vector normal

to the slip plane of system α. In addition, the slip and normal unit vectors defined in

23The notation Le represents the elasticity matrix with respect to the crystal axes while the notation Le

expresses the elasticity matrix in the global system using the rotation matrix of the transformation [Q]
24The Jaumann rate is corotational with the plastic spin tensor Wp and is one of the most commonly

implemented objective rates in the constitutive modelling of solids. Objective rates are discussed in greater
detail in Chapter 1
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the reference configuration B0 are denoted as sα0 and mα
0 respectively. Since we already

postulated the existence of an isoclinic configuration Bi in which the slip and normal vectors

are the same as in the reference configuration B0, we express the directors sα,mα in terms

of sα0 and mα
0 as:

sα = Fe · sα0 mα = mα
0 · Fe−1

and the corresponding rates ṡα and ṁα can also be expressed as:

ṡα = Le · sα ṁα = −mα · Le

Now lets combine (3.57) and (3.58) to derive:

∇
τ = Leτ :

(
D−

Nas∑
α=1

γ̇α Mα

)
−

Nas∑
α=1

γ̇α (Ωα · τ − τ ·Ωα)

= Leτ : D−
Nas∑
α=1

γ̇α (Leτ : Mα + Ωα · τ − τ ·Ωα)

The above expression leads to the definition of Bα and Φα as:

Bα = Ωα · τ − τ ·Ωα (3.60)

Φα = Leτ : Mα + Bα (3.61)

And note that:

Bα =
1

2
[(sα mα −mα sα) · τ − τ · (sα mα −mα sα)] = τ · (mα sα)− (mα sα) · τ (3.62)

With the above definitions, we can now simplify expression (3.57) to

∇
τ = Leτ : D−

Nas∑
α=1

γ̇αΦα (3.63)

Note that if we are able to express γ̇α in terms of D then expression (3.63) immediately

defines the elastoplastic tangent modulus. To do so, we will make use of the yield and

consistency conditions within each slip system,

φα = τα − ταcr = 0 (3.64a)

φ̇α = τ̇α − τ̇αcr = 0⇒ τ̇α −
N∑
β=1

hαβγ̇β = 0 (3.64b)

defined by equations (3.64a) and (3.64b) respectively. The resolved shear stress on slip

system α can be expressed in terms of the Kirchhoff stress τ as:

τα = mα
0 ·Σ · sα0 = mα

0 · Fe−1 · τ · Fe · sα0 = mα · τ · sα (3.65)
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Then differentiating (3.65) with respect to time t and plugging the result into (3.64b) we

get:

τ̇α = ṁα · τ · sα + mα · τ̇ · sα + mα · τ · ṡα =

= −mα · Le · τ · sα + mα · τ̇ · sα + mα · τ · Le · sα =

= mα · (−Le · τ + τ̇ + τ · Le) · sα = mα · [−(De + W∗) · τ + τ̇ + τ · (De + W∗)] · sα =

= mα · [(τ̇ + τ ·W∗ −W∗ · τ )−De · τ + τ ·De] · sα =

= mα· ∗τ ·sα + mα · (−De · τ + τ ·De) · sα =

= mα · (Leτ : De) · sα + mα · (−De · τ + τ ·De) · sα =

= I + J (3.66)

where:

I = mα · (Leτ : De) · sα (3.67)

J = mα · (−De · τ + τ ·De) · sα (3.68)

But:

I = mα
i LeτijklDe

kl s
α
j = (mα sα)ij L

eτ
ijklD

e
kl = Mα : Leτ : De (3.69)

And:

J = −mα
i D

e
ij τjk s

α
k +mα

i τij D
e
jk s

α
k = − (−mα

i τjk s
α
k ) De

ij + (mα
i τij s

α
k ) De

jk =

= − (mα τ · sα)ij D
e
ij + (mα · τ sα)jk D

e
jk = − (mα τ · sα) : De + (mα · τ sα) : De =

= (mα · τ sα −mα τ · σα) : De = (τ ·mα sα −mα σα · τ ) : De = Bα : De (3.70)

Expressions (3.69) and (3.70) allow us to write equation (3.66) as:

τ̇α = Mα : Leτ : De + Bα : De = (Mα : Leτ + Bα) : De ⇒ τ̇α = Φα : De (3.71)

where we used equation (3.61). Recalling that our goal is to express γ̇α in terms of D, we

will now replace De with D−Dp and also express Dp as suggested in equation (3.58). Thus,

τ̇α = Φα : D−Φα :
Nas∑
β=1

γ̇βMβ (3.72)

Now lets replace the above expression in the consistency condition (3.64b) to derive:

Φα : D−Φα :
Nas∑
β=1

γ̇β Mβ −
N∑
β=1

hαβ γ̇β = 0⇒
Nas∑
β=1

γ̇β
(
Φα : Mβ + hαβ

)
= Φα : D⇒

Nas∑
β=1

γ̇β Υαβ = Φα : D (3.73)
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where we defined matrix [Υ] whose components are given as Υαβ = Φα : Mβ +hαβ. Lets also

define as Ψαβ the inverse components of Υαβ ([Ψ] = [Υ]−1). As a result of these definitions,

expression (3.73) can be written as:

γ̇α =
Nas∑
β=1

Ψαβ Φα : D (3.74)

And by defining Λα as:

Λα =
Nas∑
β=1

Ψαβ Φβ (3.75)

leads to the desired expression of γ̇α in terms of D:

γ̇α = Λα : D (3.76)

We will now combine (3.63) and (3.76) to derive an analytic expression for the tangent

modulus. Hence,

∇
τ = Leτ : D−

Nas∑
α=1

γ̇α Φα = Leτ : D−
Nas∑
α=1

Φα Λα : D =

(
Leτ −

Nas∑
α=1

Φα Λα

)
: D

The quantity enclosed in parenthesis above defines the tangent modulus for single crystal

plasticity as:

LJ = Leτ −
Nas∑
α=1

Φα Λα = Leτ −
Nas∑
α=1

Φα
Nas∑
β=1

Ψαβ Φβ = Leτ −
Nas∑
α=1

Nas∑
β=1

Ψαβ Φα Φβ (3.77)

And finally,

LJ = Leτ −
Nas∑
α=1

Nas∑
β=1

Ψαβ Φα Φβ (3.78)

∇
τ = LJ : D (3.79)

The form (3.78) however, raises two important concerns [10]. First, matrix Ψαβ may

not always exist, since Υαβ is not a priori an invertible matrix. In fact, existence of the

inverse matrix Ψαβ strongly depends on the exact selection of the hardening moduli hαβ. In

several cases, the inability to find the inverse of Υαβ suggests that a unique solution does

not exist25 and additional information is required. Secondly, in cases where Ψαβ exists, it

defines a non–symmetric matrix. This immediately declares LJ as non–symmetric as well.

25i.e. the set of active systems is not unique etc.



Chapter 4

The effect of Hydrogen concentration

The mechanical behavior of structural materials in the presence of Hydrogen has been

widely studied by Hirth [29], Birnbaum & Sofronis [15], Birnbaum et al.[16] and in the vast

majority of studies, the effect of Hydrogen was detrimental causing materials to fail at far

lower loads than the ones observed in absence of Hydrogen. This effect is widely known

as ‘hydrogen embrittlement’ and essentially describes a significant reduction in macroscopic

ductility and ultimate tensile strength (UTS) and also a change in the type of fracture [29].

Hydrogen related failures are attributed to several mechanisms, with the hydrogen enhanced

localized plasticity (HELP) probably being the most viable one according to Beachem [13],

Birnbaum & Sofronis [15] and Robertson [43]. The theoretical predictions of Sofronis [45]

and Sofronis & Birnbaum [46] as well as the experimental observations of Sirois [44] provide

evidence in support of the HELP mechanism, demonstrating that the presence of hydro-

gen in solid solution reduces the barriers to dislocation motion, increasing the amount of

deformation that occurs in a localized region adjacent to the fracture surface.

The strongest incentive in developing a comprehensive constitutive model for single crys-

tal plasticity, is to obtain a deeper understanding of the effect of Hydrogen in the mechan-

ical response and failure of structural materials. A thorough description of the hydrogen-

dislocation interactions within single crystals, is considered a prerequisite to the later devel-

opment of a physically–based polycrystalline model. In the present chapter1 we will try to

derive a concise methodology to implement the effects of hydrogen concentration in the rate–

independent constitutive model for single crystal plasticity2 while taking into consideration

the hydrogen solute interactions with the microstructure of metallic materials.

1This chapter is based on the Master Thesis by Schebler [48]
2The rate–independent constitutive model for crystal plasticity in absence of Hydrogen in presented in

detail in Chapter 3
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Plastic deformation of metal single crystals is fundamentally based on dislocation glide,

and thus it is important to obtain a deeper understanding of the hydrogen–dislocation in-

teractions. A series of studies on polycrystalline nickel (Robertson [43]) suggest that the

mobility of dislocations tends to increase when hydrogen is present; observations indicate

that isolated screw and edge dislocations as well as dislocations involved in forest interac-

tions, are able to glide in greater velocities due to hydrogen. The studies of Robertson [43]

also illustrate that the stresses required to move dislocations in hydrogen–charged speci-

mens, are lower than the ones required in absence of hydrogen. As a result of these general

observations, it is expected that hydrogen–charged single crystal specimens would exhibit

weaker Stage I & II hardening3.

Despite the fact that the presence of hydrogen facilitates the activity of mobile dis-

locations, initial activation of immobile dislocations tends to be hindered. Experimental

observations showed that the initial macroscopic yield stress for hydrogen–charged FCC

polycrystalline specimens was elevated when compared to similar tests in absence of hy-

drogen. In the works of Abraham & Altstetter [3], the recorded yield stress elevation was

attributed to the locking of Frank-Reed dislocation sources due to Hydrogen, a mechanism

that may be present in single crystals as well.

Even though similar experimental investigations on single crystal specimens are generally

limited, they present even greater interest to our study. Delafosse [23] and Yagodzinskyy

[52],[53] performed uniaxial tension experiments on FCC single crystal specimens oriented

for easy glide for both hydrogen-free and hydrogen–charged specimens. From these tests we

can derive the following interesting ascertainments regarding the effects of Hydrogen on the

mechanical behavior of FCC single crystals:

• The initial yield strength in uniaxial tension experiments was considerably elevated

in hydrogen charged single crystal specimens, exhibiting up to 25% increase for nickel

(Delafosse [23], Yagodzinskyy [53]) and up to 30% (Yagodzinskyy [52]) increase for

austenitic stainless steel

• In all experiments Stage I hardening was significantly prolonged, suggesting that the

presence of Hydrogen delays the onset of Stage II hardening

• Work hardening during Stage II was significantly greater in Hydrogen charged speci-

mens (Delafosse [23])

At this point we should note that the uniaxial tension experiments of Delafosse [23] were

conducted using singificantly higher strain rates (10−2 s−1) than the ones in both Yagodzin-

skyy’s tests [52],[53] (≤ 10−4 s−1).

In the following sections we present a modified formulation to the rate–independent

constitutive model for crystal plasticity so as to take into account the effects of Hydrogen

concentration.

3The stages of hardening for FCC crystals are discussed in Section 3.4
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Figure 4.1: The experimental stress–strain curves corresponding to uniaxial tension of hydrogen-
free (grey) and hydrogen–charged (black) nickel single crystal specimens in easy glide orientation
(Yagodzinskyy et al.[53])

4.1 Modified Formulation

We begin with the multiplicative decomposition of the deformation gradient which is now

such to incorporate the effect of Hydrogen concentration in deformation. Hence, the total

F is multiplicatively decomposed in terms of an elastic Fe, a plastic Fp and a hydrogen

associated part Fh as:

F = Fe · Fh · Fp (4.1)

The hydrogen associated part of the deformation gradient Fh is purely dilatational (Peisl,

1978), thus the hydrogen part of the deformation gradient is expressed as (Sofronis, 1995):

Fh =

(
1 +

eh

3

)
δ (4.2)

with eh = λ(c − c0). The total current and total initial hydrogen concentrations in the

material point under consideration are denoted as c and c0 respectively and are expressed

in hydrogen atoms per lattice atom. Also λ = ∆v/Ω, where ∆v is the volume change per

hydrogen atom introduced into the solid solution4 and Ω is the mean atomic volume of the

host metal atom. Now using expression (4.1) and the specific form of Fh in (4.2), we can

readily show that the velocity gradient L corresponding to F can be additively decomposed

as:

L = Le + Lh + Lp (4.3)

4The volume change per hydrogen atom introduced is related to the partial molar volume of hydrogen
via Vh = ∆v NA, where NA is Avogadro’s number
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The elastic Le and plastic Lp parts of the total velocity gradient are defined in (3.35a) and

(3.35b) respectively. For Lh we can show that:

Lh =
1

3
Λ(c) ċ δ (4.4)

where

Λ(c) =
λ

1 + λ(c− c0)/3
(4.5)

Expression (4.4) suggests that Lh = Dh and consequently Wh = 0. We should also note

that the current formulation to incorporate the deformation effects of hydrogen through Fh,

does not alter the lattice orientation.

as

am

eF am

as

αγam

as

0

0

0

0

pF

am

as

αγ

0

0

hF

e h p= ⋅ ⋅F F F F

Figure 4.2: A schematic representation of the multiplicative decomposition of F. The purely dilata-
tional effect of Fh does not alter the lattice orientation

4.2 Hydrogen Equilibrium

In the current model we assume that hydrogen atoms reside in one of two locations

within the crystal: normal interstitial lattice sites (NILS) and trapping sites attributed to

the plastic deformation. According to the theory of Oriani (1970), the quantities residing in

each location are always in equilibrium in the sense:

θαT
1− θαT

=
θL

1− θL
KT (4.6)
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where θL represents the occupancy of lattice sites and θαT the respective occupancy of the

trap sites in slip system α. The equilibrium constant KT is defined as:

KT = exp

(
WB

RT

)
(4.7)

where WB is the trap binding energy, R is the gas constant and T the absolute temperature.

Next we define the concentrations CL and Cα
T measured in atoms per unit volume, associated

with the occupancy of lattice and trap sites respectively as:

CL = θL ζ NL (4.8a)

Cα
T = θαT η N

α
T (4.8b)

with ζ and η representing the number of NILS per lattice atom and the number of sites per

trap respectively, whereas Nα
T is defined as the number of sites per trap on system α. The

number of lattice atoms per unit lattice volume NL is calculated using Avogadro’s number

NA and the molar volume VM of the lattice as:

NL = NA/VM (4.9)

The normalized lattice and trapped concentrations are also introduced as:

cL = CL/NL (4.10a)

cαT = Cα
T /NL (4.10b)

In the current model, we assume that trap sites in each slip system are associated with

dislocations and that only one trap site may exist in every atomic plane threaded by a

dislocation (Thomas [51]). Based on this assumption, the trap density on slip system α is

directly related to the dislocation density on that system by an expression of the form:

ρα = Nα
T b (4.11)

where b stands for the dislocation Burgers vector. Equation (4.11) provides an immediate

correlation between the trapped hydrogen concentration and the crystal’s mechanical re-

sponse. The dislocation density on every slip system directly depends on the slip activity of

that system, in the sense that increasing deformation introduces new dislocations on every

atomic plane of the crystal’s microstructure5. The relationship that couples the dislocation

density on slip system α with the critical resolved shear stress on that system was initially

proposed by Taylor [49] and has the following form:

ταcr = α̃µb
√
ρα (4.12)

where µ is the shear modulus6 and α̃ is a proportionality constant. Combining equations

(4.11) and (4.12) we can derive:

Nα
T =

(
ταcr
α̃µ

)2
1

b3
(4.13)

5In FCC single crystals, the dislocation density dramatically increases during Stage II hardening
6The shear modulus is defined in isotropic polycrystals in terms of the Young’s modulus of elasticity
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which illustrates that the trap density is proportional to the square of the the critical shear

stress on a given slip system.

