
Abstract

Purpose: So-called "physical constants" might not be as constant as we think. What rules govern absolute quantum metrics vs. covariant emergent metrics? If Newton's Gravitation constant were found to change over time, what would be the consequences? How might that affect our understanding of Cosmic Geometry? Dark Energy? Dark Matter? Goals: (0) What is the true nature of time? (1) Can Quantum Mechanics be unified with Relativity? (2) Could this also yield a resolution of Dark Energy? (3) Can we calculate precise values of fundamental constants and physical quantities from 1st principles: Fine-Structure Constant, α, Planck Units, "Vacuum" properties, electron, proton, neutron masses \& radii? Hypothesis: Imagine Einstein's spacetime manifold wrapped around an ever-expanding Event Horizon. Adding quantum-thin layers to the Black Whole that we call our universe. Quantum time is the radial polar coordinate. These holographic Cosmic Onion layers remember the where \& when of each quantum event. The so-called vacuum is NOT empty, it is a superfluid (no viscosity \& no aether drag). The mass density and energetic oscillations within the elasticity of this superfluid define Planck units, together these define Impedance, Permeability, and Permittivity.

Procedure: I compiled a database of physics equations, rearranging them to solve for the target quantity of each equation-set. I used the speed of light, c, Planck's constant, \boldsymbol{h}, to define \& calibrate kilograms. I used, α, to calibrate Fundamental Charge, e. Carefully

arranging formulae by dependencies \& identifying which formula yielded the smallest relative uncertainty I carried those values forward to other equation-sets, thus validating each formula and crosschecking each numeric value.

Findings: Fundamentally understood the 4 quantumscale dimensional units (absolutely=1) are quantumscale [length] [time] [mass] [charge]. There are 5 emergent SI metrics: [meters], [seconds], [kilograms], [Coulombs], and [Kelvin]. Emergent means that as the circumference of the universe grows at 2 c , the duration of a second and the length of a meter also grow. The values we associate with Planck time and Planck length shrink as the reciprocal of this linear expansion. With my discovery of the EXACT formula for the Fine-Structure Constant my lifelong quest is, herein, being fulfilled.
Conclusion: The Universe is not flat, nor is it of fixed curvature -- it is ever-decreasing positive curvature. A most surprising discovery is that the accumulation of quantum time $\int \tau d \tau$ has units of [time ${ }^{\wedge} 2$].
Cosmological Relativity unifies Special and General Relativity with quantum mechanics by consciously mixing quantum and emergent metrics in the same equations, thus making relativistic math compatible with quantum calculations while eliminating renormalization. These ideas explain phenomena such as Dark Energy, Dark Flow, and anomalies in the Cosmic Microwave Background. All this is the foundation to resolve Dark Matter \& to build a theory of Quantum Gravity. I propose the blue-highlighted calculations herein for CODATA 2022 dataset.
Contents
1 Introducing Cosmological Relativity 3
1.1 Higher Perspective is the Key to Understanding 4
1.2 Accelerated Expansion via Decelerating observer's reference-frame. 7
1.3 The Universe explained from 1st Principles. 9
1.4 Physical Constants vs. covariant Properties 9
1.5 Yellow Brick Road to a Complete Cosmology 10
1.6 Brief Summary up through CODATA 2018 12
1.7 Software Tools created ensuring consistency 12
1.8 Newton's Gravitation (not exactly) Constant. 13
1.9 Grasping Light Speed 14
2 Procedure: calculating fundamentals 15
2.1 Physical quantities: arranged by dependencies \& relative uncertainty 15
2.2 Arbitration of Planck length \& time. 16
3 Findings: CODATA 2018 vs. 2022 calcs 16
3.2 Invisible Geometry of α. 19
3.3 Can an Electron Know the Age of the Universe?... 21
3.4 Think "Quantum Harmonic Resonance". 22
$3.5 e=$ Elementary charge, covariant^1 23
$3.6 \quad q_{-} P=$ Planck Charge $=\operatorname{sqrt}\left(2 h / Z_{0}\right)$; covariant^1. 24
$3.7 \quad m_{-} P=$ Planck Mass; covariant^1 24
3.8 von Klitzing Constantly covariant^-2 25
$3.9 R_{o o}=$ Rydberg Constantly covariant^1 25
$3.10 m_{e}=$ Electron mass, covariant^1 25
$3.11 r_{e}=$ Electron charge radius, covariant^1 26
$3.12 a_{0}=$ Bohr radius, covariant^1 26
3.13 Proton/electron mass ratio. 27
$3.14 m_{p}=$ Proton mass, covariant^1. 27
$3.15 r_{p}=$ Proton charge radius, covariant^1 27
$3.16 a_{p}=$ Proton "mass confinement radius". 28
3.17 G = Newton's Gravitation, covariant^-2 28
Resolve Dark Energy, Dark Flow \& Propose CODATA 2022 values -- by John Wsol. CC BY SA 4.0
$3.18 R_{K}=$ von Klitzing resistance 29
$3.19 G_{0}=$ Conductance quantum 29
3.20 Higgs boson 30
3.21 Hubble's non-Constant, covariant^-1 304 Discussion: Understanding Fundamental Constants\& Covariant Metrics32
4.1 Old School - Flat Spacetime 32
4.2 Cosmological Crisis vs. Opportunity 32
4.3 Particle Physics vs. Wavicle Physics 33
4.4 Quantum Time vs. Emergent Time. 33
4.5 One vs. integers>1 and their reciprocals 34
4.6 Cosmological Relativity: Expanding Space~Time 35
4.7 Planck time vs. Age of Universe 36
4.8 Dark Energy Enigma Resolved. 36
4.9 What's "Planck length", I_P ?. 37
$4.100^{0}=1$ Cosmic Egg + "Let there be light..." 37
4.11 Properties of the 4D Space~Time Medium 39
4.12 Quantum time increment of mass \& Charge 39
4.13 Quantum Gravity: holograms get substance. 40
4.14 What's the matter with Dark Matter? 42
4.15 Length \& Time Covariant ${ }^{\wedge} n, n=-2,-1,0,1,2$ 43
4.16 Covariant ${ }^{\wedge} 0^{\text {th }}$ values are Constant. 43
4.17 Covariant ${ }^{\wedge} \pm 1^{\text {st }}$ Quantities 44
4.18 Covariant ${ }^{\wedge} \pm 2^{\text {nd }}$ 46
4.19 Covariant $\wedge \pm 3^{\text {rd }}$ 48
5 Conclusions 48
6 Acknowledgements 49
7 Appendix 50
7.1 A Conversation with chat-GPT4: 52