4.3 Hydrogen Diffusion

At this point, it is necessary to address the diffusion of hydrogen in the microstructure

of a single crystal specimen. The major ‘driving forces’ for the diffusion of hydrogen atoms

residing in lattice sites, are the gradient of the hydrostatic stress along with the gradient of

the chemical potential in every material point. NILS hydrogen concentration has to be in

equilibrium with the local hydrostatic stress [36] in the material point under consideration, in

the sense that they tend to accumulate in regions of increased hydrostatic stress. In a uniaxial

tension experiment however, the hydrostatic stress is uniform throughout the specimen7, and

thus no significant hydrogen accumulation can occur as a result of hydrostatic stress peaks.

In the present study, we only consider uniaxial tension experiments of hydrogen–charged

single crystal specimens, and therefore we focus on the slow diffusion process driven from

the gradient of chemical potential.

In order to get a sense for the diffusion speed of hydrogen in FCC crystals, we consider the

hydrogen charging process of a nickel single crystal specimen and assume that the diffusion

phenomena can be described by the solution of 2nd Fick’s law for uni–dimensional diffusion

within a semi–infinite medium:

c(x, t)

c0

= erfc

(
x

2
√
Dh t

)
(4.14)

where c(x, t) represents the hydrogen concentration x[m] away from the boundary and t[sec]

after the charging process initiation. Also, erfc is the complementary error function, c0 is

the fixed boundary hydrogen concentration, and Dh = 6.6 · 10−14m2/sec is the diffusivity of

hydrogen in nickel (Sirois and Birnbaum [44]). The average duration of the uniaxial tension

experiments performed by Yagodzinskyy et al.[53] on pure nickel single crystals was about

13min and the smallest dimension of the dogbone8 specimens used was 0.3mm. Given these

values, we can make use of (4.14) to show that after 13min of charging in room temperature,

hydrogen atoms are unable to travel distances greater than 33µm9 based on a 0.1% criterion.

Clearly, such diffusion distances are negligible when compared to the smallest dimension of

the single crystal specimens, suggesting that hydrogen diffusion in room temperature during

a uniaxial tension experiment is not significant.

Hydrogen diffusion was also considered insignificant in the works of Somerday et al.[47]

on austenitic stainless steel welds, when the hydrogen concentration after the test was found

to be relatively equal to the initial concentration before the test. Hence, in the context of

the theoretical prediction and numerical simulation of the hydrogen effect in single crystal

7Away from the grip locations
8Specimens (see Section 7.2) commonly used in uniaxial tension experiments of single crystals
9c(x, 13min) = 0.1% c0 ⇒ x = 33µm
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specimens subjected to uniaxial tension, we can ignore the diffusion phenomena and assume

that the total hydrogen concentration remains fixed during a uniaxial tension experiment.

Under this assumption, we postulate that the NILS and trapped hydrogen concentrations

on every slip system are such that equation:

cL +
∑
α

cαT = c0 (4.15)

is satisfied at all times and in every material point of the continuum body. Furthermore,

assuming that c(x, t) = c0 ∀ x ∈Bt and ∀t, we can simplify 4.2 to:

Fh =

(
1 + λ

(c− c0)

3

)
δ =

(
1 + λ

0

3

)
δ = δ (4.16)

Now using (4.16) we can readily show that Lh = Dh = Wh = 0, and therefore we do not

have to take into account the dilatational effect of hydrogen concentration to deformation. In

complete contrast to the diffusion phenomena however, the interchange of hydrogen atoms

between NILS and trap sites is highly significant in such experiments, due to the finite

plasticity of the specimen and the associated trap (dislocation) generation.

4.4 The Modified Hardening Model

Back to the constitutive modelling of hydrogen charged single crystals, we seek to formu-

late a modified hardening model, based on the model presented in Section 3.4, taking into

account the experimental observations on the uniaxial tension of hydrogen–charged single

crystal specimens. In particular, the hardening model accounting for hydrogen effects, must

be introduced so that the extension of the easy glide stage (Stage I) as well as the reduction

of the corresponding work hardening are both captured by the model and also defined as

functions of the hydrogen concentration. In addition, the fact that hydrogen charged crystal

specimens exhibit up to a 25% increase (see Figure 4.1) of the initial yield strength suggests

that special treatment is also required for the initial critical shear stresses.

Taking into consideration that only the hydrogen atoms residing in trapped sites interfere

with the mechanical behavior of the single crystal, we restate the hardening model of Bassani

& Wu [11, 12] in the following modified form:

τ̇αcr =
Nas∑
β=1

hαβH γ̇β (4.17)

The new instantaneous hardening moduli hαβH is now such to incorporate the effects of the

trapped hydrogen concentration within each slip system, using the following linear model:

hαβH = (1 +Hc c
α
T )hαβ (4.18)
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where Hc is the parameter controlling the linear effect of cαT on hαβH and hαβ is the hardening

moduli defined by equations (3.25a,3.25b) which are restated below

hαα =

[
(h0 − hs)sech2

(
h0 − hs
τI − τ0

γα
)

+ hs

]1 +
N∑
β=1
β 6=α

fαβ tanh
γβ

γ0


hβα = q hαα , α 6= β

The initial critical shear stresses are also introduced as linear functions of cαT in the sense:

(τα0 )H = (1 + Tc c
α
T )τ0 (4.19)

with Tc representing the parameter controlling the linear effect of cαT on (τ0)H . The pa-

rameters Hc and Tc should be chosen so that the current model be in agreement with the

experimental observations of Delafosse [23] and Yagodzinskyy et al.[52, 53]. In particular,

the parameter Hc controlling the effect of cαT on hardening, should be negative in order to

capture the ‘softening’ effect attributed to the presence of hydrogen delaying the onset of

Stage II. In contrary, Tc must be positive, so that higher hydrogen concentrations would

translate to a corresponding increase in the initial yield strength in uniaxial tension.

To conclude the discussion on the modified hardening model, we should note that since

hydrogen concentration is explicitly involved in ταcr, special treatment is necessary for the

computational–incremental implementation of the new model. The algorithm to predict the

active systems set and integrate the constitutive equations should also impose the hydrogen

equilibrium taking into account the interdependency of critical stresses and trapped hydrogen

concentration. These computational issues are discussed in further detail in Section 5.1.i.



Chapter 5

Computational Issues I - Stress Update Algorithms

The numerical integration of the constitutive equations as well as the calculation of the

linearization moduli LJ presented in previous chapters, implicitly assume that the set of

active slip systems A is known. However, the process of determining the set of active

systems A at a given time, requires information regarding the Mandel stress tensor Σ

and the critical shear stresses of each system ταcr. The integration of equations is therefore

prerequisite to update the active set A while simultaneously the numerical integration itself

is not possible without providing the set of active systems. The latter illustrates the inherent

interdependency of integrating the constitutive equations and identifying the set of active

systems. From now on we treat the integration of equations and the problem of determining

the active set as a single problem. The algorithms developed to solve the aforementioned

problem are commonly referred to as stress-update algorithms.

The stress update algorithms proposed by Cuitiño & Ortiz [21] and by Anand & Kothari

[4] are among the most popular ones, while Borja and Wren [18] propose a so-called ultimate

algorithm for rate-independent crystal plasticity. In the following section we will present the

algorithm by Miehe and Schröder [40] which is a modified version of the one proposed by

Cuitiño and Ortiz [21].

5.1 The Heuristic Algorithm

At first, let us denote with P the set containing all available slip systems in the sense

P := {1, ..., N}1. Loading a single crystal in an incremental manner, eventually violates the

1Recall that in the case of an FCC cubic crystal there is a total of 12 slip systems with two slip possibilities
(positive slip-negative slip) for each system, leading to a total of N = 2× 12 = 24 slip possibilities
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yield functions for some systems α ∈P in the sense φα > 0. The set of active systems A ,

is then defined as follows:

A := {α ∈P|γα > 0 and φα = 0 ∀α ∈ A } (5.1)

As aforementioned however, we are unable to determine ‘a priori ’ the set of active systems

and we therefore introduce an heuristic algorithm to populate the set with potentially active

systems in an iterative manner. The heuristic algorithm is initiated by postulating (as a

first estimate) that the set at time t = tn+1 → An+1 coincides with the converged set of the

previous increment at t = tn → An. Hence:

An+1 = An (5.2)

If this assumption (5.2) proves to be wrong, we clear the active set and restart the iteration

with the condition:

An+1 = ∅ (5.3)

Having estimated the active set from either (5.2) or (5.3) we next try to determine the plastic

strains γαn+1 ∀α ∈ An+1, given γαn ,Fn+1 and Fp
n. Systems are then added to or removed from

the active set successively one after the other. Calculation of γαn+1 = γαn + ∆γα immediately

allows us to remove all slip systems that violate the constraint ∆γα ≥ 0 and update the

active set as:

An+1 ⇐ {A − (α : ∆γα ≤ 0 ∈P)} (5.4)

If slip systems had to be removed, then the local iterative procedure is restarted with the

new updated active set. If however the constraint ∆γα ≥ 0 was not violated and no systems

were removed, we have to check for violation of the yield conditions for systems that are

currently assumed inactive. The active systems set is then updated by adding the ones that

violate the yield condition the most in the sense:

An+1 ⇐ {A + (α : arg[maxφα] : φα ≥ 0 ∈P)} (5.5)

At this point it is important to note that only the most loaded system is added to the

active set, which translates to the system that violates the yield condition the most. If

multiple systems violate their respective yield conditions in an equivalent manner then all

such systems are added to the active set list. If new systems were added to the set we

need to restart the iterative procedure with the updated set. If no systems were added nor

removed from the set then we assume that the current active set An+1 has converged and

we can successfully continue to update the solution dependent variables, proceed with the

integration of equations and the calculation of the linearization moduli.

The convergence criteria of the stress–update algorithm (5.4–5.5) are fundamentally

based in the assumption that the plastic slips ∆γα are known ∀α ∈ A . Up until to this

point we treated ∆γα’s as known quantities, but in reality their calculation is necessary

every increment, so that the yield and consistency conditions2 are satisfied for every slip

2In the case of crystal plasticity, the yield and consistency conditions are both expressed in terms of the
resolved shear stresses within each system, τα
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system. Now recalling the Mandel stress measure defined in the intermediate configuration

and expressed by (3.45), the resolved shear stress τα within slip system α can be calculated

as:

ταn+1(∆γβ) = mα
0 ·Σn+1(∆γβ) · sα0 (5.6)

where sα0 and mα
0 are the unit vectors defining the slip direction and normal to slip plane of

system α respectively. The hardening of each system is then expressed as:

ταcr(∆γ
β)|n+1 = ταcr|n +

N∑
β=1

[
(1− δ)hαβ|n + δhαβ|n+1

]
∆γβ δ ∈ [0, 1] (5.7)

which essentially represents an integrated form of (3.21). The instantaneous hardening

moduli (hm) hαβ is in this case defined as an adjusted combination of the moduli referring

to the last converged increment (hαβ|n) and of the one calculated using information from the

current increment (hαβ|n+1). The yield conditions of all slip systems are then introduced in

terms of (5.6) and (5.7) as

φα(∆γβ) = ταn+1(∆γβ)− ταcr(∆γβ)|n+1 ≤ 0 (5.8)

The condition φα < 0 indicates that system α behaves elastically in the current increment,

whereas the case of φα = 0 suggests that the system currently undergoes plasticity. Elasticity

on α3 corresponds to ∆γα = 0, while ∆γα > 0 when accounting for plasticity. Therefore,

the unknowns ∆γβ are determined as the solution of the following system:

φα(∆γβ) = 0 (5.9)

Only numerical solutions are applicable to (5.9) since both τα and ταcr are highly non–linear

functions of the unknowns ∆γβ. Implementing the Newton Raphson method, we iteratively

solve for the unknowns ∆γα until convergence is achieved. Newton iterations for multivariate

systems however, require the Jacobian matrix of the system, which in this case is defined as(
∂φα/∂∆γβ

)
. Next, we calculate the derivatives4 necessary to build the Jacobian matrix,

starting from the derivative of the deformation gradient. Recalling (3.40), the variation of

Fe with respect to ∆γα is:

∂Fe
n+1

∂∆γα
= −Fe

trial · sα0 mα
0 +O(∆γα)2 (5.10a)

The corresponding variation of the right Cauchy–Green elastic tensor defined as Ce = FeT ·Fe

is then calculated using (5.10a) as:

∂Ce
n+1

∂∆γα
=

(
∂Fe

n+1

)T
∂∆γα

· Fe
n+1 +

(
Fe
n+1

)T · ∂Fe
n+1

∂∆γα
(5.10b)

Expression (5.10b) enables the calculation of the Green strain5 variation:

∂Ee
n+1

∂∆γα
=

1

2

∂Ce
n+1

∂∆γα
(5.10c)

3Elastic response of a system equivalently declares the same system as inactive
4In the current discussion all derivatives are with respect to ∆γα
5The Green strain is defined in Table 1.1
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and also the calculation of the 2nd Piola–Kirchhoff’s variation:
∂Sen+1

∂∆γα
= Le :

∂Ee
n+1

∂∆γα
(5.10d)

Now by calculating the derivative ∂Σ/∂∆γα as:

∂Σn+1

∂∆γα
=
∂Sen+1

∂∆γα
·Ce

n+1 +
∂Ce

n+1

∂∆γα
· Sen+1 (5.10e)

we can successfully define the first component needed for the Jacobian matrix, namely the

variation of the resolved shear stress on system α with respect to all slips ∆γβ as

∂ταn+1

∂∆γβ
= sα0 ·

∂Σn+1

∂∆γα
·mα

0 (5.10f)

Finally, the critical shear stress variation can be directly calculated by derivatizing (5.7):

∂ταcr|n+1

∂∆γβ
=
[
(1− δ)hαβ|n + δhαβ|n+1

]
+ δ

N∑
γ=1

hαγ|n+1

∂∆γβ
∆γγ (5.10g)

The expression for the Jacobian matrix of the system in (5.9) is found by combining (5.10f)

and (5.10g):
∂φαcr|n+1

∂∆γβ
=
∂ταn+1

∂∆γβ
− ∂ταcr|n+1

∂∆γβ
(5.11)

The Jacobian matrix has dimensions N × N , where N stands for the Number of total slip

systems in the crystal. Returning to the implementation of NR method to solve for the

unknowns ∆γ, we begin by providing an initial estimate for the plastic slips ∆γα0 for all

systems currently in the active set. Recalling equations (3.61),(3.75) and (3.76) a reasonable

first estimate for ∆γα’s can be found as follows:

γ̇α = Λα : D⇒ ∆γα0 = Λα : ∆E (5.12)

where

Λα =
Nas∑
β=1

ΨαβΦβ

Ψαβ =
(
Φα : Mβ + hαβ

)−1

Φα = Leτ : Mα + Bα

Bα = τ · (mα sα)− (mα sα) · τ

Mα = symm (sα mα)

With the Jacobian matrix now known and the first estimate given by (5.12), we can

successfully initiate the Newton iterations for ∆γα. A schematic flowchart of the Newton

iterations is illustrated in Figure 5.1 below. After solving for the unknowns, we need to

check for convergence and continue with the stress–update algorithm.

The heuristic algorithm, is outlined in Table 5.1 and also schematically illustrated in

Figure 5.2 as part of the elastic prediction–plastic correction scheme.
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Estimate ∆γβ0

φα(∆γβ) ≤ Tol
Loop

converged

i ← i + 1

Evaluate the Jacobian

J = ∂φαcr|n+1/∂∆γβ

Solve for ∆γβ

∆γβ|i =− [J ]−1 φα(∆γβ)

Check for
convergence

Evaluate the system
φα(∆γβ) at ∆γβ|i

Yes

No

Figure 5.1: A flowchart of the Newton iterations for ∆γα

Table 5.1: A summary of the heuristic stress–update algorithm for rate–independent crystal plas-
ticity

1. Initiate slip system iteration loop. Set iset = 0

2. Estimate active set as An+1 = An

3. Set iset ⇐ iset + 1. If iset = 2 and A 6= ∅ then set An+1 = ∅

4. Having estimated the active set, initiate Newton iterations to find ∆γα , ∀α ∈P

5. Drop from An+1 all systems for which ∆γα ≤ 0

6. If systems were removed, update An+1 and GOTO 3.

7. Check for violation of the yield function ∀ system α assumed inactive. If φα > 0 for
any α /∈ A , then add to active set An+1 the most loaded inactive systems with φα > 0

8. If systems were added to the set update An+1 and GOTO 3.

9. If no systems were added or removed from the active set then convergence is achieved
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Elastic Prediction

φα(γβ) < 0 ∀α ∈P Elasticity

An+1 = An

∆γα = 0 ∀α ∈ P

Plasticity

i = 1

Estimate Active Set
An+1 = An

Estimate
∆γβ , ∀α ∈ A

i ← i + 1Iterate

i = 2
Clear active
set A = ∅

Update A , γα and
evaluate the system φα(γβ)

∇
τ = Leτ : D

Solve for ∆γβ

Newton Iterations

∃x ∈ A : ∆γx ≤ 0

∃y /∈ A : φy ≥ 0

Drop x from
active set A

Add y to
active set A

Plastic Correction

L = LJ

∇
τ = LJ : D

YesNo

Yes

No

Yes

No

Yes

No

Figure 5.2: A flowchart of the Elastic Prediction - Plastic Correction implementing the heuristic
stress update algorithm algorithm for crystal plasticity
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5.1.i Special Treatment for Hydrogen Charged Crystals

The current subsection serves as a supplement to the heuristic stress update algorithm

just presented, to take into account the effects of hydrogen concentration. Let us restate the

modified hardening model (4.16,4.17) we proposed in Chapter 4:

τ̇αcr =
Nas∑
β=1

hαβH γ̇β

hαβH = (1 +Hc c
α
T )hαβ

Recall the incremental setting, in which we have to update all variables at tn+1 given their

values at tn. Based on the integrated form of the hydrogen–free hardening model (5.7), we

introduce the corresponding integrated6 form of (4.16,4.17) accounting for the presence of

hydrogen as:

ταcr|n+1 = ταcr|n +
N∑
β=1

[
(1− δ)(1 +Hc c

α
T |n)hαβ|n + δ(1 +Hc c

α
T |n+1)hαβ|n+1

]
∆γβ (5.13)

The concentration of hydrogen atoms residing in the trap sites of each slip system must

always be in equilibrium with the lattice hydrogen concentration. Therefore combining

equations (4.6,4.8a,4.8b,4.10a,4.10b) we can restate equilibrium at tn+1 in the form:

cαT |n+1 =
KT ζ cL|n+1

η NL + (KT − 1)NL cL|n+1

(Nα
T |n+1) (5.14)

Also, the trap density at tn+1 is expressed in terms of the burgers vector b, the proportionality

constant α̃, the polycrystal shear modulus µ and the critical stress at that time as:

Nα
T |n+1 =

(
ταcr|n+1

α̃µ

)2
1

b3
(5.15)

Equations (5.13–5.15) define a non–linear system that needs to be solved every increment

with respect to ταcr|n+1, cαT |n+1 and Nα
T |n+1 and for every slip system α ∈P. Alternatively,

we can reduce the number of equations forming the system by substituting equation (5.15)

to (5.14), so that:

cαT |n+1 =
KT ζ cL|n+1

α̃2 µ2 b3 [η NL + (KT − 1)NL cL|n+1]
(ταcr|n+1)2 (5.16)

Now the non–linear system is defined using only equations (5.13) and (5.16) which we need

to solve for the critical shear stress ταcr|n+1 and the trapped hydrogen concentration cαT |n+1

on slip system α at tn+1.

Recall the heuristic stress update algorithm for hydrogen–free single crystals, where we

introduced two iterative schemes, namely the slip system iterations and the Newton iterations

6Integration is carried out in the time interval [tn, tn+1]
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for ∆γ. The slip system iterations are initiated by making an estimate for the active systems

set An+1 at tn+1, whereas the Newton loop for ∆γ solves the system of equations (5.9) for the

plastic slips ∆γα , ∀ α ∈P given the active set estimate. Then, at the end of every iteration,

given the active systems set An+1 and the plastic slips ∆γα, it is necessary to evaluate the

system φα(∆γβ) and check for convergence. The latter, involves the calculation of the critical

shear stress on each slip system ταcr at tn+1, which in the hydrogen–free formulation is readily

possible with a straightforward evaluation of (5.7).

In the current formulation however, immediate calculation of ταcr’s given ∆γα’s is not

possible, since the lattice and trapped hydrogen concentrations involved in (5.13) and (5.16)

are unknowns at tn+1. For this reason, we introduce two additional nested procedures7, one

to impose the conservation of total hydrogen concentration and a second to solve the system

of equations (5.13 & 5.16) for ταcr|n+1 and cαT |n+1.

At all times and within every material point of the continuum, the lattice cL and trapped

cαT hydrogen concentrations should be in equilibrium but also such to satisfy the conservation

of hydrogen in the solid solution. In an incremental setting, the conservation of hydrogen

can be expressed in terms of the concentration values cL|n+1 and cαT |n+1 at tn+1 along with

the initial concentration c0 as:

H(cL|n+1, c
α
T |n+1|α ∈P) ≤ htol (5.17)

where htol is an appropriately selected tolerance and the H function is defined as:

H(cL|n+1, c
α
T |n+1|α ∈P) = c0 − cL|n+1 −

Nsp/2∑
α=1

cαT |n+1 (5.18)

Note that the summation in the above expression is carried over half of the defined slip

systems, since the notations (α) and (α + NSP
2

)8 for α ∈ [1, NSP
2

] represent the same slip

system.

The conservation of hydrogen is formulated in the form of an iterative scheme within the

Newton iterations for ∆γα. We begin by assuming9 that the lattice hydrogen concentration

in the material point under consideration cL|n+1 at tn+1 coincides with the last converged

value cL|n at tn. We continue with solving10 the system of equations (5.13,5.16) for ταcr|n+1

and cαT |n+1 for all systems α ∈ P using the estimated value for cL|n+1. If the calculated

values for cαT |n+1 do not satisfy the hydrogen conservation in (5.17), we then calculate a new

value for cL|n+1 as:

cL|n+1 = c0 −
∑
α

cαT |n+1 (5.19)

7The Newton iterations for ∆γα are already nested inside the heuristic algorithm. The hydrogen equilib-
rium iteration, is introduced inside the Newton iterations, since it is now a prerequisite to obtain the critical
stresses ταcr on each slip system

8Positive and negative slip is accounted separately in the current constitutive model for FCC crystals,
and therefore systems α and α+NSP/2 essentially represent the same system

9As a reasonable first estimate
10The solution techniques used to solve this system are discussed in detail in Appendix C
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and solve again for ταcr|n+1 and cαT |n+1 ∀α ∈P as many times as necessary to satisfy equation

(5.17). Figure 5.3 schematically illustrates these modifications to the heuristic algorithm to

further facilitate supervision.

Estimate Lattice Hydrogen
Concentration cL|n+1 = cL|n

Newton Iterations for ∆γα

Heuristic Algorithm

Build parameters
τ̂α , ĥα , τ̂αh , Ĥ

α , Y
(Appendix C)

Solve for ταcr|n+1 and cαT |n+1

for every slip system α

Newton Iterations for (ταcr, c
α
T )

Hydrogen Conservation

H(cL, c
α
T ) ≤ htol

cL|n+1 = c0 −
∑
α
cαT |n+1

Yes

No

Figure 5.3: A flowchart of the heuristic stress update algorithm including the special treatment
required to account for the presence of hydrogen
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5.2 A Nonlinear Optimization Formulation

As aforementioned, the principal obstacle in rate-independent crystal plasticity, is to

determine the set of active slip systems A ⊆ P at any given time so as to integrate the

constitutive equations and build the linearization moduli. A crystal system α is assumed to

be active whenever its corresponding yield condition is satisfied in the sense φα = 0 resulting

to a non–negative plastic slip ∆γα ≥ 0. Inverting this definition, we can define a system β as

inactive whenever the current stress state for this system is located inside the yield surface

in the sense φβ < 0 and therefore ∆γβ = 0. In math form, we write:

φα ≤ 0 (5.20a)

−∆γα ≤ 0 (5.20b)

Next, we demonstrate that the set of active systems A along with the corresponding plastic

slips ∆γα can be introduced as the optimal solution of a nonlinear optimization problem.

First, recall that the yield function φα of each slip system α implicitly depends on the slip

activity ∆γβ of all active systems β ∈ A . In a dimensionless form we write:

φ̂α(∆γβ) =
1

τ0

[
τα(∆γβ)− ταcr(∆γβ)

]
=

1

τ0

[
mα

0 ·Σ(∆γβ) · sα0 − ταcr(∆γβ)
]

(5.21)

Now let us multiply equations (5.20a) and (5.20b) and also use (5.21) to derive:

− φα(∆γβ) ∆γα ≥ 0⇒ 1

τ0

[
mα

0 ·Σ(∆γβ) · sα0 − ταcr(∆γβ)
]

∆γα ≥ 0 ∀α ∈P (5.22)

We next define the following convex function:

F
(
∆γβ

)
=

N∑
α=1

[
φ̂α(∆γβ) ∆γα

]2

(5.23)

Note that the summation in the above equation is carried over all the slip systems available

and not only on those assumed active. Equation (5.22) clearly suggests that the minimum

value for F
(
∆γβ

)
is zero. In addition, nonzero values for F would indicate that the criteria

for φα and ∆γα (5.20a–5.20b) are violated for at least one system α ∈P. We can therefore

introduce the following optimization problem:

Minimize F
(
∆γβ

)
=

N∑
α=1

[
φ̂α(∆γβ) ∆γα

]2

(5.24a)

s.t. Gα
(
∆γβ

)
= φα(∆γβ) ≤ 0 (α = 1, 2, . . . , 24) (5.24b)

Hα(∆γα) = −∆γα ≤ 0 (α = 1, 2, . . . , 24) (5.24c)

the solution of which, is guaranteed to satisfy the necessary constraints for φα and ∆γα

. Clearly, due to (5.21), the above formulation defines a nonlinear optimization problem,
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whose decision variables are taken to be the plastic slips for all slip systems α ∈P. Then,

the values of ∆γα that minimize (5.24a) can be used to determine the set of active systems

in the following sense:

∆γα ≤ 0→ System α inactive. Elastic response

∆γα > 0→ System α is active. Plasticity

Subsequently we calculate the derivatives with respect to ∆γβ for the objective function and

the constraints as they are necessary to determine the optimal solution:

∂F

∂∆γβ
= 2

N∑
α=1

(
2φ̂α(∆γβ) ∆γα

)( ∂φ̂α

∂(∆γβ)
∆γα + δαβ

)

∂Gα

∂∆γβ
=

∂φ̂α

∂(∆γβ)
(β = 1, 2, . . . , 24)

∂Hα

∂∆γβ
= −δαβ (β = 1, 2, . . . , 24)

where δ above stands for the Kronecker delta.

The particular optimization formulation presents a direct alternative to the heuristic

algorithm we discussed in a previous section. As a general rule however, nonlinear optimiza-

tion problems are very ‘expensive’ in terms of the computation time necessary to find the

global optimum. In fact, in some extreme cases that involve highly non–linear constraints

and many decision variables, determining a globally optimum solution may even be impos-

sible. Motivated by the need to reduce nonlinear constraints, we also consider the following

‘alternative’ formulation:

Minimize F
(
∆γβ

)
=

N∑
α=1

{[
φα − τα(∆γβ) + ταcr(∆γ

β)
]2

+ (φα ∆γα)2
}

(5.25a)

s.t. Gα = φα ≤ 0 (α = 1, 2, . . . , 24) (5.25b)

Hα = −∆γα ≤ 0 (α = 1, 2, . . . , 24) (5.25c)

In this case, the decision variables are take to be the yield functions φα and plastic slips ∆γα

of all slip systems available. Even though the particular formulation doubles the number of

the decision variables for which we have to solve, it only involves linear constraints11.

5.3 A Linear Optimization Approach

In an effort to minimize the computational cost necessary to determine the set of active

systems and plastic slips as the solution of an optimization problem we next consider a lin-

earized approach to the optimization formulation. Let us restate the problem of determining

11Previously, half of those constraints were nonlinear
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the active systems α ∈ A ⊆P and their corresponding plastic slips ∆γα:

φα(∆γβ)∆γα = 0 (5.26)

∆γα ≥ 0 (5.27)

φα(∆γβ) ≤ 0 (5.28)

We next introduce a linear Taylor series approximation for all the yield functions φα(∆γβ)

around for ∆γβ = 0 as:

φα(∆γβ) ∼= φα|∆γβ=0 +
Nas∑
β=1

∂φα

∂∆γβ
∆γβ = 0 α = 1, 2, . . . , N (5.29)

In an incremental setting, the quantities evaluated at ∆γβ = 0 essentially correspond to the

previous increment at tn and their values are known. Furthermore, the quantity ∂φα/∂∆γβ is

from definition the Jacobian that we calculate in the Newton’s loop for ∆γα in the heuristic

algorithm. Thus, we can rewrite expression (5.29) in the form:

φα|n+1 = φα|n +
Nas∑
β=1

Jαβ∆γβ = 0 α = 1, 2, . . . , N (5.30)

Using (5.30) we can alternatively determine the plastic slips of all available systems as the

solution of the following linear optimization problem:

Minimize φα|n +
Nas∑
β=1

Jαβ∆γβ = 0

s.t. ∆γα ≥ 0

φα ≤ 0

Then again, the optimal values for ∆γα’s are used to populate the set of active systems An+1

at tn+1 as:

∆γα ≤ 0→ System α inactive. Elastic response

∆γα > 0→ System α is active. Plasticity

Computationally, finding the optimal solution for the linear optimization problem stated

above, is considerably easier than solving the corresponding nonlinear optimization prob-

lem. Furthermore, the linear formulation guarantees that a unique optimal solution will

always exist. However, implementing the above linear optimization problem instead of the

heuristic algorithm or the nonlinear optimization formulation, should be accompanied with

a significantly smaller time step ∆t for convergence12 within a reasonable amount of itera-

tions. In addition, special treatment is required in general before solving the aforementioned

minimization problem, since the Jacobian matrix is not always symmetric.