We cannot solve our problems with the same thinking that created them. -- Albert Einstein

The enigmas of Dark Matter and Dark Energy were created by the false assumption of Flat Spacetime. Since about 1900, the predominate "scientific thinking" has been stuck on this Flat Spacetime. geometric assumption. By 1920s Friedmann-Lemaître-Robertson-Walker metric presented three options: (1) Flat spacetime, (2) constant positive curvature (spherical), or (3) constant negative curvature (hyperbolic).

The Cosmological Principle ${ }^{\text {A }}$ says that universes must be homogeneous and isotropic.

- Homogeneous ${ }^{\text {B }}$: on "large enough" scales the mass of galaxies MUST be evenly distributed.
- Isotropic: requires that observers in each galaxy see this same kind of distribution in all directions.

The inverted-bell diagram ${ }^{\mathrm{C}}$ illustrates that Flat

Spacetime fails both requirements. Observers in central galaxies see the same distribution patterns in all directions, while observers in galaxies near the edge see a different distribution depending on the direction they look.

Flat Spacetime	Expanding Spherical Space~Time
Only one Arrow of Time for entire universe.	Many Arrows of Time spreading forth in all directions.
Duration of second \& length of meter not allowed to change: Δ [Planck seconds]/second $=0$	Re Table 1.5, duration of each passing second increases by 4.270933837389(12)e25 [Planck seconds/second^2]
Conversion factor from time to space is c, speed of light.	Time to space conversion factor is c / π.
If Space where truly flat, it would be infinite in extent. Light cone would be 45° slope.	Space is finite. Light cone slope $=\arctan (1 / \pi)=17.656787^{\circ}$ and curves around the hyper-spherical universe.