12Convergence here refers to the non–linear finite element equations that approximate the actual problem.
The finite element implementation and the system of equations that needs to be solved incrementally are
both addressed in detail in Chapter 6



Chapter 6

Computational Issues II - FEM Implementation

Let us consider the spatial configuration of a general continuum body, which in it’s

reference state at t = 0 occupies volume V0 with a mass density ρ0. The body is then loaded

by body forces b per unit mass and traction forces t̂ acting on a part of its surrounding

surface St, while a portion of it’s surface Su
1 is subjected to known displacements û. As

a result, after a time period ∆t the body is deformed and occupies volume V with a mass

density ρ, surrounded by surface S. The equilibrium equations2 are expressed in terms of

the Cauchy stress tensor as:
∂σij
∂xj

+ ρbi = 0 (6.1)

The kinematic relationships are also introduced as:

Dij =
1

2

(
∂υi
∂xj

+
∂υj
∂xi

)
(6.2)

defining the deformation rate tensor D that corresponds to the velocity field υ. The de-

formable material is governed by a general constitutive law of the form:

∇
σ =

∇
σ (L) (6.3)

where
∇
σ represents the Jaumann rate of σ commonly used to describe the constitutive

behavior of solids and L is the velocity gradient tensor defined in Section 1.5. We also

introduce the conditions defining the applied forces and displacements in the boundary ∂S:

u = û = known on Su (6.4)

1Note that Su ∩ St = ∅ and Su ∪ St = S
2Assuming that dynamic phenomena are not involved and therefore the acceleration field a vanishes
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t̂ = σ · n = known on St (6.5)

Equations (6.1–6.5) constitute the Strong Formulation of the Boundary Value problem.

An alternative formulation can also be introduced as follows. We begin by replacing the

three equilibrium equations in (6.1) by a unique scalar equation3 over the entire body. This

equation is obtained by multiplying the differential equations in (6.1) by a virtual (arbitrary

but continuous and differentiable) velocity field δυ∗ and then integrating over the entire

volume of the continuum body (Papatriantafyllou [42]). Hence:∫
V (t)

[
∇ · σ + ρb

]
· δυ∗ dV = 0 (6.6)

The chain rule permits us to write:

∇ · (σ · δυ∗) = (∇ · σ) · δυ∗ + σ : (∇ δυ∗)

and making use of Gauss’s theorem4 we can also write:∫
V (t)

[
∇ · σ

]
· δυ∗ dV =

∫
V

[
∇ · (σ · δυ∗)− σ : (∇ δυ∗)

]
dV

=

∫
S(t)

n · σ · δυ∗ dS −
∫
V (t)

σ : (∇ δυ∗) dV

=

∫
S(t)

t̂ · δυ∗ dS −
∫
V

σ : δL∗ dV (6.7)

where δL∗ is the velocity gradient tensor corresponding to the virtual velocity field δυ∗.

Let us also decompose δL∗ into its symmetric δD∗ and antisymmetric part δW∗ and take

advantage of the symmetry of σ to write5:

σ : δL∗ = σ : (δD∗ + δW∗) = σ : δD∗ + σ : δW∗ = σ : δD∗ (6.8)

Now combining equations (6.6),(6.7) and (6.8) we can express the alternative formulation of

the BVP as:

G(∆u) =

∫
V (t)

σ : δD∗ dV −
∫
S(t)

t̂ · δυ∗ dS −
∫
V (t)

ρb · δυ∗ dV = 0 (6.9)

The above formulation is also called the Weak Formulation of the BVP and provides the

basis for the Finite Element approximation introduced in the following section.

3Note that this replacement does not violate the generality
4Also known as the divergence theorem
5Recall that the double dot product of a symmetric and an antisymmetric tensor equals to zero
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6.1 Finite Element Approximation

In a finite element setting, the solution is developed incrementally with the displacement

variation denoted as ∆u(x) being the primary unknown of the problem. Once ∆u is deter-

mined, the displacement field at the end of the current increment at t = tn+1 is calculated

as [42]:

un+1(x) = un(x) + ∆u(x) (6.10)

and consequently the current position of any material point within the continuum body can

be directly updated as:

xn+1 = X + un+1(x) (6.11)

Discretizing the continuum body into finite elements, we express the unknown displacement

increment ∆u as a function interpolation6 within each element as:

{∆u(x)}
3×1

= [N(x)]
3×n

{
∆uN

}
n×1

(6.12)

where [N(x)] is the interpolation matrix that consists of user–defined ”shape” functions,

whereas
{

∆uN
}

is the vector of nodal unknowns. Now recall that the virtual velocity field,

δυ∗, must be compatible with all kinematic constraints. The interpolation introduced in

(6.12) however, constrains the displacement to have a certain spatial variation and therefore

δυ∗ must also be defined using the same function interpolation [2]. Hence,

{δυ∗}
3×1

= [N(x)]
3×n

{
∆υ∗N

}
n×1

(6.13)

The virtual strain rate tensor δD∗ is also expressed in array form as:

{δD∗}
6×1

= [B(x)]
6×n

{
∆υ∗N

}
n×1

(6.14)

where [B(x)] is the matrix containing the spatial derivatives of the shape functions Nα(x)

in the sense Bαβ = 1/2(Nα,β + Nβ,α). Finally we introduce the array notations of the rest

quantities in the Weak form (6.9) as:

σ −→ {σ}
6×1

t̂ −→ {t}
3×1

b −→ {b}
3×1

Substituting each term in (6.9) we derive:

b∆υ∗Ne cA
e

 ∫
V en+1

(
[B]Tn+1 {σ}n+1 − [N ]Tn+1 {b}n+1

)
dV e −

∫
Sen+1

[N ]Tn+1 {t}n+1 dS
e

 = 0

where Ae represents the Assembly operation. Note however, that since the above expression

must hold ∀ b∆υ∗Ne c, we can derive:

6The specific interpolation was first introduced by Galerkin
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A
e

 ∫
V en+1

[B]Tn+1 {σ}n+1 dV
e −

∫
Sen+1

[N ]Tn+1 {t}n+1 dS
e −

∫
V en+1

[N ]Tn+1 {b}n+1 dV
e

 = 0

Now let’s define the external load vector comprising of the traction and body forces as:

{F}ext
n+1 = A

e

 ∫
Sen+1

[N ]Tn+1 {t}n+1 dS
e +

∫
V en+1

[N ]Tn+1 {b}n+1 dV
e


At this point recall that {σ}n+1 is a non–linear (in general) function of the unknowns {∆uN},
so that we write:{

R(∆uN)
}
n+1
≡A

e

∫
V en+1

[B]Tn+1 {σ}n+1 dV
e − {F}ext

n+1 = {0} (6.15)

where {R(∆uN)}n+1 is the residual forces vector expressing the difference between the inter-

nal σn+1 and external tn+1, bn+1 forces. The solution of the ‘weak’ problem is the displacement

field {∆uN} that satisfies the system of equations in (6.15), or equivalently, the displacement

field that at t = tn+1 equates the applied loads {F}ext
n+1 to the internal forces {σ}n+1.

The non–linear system of equations is solved numerically implementing Newton’s method.

Thus, we need to derive an expression for the Jacobian matrix and then iteratively solve for

the unknowns ∆uN each increment. From definition, the Jacobian matrix, which we denote

as [K], is:

[K] =

[
∂{R(∆uN)}n+1

∂{∆uN}

]
(6.16)

6.2 Calculation of the Jacobian

Instead of trying to derive an expression for the Jacobian [K] from the approximated form

in (6.15) we will alternatively begin with the continuum form in (6.9), calculate dG and

then introduce the finite element approximation. First, let us express all integrals involved

in (6.9) with respect to the reference configuration. Doing so, we avoid having to take into

account variations of the form V = V (t) and S = S(t), involved in the limits of integration,

when taking the derivative dG7.

G(∆u) =

∫
V

tr (σ · δL∗) dV −
∫
V0

ρ0b · δυ∗dV0 −
∫
S0

t̂0 · δυ∗dS0 (6.17)

7Here we also take into account expression (6.8) to replace σ : δD∗ with σ : δL∗.
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where ρ0 and t̂0 stand for the mass density and nominal traction vector at t = 0 respectively.

Recalling equations (6.10) and (6.11) we note that:

dxn+1 = d(X + un+1) = d(xn + ∆u) = d(∆u) (6.18)

Next, we ‘push–back’ the first integral in (6.17) from the current to the reference state.∫
V

tr (σ · δL∗) dV =

∫
V0

tr

(
σ · ∂δυ

∗

∂X
· ∂X

∂x

)
J dV0 =

∫
V0

tr

(
σ · ∂δυ

∗

∂X
· F−1

)
J dV0

and by substituting into (6.17), the Weak formulation of the BVP can be written with respect

to the reference state as:

G(∆u) =

∫
V0

tr

(
∂δυ∗

∂X
· F−1 · σ

)
J dV0 −

∫
V0

ρb · δυ∗dV0 −
∫
S0

t̂0 · δυ∗dS0 (6.19)

Now assuming that all initially applied forces are independent of the body’s motion, we can

derive:

dG =

∫
V0

tr

[
∂δυ∗

∂X
·
(
d(F−1) · σ + F−1 · dσ + F−1 · σdJ

J

)]
J dV0

but:
∂δυ∗

∂X
=
∂δυ∗

∂x
· ∂x

∂X
= δL∗ · F

so that the last expression for dG becomes:

dG =

∫
V0

tr

[
δL∗ ·

(
F · d(F−1) · σ + dσ + σ

dJ

J

)]
J dV0 (6.20)

and therefore we only need to evaluate the expressions F · d(F−1), dσ and dJ/J .

Evaluation of F · d(F−1):

F · F−1 = δ ⇒ dF · F−1 + F · d(F−1) = 0⇒ F · d(F−1) = −dF · F−1

but note that:

dF = d

(
∂x

∂X

)
=
∂(dx)

∂X
=
∂ (d(∆u))

∂X

where we made use of the result in (6.18). Now combining the above two expressions we

have:

F · d(F−1) = −∂ (d(∆u))

∂X
· ∂X

∂x
= −∂d(∆u)

∂x
⇒

F · d(F−1) = −dL (6.21)
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Evaluation of dJ/J :

Recalling the definition of J as the determinant of the deformation gradient F we write:

J = detF

Using Jacobi’s formula, we can express the quantity dJ (the derrivative of the determinant

of F) in terms of the adjugate matrix of F and dF as follows:

dJ = tr [adj(F) · dF]

but since the inverse F−1 exists from definition, the adjugate of F is given by:

adj(F) = J F−1

and thus:

dJ = J tr
[
F−1 · dF

]
but we have already shown that:

dF · F−1 = dL

Therefore, combining the last two expressions, the quantity dJ/J can be expressed as:

dJ

J
= dLkk (6.22)

Before continuing with the evaluation of dS let us substitute expressions (6.21) and (6.22)

to (6.20) while taking into account that tr[A ·B] = A : BT to derive:

dG =

∫
V (t)

δL∗ :
[
dσ − σ · dLT + σ dLkk

]
dV (6.23)

Evaluation of dσ:

At this point we note that dσ expresses the stress variation with respect to the displacement

increment ∆u. Analytical expressions for dσ depend on both the constitutive model under

consideration and the algorithm used for the numerical integration8 of the constitutive equa-

tions. Furthermore, expressions for dσ are widely based on approximate techniques since it’s

exact evaluation is a very involved process when accounting for finite strains and rotations.

First, let us express the time variation of the deformation gradient F during the time incre-

ment [tn, tn+1] as:

F(t) = ∆F(t) · Fn (6.24)

and the corresponding deformation rate tensor D can be expressed as:

D(t) =
[
Ḟ(t) · F−1

]
s

=
[

˙
∆F(t) ·∆F−1

]
s

(6.25)

8i.e. Forward Euler, Backward Euler etc.
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Recalling the Polar Decomposition theorem, we can write ∆F(t) = R(t) ·U(t). Assuming

that the Lagrangian triad associated with ∆F(t) remains fixed over the period of one in-

crement we can substitute the polar decomposition of ∆F(t) to (6.25) and write D in the

form:

D(t) = R(t) · Ė(t) ·RT (t) (6.26)

where E stands for the logarithmic strain9. It can also be shown that the spin tensor W(t)

is in this case given by:

W(t) = Ṙ(t) ·RT (t) (6.27)

The Jaumman rate of Cauchy stress is then expressed as:

∇
σ(t) = R(t) · d

dt
[σ̂(t)] ·RT (t) (6.28)

where:

σ̂(t) = RT (t) · σ(t) ·R(t) (6.29)

We also note that:

˙̂σ(t) =
∂σ̂(t)

∂E(t)
: Ė(t) = Ĉ(t) : Ė(t) = Ĉ(t) :

(
RT (t) ·D(t) ·R(t)

)
(6.30)

Substituting the last result into expression (6.29) we derive:

∇
σ(t) = R(t) ·

[
Ĉ(t) :

(
RT (t) ·D(t) ·R(t)

)]
·RT (t) =

= C(t) : D(t) = C(t) : L(t) (6.31)

where C and Ĉ are related by:

Cijkl = RimRjnRkpRlq Ĉmnpq (6.32)

Next, recalling the definition of Jaumann stress rate as:

∇
σ = σ̇ + σ ·W −W · σ

we can replace W as Ls and then express σ̇ as:

σ̇ =
∇
σ−1

2
σ ·
(
L− LT

)
+

1

2

(
L− LT

)
· σ ⇒

σ̇ = C : L− 1

2
σ ·
(
L− LT

)
+

1

2

(
L− LT

)
· σ (6.33)

Expression (6.33) can now be used to approximate dσ as:

dσ ∼= C : dL− 1

2
σ ·
(
dL− dLT

)
+

1

2

(
dL− dLT

)
· σ (6.34)

9In the special case where the principal directions of U(t) remain constant, the logarithmic strain rate is
associated with the stretch tensor U(t) as Ė = U̇ ·U−1
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Let us know substitute the above approximation for dσ into (6.23) to derive:

dG =

∫
V (t)

δL∗ :

[
C : dL− 1

2
σ ·
(
dL− dLT

)
+

1

2

(
dL− dLT

)
· σ + dLkkσ

]
dV

or equivalently and in a more compact form:

dG =

∫
V (t)

δL∗ : [C + S + σ δ] : dL dV (6.35)

where S is given by:

Sijkl =
1

2
(δikσjl − δilσjk − σikδjl + σilδjk)

Since we successfully derived an epxression for the Jacobian (6.35), we can now introduce

the finite element approximation summarized by expressions (6.12–6.13). Let us also ap-

proximate δL∗ and dL as:

{δL∗}
6×1

= [BL(x)]
6×n

{
∆υ∗N

}
n×1

(6.36)

{dL}
6×1

= [BL(x)]
6×n

{
∆υN

}
n×1

(6.37)

where the matrix [BL(x)] contains the shape function derrivatives in the sense BLαβ = Nα,β

and therefore differs from matrix [B(x)] used to approximate δD∗ in (6.14). Now if we

substitute (6.12), (6.13) along with (6.36) and (6.37) to (6.35) we will eventually derive:

dG = b∆υ∗Nc

A
e

∫
Ve

[BL]T ([C] + [S] + {σ}bδc) [BL] dV e

{∆υN
}

and since the global Jacobian10 is made up by assembling the Jacobians defined within each

element as:

[K] = A
e

[ke]

we can express the Local Jacobian of every element as:

[ke] =

∫
Ve

[BL]T
(

[C] + [S] + {σ}bδc
)

[BL] dV e (6.38)

It should be noted that the expression for the Local Jacobian given by (6.38) is ap-

proximate, not only because we introduced the Finite Element approximation for the basic

quantities involved, but mainly because of the approximation for dσ expressed in (6.34).

This approximation however, only affects the rate of convergence to the solution but not the

10Also referred to as the global Stiffness Matrix
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solution itself. We should also note that while [S] defines a symmetric matrix, the product

{σ}bδc is a non–symetric matrix causing the local jacobian [ke] to be non–symetric as well.

Furthermore, in our single crystal model, [C] is non–symmetric as well.

Abaqus/Standard [2] module of the Abaqus general purpose finite element software is

based on the formulation presented above and uses expression (6.38) to build the local

stiffness matrix of every finite element. The Abaqus [2] software supports the computational

implementation of user–defined, enabling users to introduce complex constitutive material

models in the form of a User MATerial subroutine.

6.3 User MATerial Subroutines

User MATerial subroutines (UMAT) are used in conjuction with the ABAQUS [1] general

purpose finite element software and enable the finite element analysis of complex non–linear

materials. Abaqus provides a general user interface so that a particular constitutive model

can be introduces as a ‘user–subroutine’ in a programming language such as FORTRAN.

Recalling the finite element approximation that we introduced in (6.12), the unknown

displacement field is approximated by a function interpolation defined within each element.

The nodal displacements are the main unknowns of the discretized problem, whereas stresses

and strains are being calculated at the integration points of each element11. UMAT sub-

routines can be used with any ABAQUS procedure that includes mechanical behavior and

are called by ABAQUS at every integration point of all elements for which the material

definition includes a user-defined material behavior. Primarily, a UMAT subroutine must

update stresses at the end of the increment for which it is called, and also provide the ma-

terial (Local) Jacobian matrix ∂(∆σ)/∂(∆ε) corresponding to the mechanical constitutive

model under consideration. When developing a UMAT subroutine the user is also free to

define solution–dependent state variables (STATEV)12 and ABAQUS will store their values

at the end of every increment, making them available for future calculations on subsequent

increments. Solution dependent variables however, also need to be updated to their values

at the end of every increment.

A typical iterface of a UMAT subroutine [2] is demonstrated below.

11The number of integration points of a finite element as well as their position within the element both
depend on the type of element being used (i.e. Full Integration, Reduced Integration, Shell Elements,
Continuum Elements, Membrane Elements etc.)

12A Solution Dependent variable could be any variable whose value is necessary to conduct material
calculations at a given time, or even a variable whose values are needed to be stored for post–processing
usage.
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1 SUBROUTINE UMAT(STRESS,STATEV,DDSDDE, SSE ,SPD,SCD,
2 + RPL,DDSDDT,DRPLDE,DRPLDT,
3 + STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME,
4 + NDI ,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,
5 + CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC)
6 C
7 INCLUDE ’ABA PARAM. INC ’
8 C
9 CHARACTER∗80 CMNAME

10 DIMENSION STRESS(NTENS) ,STATEV(NSTATV) ,
11 + DDSDDE(NTENS,NTENS) ,DDSDDT(NTENS) ,DRPLDE(NTENS) ,
12 + STRAN(NTENS) ,DSTRAN(NTENS) ,TIME( 2 ) ,PREDEF( 1 ) ,DPRED( 1 ) ,
13 + PROPS(NPROPS) ,COORDS( 3 ) ,DROT( 3 , 3 ) ,DFGRD0( 3 , 3 ) ,DFGRD1(3 , 3 )
14
15 user coding to d e f i n e DDSDDE, STRESS, STATEV, SSE , SPD, SCD
16 and , i f necessary , RPL, DDSDDT, DRPLDE, DRPLDT, PNEWDT
17
18 RETURN
19 END

As aforementioned the user coding must update all state variables (STATEV) and stresses

(STRESS) to their values at the end of the increment and also build the local Jacobian

matrix (DDSDDE). The user is also free to define auxiliary subroutines to perform lengthy

and repeating calculations required in the UMAT subroutine (i.e. matrix inversion, matrix

multiplication, polar decomposition of a tensor etc.). The coding can also take advantage of

the ulility subroutines that are already implemented into ABAQUS13.

13ABAQUS Utility routines are able to find principal directions of tensors, calculate their invariants etc.



Chapter 7

Finite Element Results

In the current chapter, we present the results from the finite element simulations on single

crystal specimens subjected to a series of uniaxial tension experiments. All finite element

analyses were performed using the Abaqus [1] general purpose finite element software and the

rate independent crystal plasticity model was computationally implemented in the form of a

UMAT (User Material) subroutine. The UMAT subroutine uses the heuristic stress update

algorithm (see Section 5.1) to iteratively predict the set of active systems and perform the

numerical integration of the constitutive equations1. All uniaxial tension simulations were

performed using the Static/General step option within the Abaqus/Standard [1] module of

the Abaqus software.

The elastoplastic material constants used in all the finite element simulations, are taken

by the experimental results of Delafosse [24] for nickel single crystals and are summarized in

Table 7.1 that follows.

Table 7.1: Elastoplastic material constants for nickel single crystals (Delafosse 2012)

Material Constant Value

Elastic Constants

C11 246.5 [GPa]

C12 147.3 [GPa]

C44 124.7 [GPa]

Initial flow stress τ0 8.5 [MPa]

Continues on next page

1Section 7.3 is the only exception, where two additional user material subroutines were developed to
implement the Nonlinear Optimization (see Section 5.2) formulation and the Linear Optimization (see Sec-
tion 5.3) formulation respectively, for comparison purposes
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Table 7.1 – Continued

Material Constant Value

Saturation stress τI 12 [MPa]

Hardening
h0 500 [MPa]

hs 26 [MPa]

Strain to cause 1st yield γ0 0.001

Ratio Active/Cross Hardening q [0,0.1]

7.1 One Element Test of a Single Crystal

In order to validate the computational implementation of the crystal plasticity model we

first conducted a series of finite element simulations using a mesh consisting of a single

finite element2. The specimen’s shape is assumed to be a cube with sides of 1 [mm] and

is discretized using one C3D8H3 finite element from the Abaqus [1] element library. A

prescribed concentrated force field along the e2 direction is then applied to the vertices of

the cube, subjecting the single crystal specimen to uniaxial tension. Boundary conditions

are also added to constraint the bare minimum4 of 6 displacement degrees of freedom, in

order to enable the single crystal specimen to deform freely and simultaneously eliminate

rigid body modes. The concentrated force field and boundary conditions are illustrated in

Figure 7.1 that follows.

1e

2e

3e

Figure 7.1: An illustration of the prescribed force field and boundary conditions applied on the single
finite element subjected to unconstrained uniaxial tension

2Abaqus [2] strongly recommends that User MATerial subroutines have to be initially tested on a single-
element model with prescribed traction loading

3C3D8H: A hybrid 3D continuum brick with linear shape functions and costant pressure
4It can be mathematically proven that a minimum of 6 displacement d.o.f. need to be constrained to

eliminate rigid body motions and rotations in 3D analyses
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Before subjecting the single crystal specimen to uniaxial tension, we have to decide an

initial relative orientation of the local crystal system with respect to the global cartesian sys-

tem shown in Figure 7.1. Recalling our discussion on the relative orientation in Section 3.2,

we can successfully position the crystal in space once we define two vectors5 with respect to

the global and crystal systems. Hence, we choose:

p = e2 =
1√
35

(
1 n(1) + 3 n(2) + 5 n(3)

)
= [1 3 5] (7.1a)

q = e3 =
1√

1190

(
29 n(1) − 18 n(2) + 5 n(3)

)
= [29 18 5] (7.1b)

The transformation matrix requires the definition of a third vector, which can be readily

obtained from p and q as r = q × p. The above selections for p and q are such that

the crystal is initially oriented for easy glide6 and also the slip direction will initially be 45o

relative to the e3 axis. In order to identify the primary slip systems for the specific easy glide

orientation, we calculate the Schmid factors that correspond to each system (Table 7.2).

Table 7.2: The Schmid factors of the 12 slip systems of FCC crystals for uniaxial tension in the
[1 3 5] crystal direction

Slip System Schmid Factor

5 0.489897949

2 0.419912527

6 −0.326598632

7 −0.279941685

1,3 −0.209956264

4 −0.163299316

8,9 0.139970842

10 −0.093313895

11 0.069985421

12 0.023328474

The resulting Schmid factors justify that aligning the tension direction with the crystal

direction [1 3 5], positions the crystal for easy glide, since slip system 5 exhibits the greatest

factor and will be the only system to yield first. In addition, slip system 2 will be the second

slip system to activate, probably soon after the activation of system 5. The Schmid factors7

for all other slip systems are quite smaller, and thus we do not expect those systems to add

significantly to the crystal’s deformation during the uniaxial tension experiment.

5The vectors must not be parallel with each other
6Aligning the loading direction in uniaxial tension with the crystal direction [1 3 5] guarantees that only

one system will be initially activated. This can be easily shown by calculating the Schmid factors for the
specific orientation to show that slip system no.5 is the only optimally oriented system

7Negative Schmid factors indicate that the corresponding slip system will activate in the opposite direction
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Figures 7.2a and 7.2b illustrate the anisotropic and non–uniform deformation of the single

crystal specimen, presenting the actual undeformed and deformed shapes before and after

the uniaxial tension analysis.

(a) Undeformed Shape (b) Deformed Shape

Figure 7.2: The deformed and undeformed shapes of a single crystal finite element subjected to
uniaxial tension

Next we present the finite element results for the aforementioned uniaxial tension setting.

The first analyses correspond to a selection of the cross–hardening parameter as q = 0 (Bas-

sani & Wu [11, 12]) and therefore a diagonal8 hardening moduli hαβ. Figure 7.3 illustrates

the macroscopic true stress–logarithmic strain curve for the specific uniaxial tension setting.

Coloured points indicate the corresponding slip system currently activating and added to

the active systems set A .
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Figure 7.3: True stress–logarithmic strain curve for uniaxial tension of a single crystal finite element
with q = 0

8Latent hardening effects are ignored as a result of q = 0
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In total, 11 slip systems activate during the uniaxial tension test, and the order of activa-

tion is in complete agreement with the one predicted using the Schmid factors in Table 7.2.

Figures 7.4a and 7.4b present the resolved shear plastic strains and critical shear stresses

respectively, for all slip systems that were found to be active during the analysis. Critical

shear stresses are normalized using the initial flow stress τ0.
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Figure 7.4: The evolution of resolved shear strains and critical stresses of all active systems with
respect to the logarithmic strain in tension direction for uniaxial tension of a single crystal finite
element with q = 0

Figure 7.4a, demonstrates that the macroscopic deformation εln during the test is mainly9

9All other systems undergo insignificant plastic deformation compared to slip system no.5
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the result of plastic slip on slip systems 5 & 2. The latter may be suggesting that the use

of a diagonal hardening moduli (q = 0) eventually populates the set A with ‘pseudo–active’

systems, that do not undergo significant plastic slip. To identify if including the latent

hardening phenomena indeed affects the number of slip systems activated, we performed the

same uniaxial tension simulation with a parameter q equal to 0.1. The σ–εln curve for q = 0.1

is presented in Figure 7.5 along with the curve (Figure 7.3) for q = 0 to ease comparison.
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Figure 7.5: True stress–logarithmic strain curve for uniaxial tension of a single crystal finite element
with q = 0.1. The dashed σ–εln curve corresponds to q = 0. Coloured points indicate the activation
of the corresponding slip system

Evidently, accounting for latent hardening with q = 0.1 is sufficient to populate the set

A with fewer systems. According to the coloured points in Figure 7.5, 6 slip systems were

activated in total during the analysis, which is nearly half the number of systems activated

if no latent hardening is present (q = 0). When Latent hardening phenomena are included,

the critical shear stress ταcr of a system α increases with deformation even if the system is

not active. The latter, is sufficient to suppress the activation of minor loaded systems, which

would undergo insignificant slip even if they activated.

Subsequently, we present the plots for the evolution of γα and ταcr with respect to the

logarithmic strain in tension direction εln, for the dominantly active systems 5 and 2. The

plots are drawn for both the hardening cases (q = 0, q = 0.1) and presented in Figures 7.6a

and 7.6b. A comparison for the different hardening cases, illustrates that the curves for

the dominant slip systems are not dramatically affected by including the latent hardening

phenomena.

Finally, we address the issue of the crystal’s rotation during the uniaxial tension analyses

for both hardening cases (q = 0, q = 0.1). Recalling the concept of stereographic projection

that we introduced in section 2.3, we can demonstrate the evolution of the crystal’s orien-

tation by making use of the inverse pole figure diagrams. Taking into consideration that in

both analyses the crystal was initially oriented for tension along the [135] direction, we save
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Figure 7.6: A comparison of the the γα–εln and ταcr/τ0–εln curves for q = 0 (no cross–hardening)
and q = 0.1

the current direction which is incrementally rotated (see 3.14) by Fp, and plot the loading

direction route in an inverse pole figure10 diagram in the standard triangle. The results for

the uniaxial tension analyses for q = 0 and q = 0.1 are displayed in Figure 7.7.

10To produce the inverse pole diagrams we implemented an auxiliary subroutine within the UMAT for
crystal plasticity to incrementally rotate the crystal direction with Fp
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Crystal Direction
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0.1

Figure 7.7: The loading direction route in the standard triangle, during the uniaxial tension for
q = 0 and q = 0.1. Initially, the loading direction is aligned with [1 3 5].

7.2 Uniaxial Tension of Single Crystal Specimens

Upon completing the initial testing of the computational model as well as the calibra-

tion of the hardening parameter11 q, we conducted a series of finite element analyses to

multi–element models, representing actual specimens used for single crystal testing. Three

specimens designs are considered in total, and their engineering designs are shown in Fig-

ures 7.8a,7.8b and 7.8c below.
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(b) Specimen 2

11From now on we proceed by assuming q = 0.1
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From now on, we will refer to these specimens as Specimen 1,2 and 3 respectively. The

uniform specimen (Specimen 1) is computationally tested only for comparison and validation

purposes and cannot be used in a real–world experiment; it’s uniform shape may result into

unpredictable fracture, anywhere in the region between the grips. Specimen 2, is a commonly

used specimen for the uniaxial tension experiments on single crystals, and is also referred to

as dogbone specimen, a naming convention that justifies its shape.