These distinctions are discussed, explained \& illustrated in the next sections.
"If we were placing bets on the ultimate geometry of our universe and the question of the finiteness of space, the smart money would probably bet that it is finite."
-- Lawrence Krauss "The Edge of Knowledge: Unsolved Mysteries of the Universe."D
The assumption of Flat Spacetime has, for over a century, hindered cosmological breakthroughs. These papers attempt to quantify "flatness" by mapping the Cosmic Microwave Background using data from these satellites:

COBE (al. G. S., 1992) ; WMAP (al. D. N., 2007) Planck Satellite. by R.A.R.Ade et. (al. P. A., Planck 2013 results. XVI. Cosmological parameters, 2014) "...we find [Hubble's Parameter] H0 $=(67.3 \pm 1.2) \mathrm{km} \mathrm{s}-1 \mathrm{Mpc}-1$ \& $\Omega \mathrm{m}=0.315 \pm 0.017$, for a flat universe." (Planck Collaboration et al, 2014) claims most precise measurements, better than 0.1% for most parameters. ALL these researchers interpret their observations
through their "flat spacetime bias" and must adjust parameters in their equations accordingly to make their $\Lambda \mathrm{CDM}$ models fit observations. Their "EQUATIONS" need 95% fudge factors. I say the universe does NOT need their equations to exist. If only they were allowed to consider the Cosmic Onion Model with its Cosmological Relativity -- their fudge factors and perplexities would disappear.

What part of "inside-out" are so many people not understanding?

This superb logarithmic scale illustration shows our Earthbound perspective looking out in all directions. The further from our center perspective the more distant, smaller, dimmer and more redshifted those objects "appear" to be.
Beyond the most distant galaxies around the outer most edge is the Cosmic Microwave Background (CMB) with $\mathrm{z}=1089.9 \pm 0.9$. E
But you must ask yourself, "But the CMB was at a time when the universe was only 380,000 years! How can it "seem as if" the whole universe is contained within it!
If you really engage your brain here you've got to say, "But that does not make sense!"
Just like when we view Mars' orbit from our moving reference frame of Earth we see the illusion of "retrograde motion." Here, the illusion is caused by not realizing that we \& observers in all galaxies are expanding away from the past, therefore, we and all observers are on the outer most edge.

Image credit: Pablo Carlos / Wikipedia

1 Introducing Cosmological Relativity

Cosmological Relativity unifies Special and General Relativity with Quantum Field Theory by realizing that our Here \& Now local inertial reference frame experiences Space~Time expansion. This expansion is because each metric and all atoms expand with time, and the math is so simple that it will boggle your mind.

So many equations contain the speed of light squared, c^{2} [meters ${ }^{2} /$ second ${ }^{2}$] this becomes [Δ area]/[Δ Planck seconds/second] - this describes the local reference frame spreading forth its surface area while the number of Planck seconds -- per each new second -- increases linearly with the age of the universe. (Covariant ${ }^{\wedge} 1^{\text {st) }}$).

Truth Passes through 3 Stages:

First, it is Ridiculed.
Second, it is Violently Opposed.
Third, it is Accepted as Self-Evident.

-- German Philosopher, Arthur Schopenhauer

1.1 Higher Perspective is the Key to Understanding

Note the left image above shows a top-looking-down view that "looks as if" spacetime is flat. It creates the illusion that the big bang originates on the outermost edge with the surface of the Cosmic Microwave Background being the furthest we can see from our central viewpoint. This surface "of last scattering"- is over 13 billion light years from our telescopes. Note that the rays of light coming towards us are straight lines through space. But as we tilt this hypersphere that is the universe we see the light cone curves along the time-dimension.
To understand a system, it's best to adopt an outside perspective not influenced by the observer's reference frame. Copernicus, Kepler, Galileo, and other pioneers did this when they "envisioned" the Solar System from above and discovered that "retrograde motion" was an illusion, as shown in this illustration of Earth and Mars following their orbits uniformly.