The specimen models where then discretized using continuum hybrid C3D8H elements

from the Abaqus [1] library. Table 7.3 presents the number of elements,nodes and degrees of

freedom for the mesh of each specimen model and Figures 7.9a–7.9c illustrate an isometric

3D view of the discretized specimens in the undeformed state.

 1
2 

 R12 

 R5 

 2 

 3 

 1
8 

 1 

 2
.9

1 
 2

.9
1 

Grips

Grips

(c) Specimen 3

Figure 7.8: Engineering Sketches of the uniaxial tension specimens (dimensions are in mm)

Table 7.3: The finite element meshes used to discretize the specimens for the uniaxial tension

# Specimen 1 Specimen 1 Specimen 3

Elements 1242 3840 1782

Nodes 3203 9425 4463

d.o.f. 7123 20593 9823

The specimens are then subjected to uniaxial deformation in the following sense. In

contrast to the uniform force field applied to the single–element test, a real–world tensile
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Figure 7.9: The finite element meshes used for the uniaxial tension simulations of the single crystal
specimens. The meshes consist of C3D8H continuum hybrid elements from the Abaqus library

machine12 is only able to impose a uniform displacement field, subjecting the crystal

to constrained uniaxial deformation. We assume that the bottom grip remains fixed during

the experiment and thus constraints all displacement degrees of freedom, namely 1,2 and 3.

The top grip applies a uniform displacement field along direction 2 and also constraints the

specimen from moving along directions 1 and 3.

In the analyses performed, the uniform force field was set equal to 1.8mm for all speci-

mens, even though it clearly subjects the specimens to different nominal deformations, taking

into consideration the respective grip distances prescribed by the designs in Figure 7.8. Sub-

sequently, we present the comparative results for all 3 analyses, in the form of contour plots

of the variables that exhibit the greatest interest to our study.

Figures 7.10a–7.10c display the contour plots of the logarithmic strain in tension di-

rection, while figures 7.11a–7.11c the contours of total accumulated plastic strain on the

primary active slip system no.5. A comparison between figures 7.10a–7.11b,7.10b–7.11b and

7.10c–7.11c suggests that the macroscopic deformation εln
22 is mainly the result of plastic

deformation occurring on slip system 5. Figures 7.12a–7.12c present the contours of the

critical stress on slip system 5, whereas the activation region of the same system is displayed

12In fact, engineers are in the process of developing a new class of special tensile machines, that would
facilitate experimentation on single crystals. These machines are designed to constraint as few degrees of
freedom as possible, enabling the specimen to rotate or even move transversely to the tension direction during
the experiment. Such machines, try to simulate the uniform force field we applied to the single–element test
in the previous section
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Figure 7.10: Contour plots of the logarithmic strain in tension direction εln22
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Figure 7.11: Contour plots of the accumulated plastic strain γ5 on slip system 5

in figures 7.13a–7.13c. Clearly the activation region of slip system 5 for Specimens 1 & 3

is uniform along the complete length between the specimens’s grips. In contrast, the con-

tours for Specimen 2, illustrate that plasticity on system mainly occurs in the narrow tensile

region, but system 5 is also locally active near the grip location.

Finally, figures 7.14a–7.14c illustrate the contours of the Von Misses equivalent stress

and figures 7.15a–7.15c display the contour plots of the number of active systems at the end

of the uniaxial tension experiment. Ideally, the specimen used for the tension experiment

should result in a uniform number of active systems somewhere in the region between the
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Figure 7.12: Contour plots of the critical shear stress τ5
cr of slip system 5
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Figure 7.13: The activation region of slip system 5

grips. In contrast to Specimens 1 and 3, specimen 2 fails to facilitate the activation of a

uniform number of slip systems. This particular observation raises concerns regarding the

adequacy of Specimen 2 for use in uniaxial tension experiments of single crystals. From the

analyses we conducted, Specimen 3 seems to embody the ideal shape, behaving remarkably

similar to Specimen 1. The latter, even though it presents the simplest possible geometry

for a uniaxial tension specimen, cannot be used in a real world experiment.

The force–displacement data were also extracted for each specimen by incrementally

saving the upper grips’ reaction force for a given displacement. Using the initial tensile
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Figure 7.14: Contours of the Misses equivalent stress σ|e
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Figure 7.15: Contours plots showing the total number of active systems after imposing the uniform
displacement field

lengths and cross sections for each specimen, the f–δ curves were converted to nominal

stress (T)–nominal strain (e) curves. Figure 7.16 presents the comparative results after the

application of a 1.8mm displacement for each specimen. The curves are in almost complete

agreement with each other and the minor discrepancies can be attributed to the inability for

an accurate estimate of the ‘actual’ tensile lengths of Specimens 2 and 3.
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7.3 Stress Update Algorithms

In the present section we address the issue of determining the set of active systems

A by implementing the three different stress–update algorithms presented in Chapter 5. In

particular, we investigate the effect of the stress–update algorithm being used in the accuracy

of the active systems set prediction, during the uniaxial tension of a single finite element

(see Section 7.1). We are also interested in comparing the ‘computational requirements’ of

each algorithm, to determine which (if any) is the most suitable for use in the finite element

analysis of models with many degrees of freedom.

At first, we conducted three uniaxial tension analyses on the single–element model, using

a diagonal hardening moduli hαβ , (q = 0) to ensure that the Jacobian matrix (∂φα/∂∆γβ)

is symmetric13. The single–element was subjected to unconstrained uniaxial deformation as

described in Section 7.1 and for every analysis the incremental active set prediction was ac-

complished using the heuristic algorithm, a non–linear optimization subroutine and a linear

optimization algorithm respectively. The nonlinear optimization was executed by the CON-

MAX [33] subroutine, that is able to solve a class of nonlinearly constrained optimization

problems. To compare the algorithms, we extracted the true stress–logarithmic strain points

for each analysis and the results are comparatively displayed in Figure 7.17.

Clearly, the curves are in complete agreement, suggesting that the three stress–update

13The symmetry of the Jacobian matrix is a prerequisite for the implementation of the linear optimization
algorithm. Including the latent hardening phenomena in the form hβα = q hαα leads to a non–symmetric
hardening moduli and therefore, a non–symmetric Jacobian matrix
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algorithms incrementally converge to the same active set A and plastic slips ∆γα. This not

only corroborates the proper formulation of the optimization algorithms and their implemen-

tation as a direct alternative to the heuristic algorithm, but also validates the predictions

made by the latter.
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Figure 7.17: A comparison of the heuristic and optimization based stress update algorithms in the
form of a true stress–logarithmic strain curve for the uniaxial tension of a single element. Latent
hardening is ignored (q = 0)

The heuristic algorithm, which is summarized in Table 5.1 and Figure 5.2, is able to

perform robust predictions for the set of active systems A and is fairly stable even for large

time increments. Assigning An+1 = An as a fist estimate is not a bad estimate of the actual

set for monotonous loading cases. In addition, even when the first estimate fails to meet the

convergence criteria, emptying the set An+1 = ∅ guarantees that it will populate with the

correct systems within a few iterations.

Concerning the optimization algorithms, the linear optimization option performs almost

identical predictions with the heuristic algorithm, while consuming practically the same com-

putational resources per increment and integration point. On the other hand, the nonlinear

optimization approach requires dramatically greater time to predict the set of active systems

in the form of the solution of the nonlinear minimization problem. Table 7.4 illustrates the

average times14 required by each algorithm per increment and integration point for the finite

element analysis of a single C3D8H finite element.

14Even though in general those times depend on the available computational resources, the cpu–time
required for single–element analyses using the Abaqus [1] FEA software is relatively the same on every
machine
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Table 7.4: Actual time required (sec) per integration point for the successful completion of one
increment using the heuristic, the nonlinear optimization and the linear optimization algorithms
respectively

Heuristic Nonlinear Opt. Linear Opt.

sec/inc,ipt 0.017995 8.1527 0.018366

The nonlinear optimization algorithm, requires on average 453 times greater processing

time per increment and integration point than the other two options. Clearly then, the

nonlinear optimization approach does not present a realizable alternative to neither the

heuristic, nor the linear optimization algorithm for multi finite element analyses. However,

the fact that the nonlinear optimization is so time consuming is not a surprise. Recall

that CONMAX incrementally solves an optimization problem with respect to 48 decision

variables (see Section 5.2) for every integration point of every finite element in the model. If

for instance we tried to perform an analysis on Specimen 1 using CONMAX to predict the

active set, for every increment the program would have to solve 9936 optimization problems

with 48 decision variables and 48 constraints each!

Subsequently, we subjected Specimen no.3 (see Figure 7.8c) to uniaxial tension imposing

a uniform displacement field along the tension direction. The heuristic and linear optimiza-

tion algorithms were then tested successively. The latent hardening phenomena were taken

into account by the hardening model in both cases in the following sense,

hβα = q(hαα + hββ) α 6= β

with q = 0.001, building a symmetric hardening moduli hαβ. Figure 7.18 illustrates the

nominal stress–nominal strain curves corresponding to each algorithm predicting the set of

active systems. The T–e curves were created using the output data points for the reaction

force and displacement for the upper grip respectively.

The curves are again in perfect agreement, and the time required for both analysis was

roughly the same suggesting that the linear optimization formulation constitutes a realizable

alternative to the heuristic algorithm. However, we are forced to use a hardening model that

would result into a symmetric hαβ moduli, whereas the heuristic algorithm do not poses such

constraints.

7.4 Crystal Orientation Sensitivity Analysis

The relative orientation of the crystal lattice with respect to the loading direction in a uni-

axial tension experiment is a very important issue for both computational and experimental

crystal plasticity. The initial crystal orientation prior to uniaxial tension, ultimately defines

the slip systems that are going to activate during the experiment, their order of activation,

the existence of the easy glide stage, the ‘amount’ of the crystal system’s rotation and so
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Figure 7.18: True stress–logarithmic strain curves for the uniaxial tension of a single crystal spec-
imen. The two curves where extracted using the heuristic stress–update algorithm and the linear
optimization formulation to determine active systems respectively

on. In the following section we investigate the effect of the crystal’s initial orientation to

deformation in uniaxial tension, in the form of a sensitivity analysis, quantifying the results

in comparative graphs and contour plots.

Motivated by the experimental investigations of Diehl [25] presented in the works of

Honeycombe [31], we subjected the single finite element to a series of uniaxial tension anal-

yses. The tension direction was successively aligned with a different crystal direction for

every finite element analysis, through the definition of the transformation matrix between

the crystal and global axes. The stereographic projections of all the crystal directions under

consideration are assumed to lie on the standard triangle15. To facilitate the description

of points within the triangle, we introduce the auxiliary coordinates (r,Θ) in the following

sense.

Any crystal direction p can be written with respect to the crystal axes n(i) in terms of it’s

spherical components as:

p = sin θ(cosφn(1) + sinφn(2)) + cos θ n(3)

The corresponding stereographic projection vector can then be written in the form:

ρ = r(cos Θn(2) + sin Θn(3))

where

tan Θ = (tan θ sinφ)−1 and r =
√

(sin θ sinφ)2+cos2 θ
(1+sin θ cosφ)2

Then, the region inside the standard triangle can be defined as the collection of points for

15without any loss of generality
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which Θ ∈ [0, π/4] and r ∈ [0, Rmax(Θ)], with:

Rmax(Θ) =
√

1 + cos2 Θ− cos Θ

The new set of coordinates (r,Θ) is schematically illustrated within the standard triangle

in Figure 7.19 that follows. In order to ‘scan’ a representative area of the standard trian-

gle, we consider the points that correspond to Θ = 0o, 9o, 18o, 27o, 36o, 45o and r/Rmax =

0, 0.2, 0.4, 0.6, 0.8, 1 which are displayed in Figure 7.20.

Rmaxr

Figure 7.19: A schematic representation of the auxiliary coordinates (r,Θ) that facilitate the de-
scription of projections inside the standard triangle

Assuming that the tension direction is successively aligned with the crystal direction

implied by the point under consideration, every coloured marker in Figure 7.20 essentially

represents a different crystal orientation. In this sense then, every coloured marker corre-

sponds to a finite element analysis and 31 finite element analyses were required in total to

extract the comparative results. In all finite element simulations, the finite element was

subjected to the same–uniform force field and the active systems were determined by

making use of the heuristic stress–update algorithm. Also, all analyses were performed using

the same time incrementation.

Figures 7.21a–7.21f illustrate the true stress–logarithmic strain curves that correspond

to each finite element analysis. The results were grouped so that each figure demonstrates

the σ–εln curves for constant Θ and varying r/Rmax.

The qualitative ‘variaty’ of the resulting σ–εln curves, validates the preliminary hypothesis

that the plastic behavior of single crystals strongly depends on the initial crystal’s orientation

with respect to the loading direction. Even though the same force field was applied in all

cases, the overall behavior varies substantially for different orientations. For orientations

corresponding to Θ = 0o for instance (Figure 7.21a), the crystal exhibits logarithmic strains

that vary from 2% up to 50% for r/Rmax equal to 0 and 0.6 respectively. In fact, the σ–εln
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crystal is initially oriented so that the tension direction is parallel to the crystal direction implied
by every point and finite element analyses are conducted successively

curve for (0.6Rmax, 0
o), is almost identical to the hardening curve in Figure 3.3 which was

drawn qualitatively, based only on the ‘physics’ of dislocation motion and their interactions.

In particular, the σ–εln curve exhibits a prolonged Stage I16, while also clearly displaying

the linear hardening and dynamic recovery stages.

Finally, the resulting curves all together, are very close to the experimental results of Diehl

[25], although the comparison has only qualitative sense since Diehl conducted experiments

on copper single crystals.

Subsequently, we conducted a second series of similar analyses in an effort to obtain a

comprehensive supervision of the crystal’s orientation ‘sensitivity’. Particularly, representing

the orientation dependance of a macroscopic or internal variable in the form of a contour

plot, would facilitate perception regarding ‘how’ the variable being plotted is affected by the

crystal’s orientation. A typical macroscopic variable of interest would be the logarithmic

strain in tension direction and the respective contours at the end of the tension experiment.

The contours of εln in the standard triangle for instance, would facilitate the division of the

standard triangle into ‘softer’ and ‘harder’ regions17. On the other hand, we could also draw

the contours of internal variables such as the critical stress or plastic strain on a given slip

system. These plots, would inform us about which ‘orientations’ facilitate the activation of

a given slip system, but also facilitate the perception of latent hardening phenomena18.

16implying that that the point (0.6Rmax, 0
o) corresponds to an easy glide orientation

17Recall that we apply a fixed uniform force field
18It is not clear how at this point. We will focus on how the aforementioned contour plots can be used to
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(b) Curves for Θ = 9o and varying r/Rmax

Based on Figure 7.20, we conducted uniaxial tension analyses aligning different crystal

directions with the tension direction. However, the 31 analysis points used to extract the

σ–εln curves do not suffice for the construction of a high quality contour plot. To make sure

that the output information would be sufficient to draw the contours for each variable, we

considered the analyses points indicated by the coloured markers in Figure 7.22.

The coloured markers imply that a total of 111 finite element analyses was necessary.

In an effort to minimize the post–processing time required to extract the results for every

analysis, we developed a URDFIL19 Abaqus [1] subroutine, to work in conjunction with the

UMAT subroutine.

Figures 7.23 and 7.24a–7.24m that follow demonstrate the contour plots for εln as well as

get a sense of latent hardening intensity, later on when we present the contour plots themselves
19URDFIL subroutines are capable of accessing the .fil results file of the desired Abaqus job, to automat-

ically extract and save any results requested
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for the critical stresses and plastic strains for all slip systems that were activated in at least

one of the 111 analyses. The contours are drawn in the standard triangle to illustrate their

dependence on the chosen crystal orientation.

The contour plot of εln shown in Figure 7.23, can be interpreted as follows. Red tinted

areas correspond to crystal orientations for which the macroscopic logarithmic strain is

greater, for a fixed force field, and therefore constitute the triangle’s ‘softer’ regions. In

contrast, blue tinted regions, constitute the ‘harder’ regions, since they correspond to smaller

εln for a given F . It is also worth mentioning that the region classification implied by

Figure 7.23, is almost identical to the classification presented in the works of Honeycombe

[31] based on the experiments by Diehl [25].

The plots illustrated in Figures 7.24a–7.24m display the contours of ταcr/τ0 and γα/γ0 side

by side to ease comparison. The contours drawn, are based on the respective values at the
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Figure 7.21: Comparison of true stress–logarithmic strain curves for various loading direction cases

end of each finite element analysis and are only presented for systems that were activated

for at least 1 orientation case. The specific plots can be interpreted in more than one ways,

two of which are discussed thereafter.

At first, the contour plots of γα/γ0 straightforwardly illustrate which orientations pro-

mote the activation of slip system α in the form of ‘regions’ within the standard triangle. For

instance, blue tinted regions represent orientations that do not facilitate the activation of the

slip system under consideration. On the other hand, red tinted regions, indicate orientations

for which the corresponding system is probably one of the primary active slip systems. The

contour plots of ταcr/τ0 on the other hand, cannot be used to determine a slip system’s prefer-

able orientations. If they are presented without being accompanied by the corresponding

plot for γα/γ0, their interpretation is limited to the supervision of the hardening model.
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Figure 7.22: A finite element analysis is preformed for every coloured point in the standard triangle,
assuming that the tension direction is aligned with the crystal direction implied by the point

If however both contours for ταcr/τ0 and γα/γ0 are to be interpreted together, they present

perhaps one of the most perceivable illustrations for latent hardening. In particular, coloured

–other than blue– regions of the ταcr/τ0 contours, that correspond to a blue region in the γα/γ0

contours are the result of latent hardening on system α. The latter is true, since the only way

for a system to harden without being active, is through latent hardening. Alternatively, it is

impossible to determine a blue area in the plot for ταcr/τ0 if the same region in the respective

plot for γα/γ0 is not blue.

Finally, as shown below, we present a total of 13 plot pairs displaying the contours for

ταcr/τ0 and γα/γ0, which means that, in total, 13 slip systems were activated in all the analyses

performed. This is not unexpected, as it illustrates that each one of the 12 available slip

systems for FCC crystals, will activate for at least one relative orientation implied by the

standard triangle. In fact, the activation of 13 systems, indicates that one slip system did

undergo both positive and negative slip, but not necessarily in the same analysis.
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Figure 7.23: Contour plot of the macroscopic logarithmic strain in tension direction for the uni-
axial tension of a single finite element. The contours illustrate the dependance of the resulting
deformation from the crystal’s initial orientation with respect to the loading direction

Slip System 1� @011DH111L

Τcr
H1L�Τ0

Τcr
H1L
�Τ0

2.0 2.5 3.0 3.5 4.0

Γ
H1L�Γ0

Γ
H1L�Γ0

0 10 20 30 40

(a) Slip System no.1



7.4 Crystal Orientation Sensitivity Analysis 111

Slip System 3� @110DH111L

Τcr
H3L�Τ0

Τcr
H3L
�Τ0

2.0 2.5 3.0 3.5 4.0

Γ
H3L�Γ0

Γ
H3L�Γ0

0 5 10 15

(b) Slip System no.3

Slip System 5� @101DH111L

Τcr
H5L�Τ0

Τcr
H5L
�Τ0

2.0 2.5 3.0 3.5

Γ
H5L�Γ0

Γ
H5L�Γ0

0 1 2 3

(c) Slip System no.5



112 Finite Element Results

Slip System 6� @110DH111L

Τcr
H6L�Τ0

Τcr
H6L
�Τ0

2.0 2.5 3.0 3.5

Γ
H6L�Γ0

Γ
H6L�Γ0

0 1 2 3 4

(d) Slip System no.6

Slip System 9� @110DH111L

Τcr
H9L�Τ0

Τcr
H9L
�Τ0

2.0 2.5 3.0 3.5 4.0

Γ
H9L�Γ0

Γ
H9L�Γ0

0 10 20 30 40

(e) Slip System no.9



7.4 Crystal Orientation Sensitivity Analysis 113

Slip System 10� @011DH111L

Τcr
H10L�Τ0

Τcr
H10L
�Τ0

2.5 3.0 3.5 4.0 4.5

Γ
H10L�Γ0

Γ
H10L�Γ0

0 50 100 150

(f) Slip System no.10

Slip System 12� @110DH111L

Τcr
H12L�Τ0

Τcr
H12L
�Τ0

2.0 2.5 3.0 3.5

Γ
H12L�Γ0

Γ
H12L�Γ0

0 1 2 3 4

(g) Slip System no.12



114 Finite Element Results

Slip System 14� @101DH111L

Τcr
H14L�Τ0

Τcr
H14L
�Τ0

2 3 4 5

Γ
H14L�Γ0

Γ
H14L�Γ0

0 50 100 150 200

(h) Slip System no.14

Slip System 17� @101DH111L

Τcr
H17L�Τ0

Τcr
H17L
�Τ0

2.0 2.5 3.0 3.5

Γ
H17L�Γ0

Γ
H17L�Γ0

0 1 2 3 4

(i) Slip System no.17



7.4 Crystal Orientation Sensitivity Analysis 115

Slip System 18� @110DH111L

Τcr
H18L�Τ0

Τcr
H18L
�Τ0

2.0 2.5 3.0 3.5

Γ
H18L�Γ0

Γ
H18L�Γ0

0 1 2 3

(j) Slip System no.18

Slip System 19� @011DH111L

Τcr
H19L�Τ0

Τcr
H19L
�Τ0

1.8 2.0 2.2 2.4 2.6

Γ
H19L�Γ0

Γ
H19L�Γ0

0 2 4 6

(k) Slip System no.19



116 Finite Element Results

Slip System 20� @101DH111L

Τcr
H20L�Τ0

Τcr
H20L
�Τ0

2.0 2.5 3.0 3.5

Γ
H20L�Γ0

Γ
H20L�Γ0

0 1 2 3 4

(l) Slip System no.20

Slip System 23� @101DH111L

Τcr
H23L�Τ0

Τcr
H23L
�Τ0

3 4 5

Γ
H23L�Γ0

Γ
H23L�Γ0

50 100 150 200 250

(m) Slip System no.23

Figure 7.24: Contour Plots of normalized critical stresses τcr/τ0 (left) and plastic shear strainsγ/γ0

(right) for all slip systems. The contour plots illustrate the dependance of ταcr and γα from the
imposed loading direction



7.5 Analysis of Hydrogen Charged Specimens 117

7.5 Analysis of Hydrogen Charged Specimens

In the present section we investigate the behavior of hydrogen–charged crystals subjected

to unconstrained uniaxial tension. The hydrogen concentration affects both the initial critical

shear stress τ0 of every slip system and also the hardening model as described in Section 4.4

of Chapter 4. The results are compared with the respective ones for hydrogen–free crystals

in an effort to reproduce the experimental observations of Delafosse et al. and Yagodzinskyy

et al. [23, 52, 53].

For the analysis of a hydrogen charged finite element subjected to uniaxial tension, we

consider the following values for the parameters WB, R, T,KT , G, b, VM , NL, ζ, η, α̃, Tc, Hc, c0:

Table 7.5: The parameters used in the computational implementation of the crystal plasticity model
accounting for hydrogen-dislocation interactions

Parameter Value

Trap Binding Energy WB 9.56 [kJ/mol]

Gas Constant R 8.314 [J/mol K]

Absolute Temperature T 300 [K]

Equilibrium Constant KT 46.28

Shear Modulus20 G 86 [GPa]

Burgers vector b 0.249 [nm]

Molar Volume of Nickel VM 6.59 · 10−6 [m3/mol]

Lattice atoms per unit volume NL 9.14 · 1028

Sites per trap η 1

NILS sites per lattice atom ζ 1

Proportionality constant α̃ 0.3

Coefficient of hydrogen effect on τ0 Tc 6 · 106

Coefficient of hydrogen effect on hαβ Hc −1.2 · 105

Initial Hydrogen Concentration c0 0.015

In the analysis performed, the tension direction is aligned with the crystal direction [135]

and latent hardening is take into account via q = 0.1. Also, active systems are determined

using the heuristic stress–update algorithm.

Figure 7.25 displays the true stress–logarithmic strain curve for the uniaxial tension

of a hydrogen–charged single element with c0 = 0.015. The dotted line represents the

corresponding curve for a hydrogen–free crystal, whereas the markers along with the vertical

lines indicate the onset of Stage II hardening. The σ–εln curves suggest that the particular

implementation of the effect of Hydrogen to the crystal plasticity model, does indeed capture

20The Shear modulus for a Nickel polycrystal
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the following experimental ascertainments (Delafosse [23], Yagodzinskyy [52, 53]):

• A 25% elevation of the initial yield stress

• Delayed onset of Stage II hardening ≡ extension of Stage I hardening

The extension of Stage I hardening suggests that the presence of Hydrogen ultimately reduces

the amount of crystal rotation during single slip, responsible for the activation of secondary

slip systems. However, a comparison between the curves in Figure 7.25 and the experimental

ones by Yagodzinskyy [52, 53] in Figure 4.1, indicates that the particular model account-

ing for hydrogen presence may not be sufficient for a perfect agreement with experimental

observations. This can be attributed to our simplistic approach for the modified hardening

model, where we postulated a linear dependence of hαβ from cαT .
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Figure 7.25: The true stress logarithmic strain curves for that correspond to the uniaxial tension
of a hydrogen free and a hydrogen charged single crystal with c0 = 1.5%. The vertical lines indicate
the onset of Stage II, or equivalently the extent of Stage I

Finally, figure 7.26 illustrates the evolution of the normalized concentrations cαT/c0, with

respect to the logarithmic strain in tension direction. The absence of discontinuities in the

curves for cαT corroborates the fact that hydrogen equilibrium as well as the conservation of

total hydrogen concentration were properly implemented in the computational model.



7.5 Analysis of Hydrogen Charged Specimens 119

0.00 0.02 0.04 0.06 0.08 0.10

5.� 10�6

0.00001

0.000015

0.00002

0.000025

0.00003

�ln

cT
�Α��c0

Tension Direction is aligned with �1 3 5� �q�0.1�
Slip System� �Slip Plane� �Slip Direction�

5th� �1 1
�

1
�
� �1
�

0 1
�
�

2nd� �1 1 1� �1
�

0 1�

18th� �1 1
�

1
�
� �1
�

1
�

0�

19th� �1
�

1 1
�
� �0 1

�
1
�
�

13th� �1 1 1� �0 1
�

1�

15th� �1 1 1� �1
�

1 0�

16th� �1 1
�

1
�
� �0 1 1�

8th� �1
�

1 1
�
� �1 0 1

�
�

9th� �1
�

1 1
�
� �1
�

1
�

0�

22nd� �1
�

1
�

1� �0 1 1�

11th� �1
�

1
�

1� �1 0 1�

12nd� �1
�

1
�

1� �1
�

1 0�
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Closure

The constitutive description and computational implementation of a rate independent

constitutive model for single crystal plasticity is not only an intriguing problem but also a

challenging one. The main obstacle encountered in the computational implementation of the

crystal plasticity model, is to incrementally determine the set of active slip systems. The

latter is made possible through the formulation of stress–update algorithms which in general

use iterative methods to determine which systems are active every increment and populate

the active set.

In this work we were concerned with the formulation of a rate independent constitutive

model for single crystal plasticity, combining elementary concepts from material’s science and

continuum mechanics. We presented a heuristic stress–update algorithm but also introduced

the problem using two optimization based formulations. A modified hardening model was

also introduced to incorporate the effects of hydrogen concentration to the plastic behavior

of metal single crystals. A series of finite element simulations were conducted on both single

and multi finite element models, in an effort to investigate the effects of latent hardening,

specimen shape, crystal orientation and hydrogen concentration to the plastic behavior of

FCC metal single crystals. Computationally, we also performed a comparison between the

heuristic and optimization based stress–update algorithms.

Several research directions may be proposed for future work, all of which aim to the de-

velopment of a robust, comprehensive and computationally implementable crystal plasticity

model. A problem of particular interest would be to introduce alternative formulations to

incorporate the hardening effects of hydrogen concentration in an effort to capture exper-

imental observations. Another interesting project would be to computationally investigate

the behavior of single crystal materials that are subjected into complex loading conditions.

To this end, an intriguing project would be the fracture analysis of single crystal specimens.
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Another proposition would be the development of a rate–dependent constitutive model for

crystal plasticity and its comparison with the rate–independent one in several cases.

Ultimately, all aforementioned research directions are motivated by the need for a robust

crystal plasticity model that would be able to perform realistic predictions, be in agreement

with the experimental observations and also simulate the effect of various parameters (i.e.

strain rate, hydrogen concentration, geometric discontinuities, complex loading conditions)

to the plastic behavior of single crystals.
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Appendix A

Deformation Analysis of Simple Shear

The mapping of a simple shear motion with a slip direction s and upon a slip plane m is

of the form:

x = X + γ(t)(X ·m)s (A.1)

m

s

1X

2X

( )tγ

X ⋅X m

Figure A.1: A schematic representation of simple shear where s is the slip direction and m is the
normal to the slip direction

The deformation gradient F that corresponds to this motion is:

xi = Xi + γ(t)Xkmksi ⇒ Fij =
∂xi
∂Xj

= δij + γ(t)δkjmksi = δij + γ(t)simj ⇒

F = δ + γ(t)sm (A.2)
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The velocity gradient L, the deformation rate D as well as the spin tensor W can also be

calculated for the simple shear motion as:

L = Ḟ · F−1 ⇒ L = γ̇(t)sm (A.3)

D = symm(L)⇒ D =
γ̇(t)

2
(sm + ms) (A.4)

W = skew(L)⇒W =
γ̇(t)

2
(sm−ms) (A.5)

Now imagine that a body experiences n simultaneous simple shears. In general, each α

simple shear,where α = 1, 2, ...n, takes place at a different slip direction sα and slip plane

mα. The corresponding deformation gradient is:

F = δ +
n∑

α=1

γα(t)sαmα (A.6)

Note however that the deformation gradient in (A.6) does not represent in general a simple

shear, although we derived that expression by postulating n simultaneous simple shears.

Only in the special cases of s1 = s2 = ...sn (simultaneous shears along the same slip direction

but on different slip planes) , or m1 = m2 = ...mn (simultaneous shears upon the same slip

plane but on different slip directions) equation (A.6) does indeed represent a generalized

simple-shear.
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Uniaxial Tension of a Single Crystal in Single Slip

Herein we present an analytical constitutive description of a single crystal subjected

to uniaxial tension. In general, it is not possible to derive analytical expressions for the

constitutive behavior of a single crystal, even for the simplest of cases. The simplistic

approach of a single crystal that can only undergo plastic deformation in terms of single

slip1,2 is one of the few exceptions for which analytical solutions exist.

In single slip conditions, where the total plastic deformation is the result of plastic slip

in only one system, the motion can be thought as a simple shear motion. Recalling equation

(A.2), the intermediate ‘isoclinic’ configuration, defined by Fp = δ + γsm is such that the

‘directors’ s and m have the same directions as those of the undeformed configuration. Let

p be the unit vector along the tension direction. Then the stress tensor σ is of the form:

σ = σpp (B.1)

The testing machine however constraints the specimen in the sense that material fibers that

are parallel to p are allowed to stretch but not to rotate. In math form this constraint takes

the form:

p′ = F · p = λp (λ = |p′|) (B.2)

Since in metal plasticity the elastic strains are always small we can write that Ue ≈ δ and

the total deformation gradient can be decomposed3 as:

F = Fe · Fp = (Re ·Ue) · Fp = Re · (δ + γsm) (B.3)

1Equivalent to Stage I deformation in Figure 3.3
2Such an imaginary crystal would have to comprise of 1 slip system in total
3The Polar Decomposition of a 2nd order tensor as well as it’s physical interpretation are discussed in

Section 1.3
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Figure B.1: A single crystal in single slip under uniaxial tension

with Re ·ReT = δ. Now combining equations (B.2) and (B.3) we get:

Re · (δ + γsm) · p = λp⇒ (δ + γsm) · p = λReT · p⇒ p + γ (m · p) s = ReT · (λp) (B.4)

Equation (B.4) enables the definition of both λ and Re. For λ:

λ(γ) = |p + γ (m · p) s| =
√

[p + γ (m · p) s] · [p + γ (m · p) s] (B.5)

λ(γ) =
√

1 + 2γ(m · p)(s · p) + γ2(m · p)2 (B.6)

In order to proceed and determine the rotation tensor Re we have to interpret equation

(B.4). Equation (B.4) suggests that vector γ (m · p) s is added to the original vector p to

produce the new vector ReT · (λp) which is the original vector stretched by λ and rotated by

ReT . This means that the axis of rotation due to ReT must be perpendicular to the plane

defined by p and s. Therefore, the unit vector n that defines the axis of rotation due to ReT

is given by:

n =
p× s

|p× s|
(B.7)

Then, the elastic rotation Re can be written as:

ReT = cos θδ+ (1− cos θ)nn + sin θ(n×)⇒ Re = cos θδ+ (1− cos θ)nn− sin θ(n×) (B.8)

Next, we have to determine the angle of rotation θ and thus we dot the last equation with p

Re · p = cos θp + (1− cos θ)n (n · p)︸ ︷︷ ︸
0

− sin θ(n× p) = cos θp− sin θ(n× p) (B.9)
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Now combining equations (B.9) and (B.4) we get:

p + γ(m · p)s = λ cos θp− λ sin θ(n× p) (B.10)

Now let us dot again (B.10) with p to get:

p · p︸︷︷︸
1

+γ(m · p)(s · p) = λ cos θ p · p︸︷︷︸
1

−λ sin θ (n× p) · p︸ ︷︷ ︸
0

⇒ 1 + γ(m · p)(s · p) = λ cos θ ⇒

cos θ(γ) =
1 + γ(m · p)s · p

λ(γ)
(B.11)

To fully define the angle θ however we also need to determine the sin θ, so we dot expression

(B.10) with s to get:

p · s + γ(m · p) s · s︸︷︷︸
1

= λ cos θp · s− λ sin θ(m× p) · s
(B.11)⇒

p · s + γ(m · p) = p · s + γ(m · p)(s · p)2 − λ sin θ(m× p) · s⇒

sin θ(γ) = −γ(m · p) [1− (s · p]2

λ(γ)(m× p) · s
(B.12)

But,

|p× s| =
√

(p× s)i(p× s)i =
√

(eijk pj sk)(eimn pm sn) =
√

(δjm δkn − δjn δkm)pj sk pm sn

=
√
pj sk pj sk − pj sk pk sj =

√
1− (s · p)2

and

(n× p) · s =

(
p× s

|p× s|
× p

)
· s =

(eijk pj sk ei)× (pl el)√
1− (s · p)2

· s =
eijk eilm pj sk pl em√

1− (s · p)2
· s =

=
(δjl δkm − δjm δkl)pj sk pl em√

1− (s · p)2
· s =

pj sk pj ek − pj sk pk ej√
1− (s · p)2

· s =

=
s− (s · p)p√

1− (s · p)2
· s =

1− (s · p)2√
1− (s · p)2

(B.13)

Now using equation (B.13) we can express the sin θ in (B.12) as:

sin θ(γ) = −
γ(m · p)

√
1− (s · p)2

λ(γ)
(B.14)

and recall that:

Re(γ) = cos θ(γ)δ + (1− cos θ(γ))nn− sin θ(γ)(n×) (B.15)
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Uniaxial tension of a single crystal in single slip is perhaps the only case for which we

can derive analytical expressions to describe the σ − ε curve. Recall that in purely single

slip conditions, the flow rule is described by expression (3.27) which we restate below:

ταcr(γ
α) = τ0 + (τI − τ0) tanh

(
h0 − hs
τI − τ0

γα
)

+ hs γ
α (B.16)

The resolved shear stress τ can be expressed with respect to the applied tensile stress σ by

Schmid’s law:

τ = s∗ · σ ·m∗ (B.17)

where s∗ is the vector along the slip direction and m∗ is the normal to the slip plane, in the

current (deformed) state respectively. Now recall that the slip direction vector transforms

during deformation according to s∗ = F · s, whereas the normal to the slip plane as m∗ =

m ·F−1. The multiplicative decomposition of the deformation gradient however (F = Fe ·Fp)

is such that the intermediate configuration defined by Fp is ”isoclinic” suggesting that Fp

does not contribute to vector rotation. Furthermore, the polar decomposition of F combined

with the fact that Ue ≈ δ enable us to rewrite the slip and normal transformations as:
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Figure B.2: The true stress–logarithmic strain curves for the uniaxial tension of a single crystal in
single slip for finite (a) and small strains (b) respectively

s∗ = Re · s and m∗ = m ·ReT (B.18)

Now let us combine expressions (B.1),(B.16),(B.17) and (B.18) all together to get:

τ = (s ·Re) · (σnn) (Re ·m) = σ [p ·Re(γ)s] [p ·Re(γ)m]⇒
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σ(γ) =
τ(γ)

[p ·Re(γ)s] [p ·Re(γ)m]
(B.19)

The macroscopic strain in the loading direction ε is related to the resolved shear strain γ by:

ε = lnλ(γ) (B.20)

Equations (B.19) and (B.20) define a parametric description of the σ − ε curve.
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Appendix C

Solving the Nonlinear System of τ acr − caT

The interdependency of the critical shear stresses and trapped hydrogen concentration on

every slip system, requires the implementation of a numerical method to solve the system of

equations (5.13) & (5.16) which we restate herein:

ταcr|n+1 = ταcr|n+
N∑
β=1

[
(1− δ)(1 +Hc c

α
T |n)hαβ|n + δ(1 +Hc c

α
T |n+1)hαβ|n+1

]
∆γβ

cαT |n+1 =
KT ζ cL|n+1

α̃2 µ2 b3 [η NL + (KT − 1)NL cL|n+1]
(ταcr|n+1)2

Note that this system of equations needs to be solved for every slip system α ∈ P. Before

we proceed by implementing the Newton method, let us simplify the above equations taking

into consideration that all quantities referring to tn along with ∆γα , An+1 , h
αβ|n+1 and

cL|n+1
1 are known. The quantities τ̂α , ĥα , τ̂αh and Ĥα are introduced in terms of known

parameters within every iteration as:

τ̂α = ταcr|n+(1− δ)(1 +Hc c
α
T |n)

Nsp∑
β=1

hαβ|n ∆γβ (C.1a)

ĥα = δ

Nsp∑
β=1

hαβ|n+1 ∆γβ (C.1b)

τ̂αh = τ̂α + ĥα (C.1c)

Ĥα = Hc ĥ
α (C.1d)

1The lattice hydrogen concentration at tn+1 is iteratively passed in from the hydrogen equilibrium
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We also define Y as:

Y =
KT ζ cL|n+1

α̃2 µ2 b3 [η NL + (KT − 1)NL cL|n+1]
(C.1e)

As a result of the definitions (C.1a–C.1e), we can restate the system of (5.13) and (5.16) in

the following simplified form:

ταcr|n+1 = τ̂αh + Ĥα cαT |n+1 (C.2)

cαT |n+1 = Y (ταcr|n+1)2 (C.3)

At this point we note that we could either solve the above system numerically, or alternatively

substitute equation (C.3) to (C.2) to derive a quadratic equation for ταcr|n+1. However, it is

wiser to proceed with a numerical solution, mainly for two reasons. First, a nested algorithm

to solve the system numerically can fairly easily be modified to account for a more complex

hardening model with hydrogen effects. Secondly, the quadratic equation for ταcr|n+1 would

in general produce two possible solutions from which we would have to determine the correct

one. The latter is not always straightforward however, and also introduces the problem of

developing a solution selection criterion.

To implement the Newton Raphson method and solve the system of (C.2–C.3) we rewrite

the equations in the form F(ταcr, c
α
T |n+1) = 0 as:

Fα(ταcr, c
α
T |n+1) =

{
Fα

1

Fα
2

}
=

{
ταcr|n+1 − τ̂αh − Ĥα cαT |n+1

cαT |n+1 − Y (ταcr|n+1)2

}
=

{
0

0

}
= 0 (C.4)

The Jacobian matrix of the above system can be readily calculated as:

[Jα] =

[
∂Fα

1 /∂τ
α
cr ∂Fα

1 /∂c
α
T

∂Fα
2 /∂τ

α
cr ∂Fα

2 /∂c
α
T

]
=

[
1 −Ĥα

−2Y ταcr|n+1 1

]
(C.5)

and is used to calculate the iterative corrections ∆ταcr|n+1 and ∆cαT |n+1 for ταcr|n+1 and cαT |n+1

respectively as: {
∆ταcr|n+1

∆cαT |n+1

}
= −[Jα]−1 · {Fα} (C.6)

The Newton method is initiated by passing in the set (ταcr|n, cαT |n) and also assigning both

variations equal to zero2. In general, this assumption will violate3 the system in (C.4), and

iterative correction of ταcr|n+1 and cαT |n+1 will be necessary. The variables are updated to

their values at i + 1 using their previous values at i and the iterative corrections4 in (C.6)

as:

ταcr|
(i+1)
n+1 = ταcr|

(i)
n+1 + ∆ταcr|n+1 (C.7a)

2∆ταcr|n+1 = ∆cαT |n+1 = 0
3The plastic slips ∆γα that are passed in by the Newton iteration nested in the heuristic algorithm

guarantee that at least for some systems α expression (C.4) will be violated. The effect of ∆γα is included
in the constants defined in (C.1a–C.1e)

4[J ] and {F} are evaluated at i to calculate the corrections and update the solution at i+ 1
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cαT |
(i+1)
n+1 = cαT |

(i)
n+1 + ∆cαT |n+1 (C.7b)

After updating ταcr|n+1 and cαT |n+1 to their values in the current iteration, we check for

convergence in (C.4), and if necessary we iterate again. The algorithm is also summarized

in the following table:

Table C.1: A summary of the Newton iterations required to solve the nonlinear system of τcr|n+1

and cT |n+1

1. Set ταcr|n+1 = ταcr|n and cαT |n+1 = cαT |n

2. Evaluate the system of equations (C.4) at (ταcr|n+1, c
α
T |n+1)

3. If ||Fα(ταcr|n+1, c
α
T |n+1)|| ≤ tol then GOTO 5. Else continue with 4.

4. Reset counter i = 0 and set ταcr|
(i)
n+1 = ταcr|n and cαT |

(i)
n+1 = cαT |n.

i. Update Counter i← i+ 1

ii. Calculate the solution corrections (∆ταcr|n+1,∆c
α
T |n+1) from (C.6)

iii. Update solution using (C.7a–C.7b) and evaluate the system (C.4)

iv. If ||Fα(ταcr|
(i+1)
n+1 , c

α
T |

(i+1)
n+1 )|| ≤ tol then GOTO 5. Else GOTO i.

5. Solution (ταcr|n+1, c
α
T |n+1) has converged for slip system α. Restart calculations for a

different system β 6= α

Finally, we need to address the issue of initial hydrogen allocation in the single crystal

specimen. Before subjecting the hydrogen–charged crystal to uniaxial tension, we have to

determine the concentration of atoms residing in trapped and lattice sites. Usually, for

hydrogen charged single crystal specimens, we determine the ‘amount’ of charging in terms

of the total and constant hydrogen concentration c0 which is the same for every material

point within the continuum body. This introduces the additional problem of determining

how this initial concentration c0 is allocated to cL and cαT .

Recall the conservation of hydrogen that is expressed in (4.15) and is restated below:

cL +
∑
α

cαT = c0 (C.8)

Now recall that the trapped hydrogen concentration, depends on the critical shear stress ταcr
of the slip system under consideration. Before subjecting the specimen to uniaxial tension,

all slip systems are assumed to have equal flow stresses (ταcr = (τ0)H ∀α) and therefore equal

trapped hydrogen concentrations (cαT = cT |0 ∀α). Assuming that c0 is given and therefore
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known, we can restate the conservation of hydrogen as:

cL|0 = c0 −
Nsp

2
cT |0 (C.9)

Besides the hydrogen conservation, the lattice and trapped concentrations must also satisfy

the hydrogen equilibrium which is expressed using equation (5.16) as:

cT |0 =
KT ζ cL|0

α̃2 µ2 b3 [η NL + (KT − 1)NL cL|0]
(τ0)2

H (C.10)

Substituting (C.9) to (C.10) we get:

cT |0 −
KT ζ

(
c0 − Nsp

2
cT |0

)
α̃2 µ2 b3

[
η NL + (KT − 1)NL

(
c0 − Nsp

2
cT |0

)] (τ0)2
H = 0 (C.11)

Finally, recall that trapped hydrogen concentration also affects the initial flow stresses as we

suggested in (4.19):

(τ0)H = (1 + Tc cT |0)τ0 (C.12)

Equation (C.12) can be used to write (C.11) in the form:

cT |0 −
KT ζ

(
c0 − Nsp

2
cT |0

)
α̃2 µ2 b3

[
η NL + (KT − 1)NL

(
c0 − Nsp

2
cT |0

)] (1 + Tc cT |0)2 τ 2
0 = 0 (C.13)

which is a nonlinear equation that needs to be solved for cT |0. Once we solve for cT |0, we

can use equation (C.9) to also calculate cL|0 and completely determine the way hydrogen is

allocated at t = 0.
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