Let's apply this idea of a higher perspective to the whole universe. As observers, let's step outside of ourselves long enough to observe the Earth, our solar system, and our Milky Way galaxy as just one speck among billions of galactic specks spread across the expanse of Space~Time. Let's envision the entire volume of physical reality from the outer darkness, unaffected by the dynamics of inertial
 reference frames and the expanding spacetime. To, literally, "see out of obscurity" from a timeless perspective...

Spherical Geometry: FLRW-metric's $4^{\text {th }}$ option: Constantly changing positive curvature.

Cosmic Onion Model: describes our universe from a perspective above Space~Time. From a higher perspective, we can see the entire cosmos in a single glance. To see the depths of our holographic Cosmic Onion, we must look from its outermost edge back into the depths of times past. From this external perspective we can realize that the Cosmic Microwave Background ${ }^{\mathrm{F}}(\mathrm{CMB})^{\mathrm{G}}$ is at the core and all galaxies, including ourselves, are expanding away from it in ALL directions. "Now" is always on the edge of the Cosmic Event Horizon. This purplish neural net looking distribution of galaxies expanding outward in all directions.

Since "The Beginning" of time, Quantum Time has been the radial coordinate in a polar coordinate system--an integer count of time quanta, Onion-layers of time. The radius of the universe increases by one time quantum and its circumference increases by 2 Planck lengths. There is one Planck length in each of the four directions. From our Earthly perspective, North, South, East, and West. Your (longitude, latitude) determines which way is up. The direction of local time expansion is aligned with this upward Z-axis. On a cosmic scale this (longitude, latitude) idea can be explained in terms of a cosmic coordinate system and a Quantum Mirror Cosmic Event Horizon Equation. Section 4.10: "The Cosmic Egg" (Animation here). Shown here is our Light Cone in Spherical Horizon surface, photons step out 1 Planck time Space~Time. We are top center, $\&$ then they spread forth 1 Planck length. light from all directions coming towards us, traversing everexpanding Space~Time. Please understand that as we look further out into the universe, we are seeing back into the depths of times past when the universe and everything in it was smaller.

Observers in other galaxies see this same phenomenon from their perspectives. As light propagates on the ever-expanding Event each passing second the duration of a second increases by $4.27 \times 10^{\wedge} 25$ Planck seconds. As the circumference of the universe grows linearly, the current values for Planck length \& Planck time continually shrink as (Covariant^${ }^{\wedge}-1$), $1 / t$.
Dark Flow is a peculiar drift of galaxies merging towards or emerging away from these focal points that are opposite from the observer's perspective.

The colored dots are clusters within one of four distance ranges, redder colors indicate greater distance. Colored ellipses show the direction of bulk motion for the clusters of the corresponding color. Galactic clusters images at each distance slice are also shown.

As far as I can tell, at the current age of the universe, our light cone crosses over itself 5 times as it spirals its way around Spherical Space~Time. Each of these focal points are candidates for the mysterious Dark Flow phenomenon.

Alex Kashlinski (Goddard Space Flight Center) \& Int'l collaborators reported "large-scale peculiar velocities of clusters of galaxies:..."H In Kashlinski's words, "We detect motion along this axis, but right now our data cannot state as strongly as we'd like whether the clusters are coming or going." Cosmic Onion Model says galaxies closer to the observer than the Dark Flow focal point "appear" to be emerging from that focal point -- while those further appear to be merging.
To the right is a close-up of the inner most portions of our light cone. Is the "navel" below caused by the focal point of our light cone? Or is it merely an artifact of the scanning pattern of the Planck satellite? If due to this scanning pattern, there

should be a similar navel on the opposite side of this sphere. If not, then Cosmological Lensing creates this belly button! ;-)

1.2 Accelerated Expansion via Decelerating observer's reference-frame.

To us and to observers in other galaxies the passage of time "feels"linear. As we experience the tick-tock of each Earth second -- 60 times per minute and 60 minutes/hour thus in 24 hours we experience 86,400 seconds per day. Each Earth orbit defines the sidereal
year as 31,558,149.54 seconds. Multiply by $100 \times 10^{\wedge} 6$ we get the idea that each arc is about $3.1558 \times 10^{\wedge} 15$ seconds. This illustration's vertical axis shows linear time as evenly spaced numbers -each one counts off another billion years.

At the "current age" of the universe the duration of a Planck time (aka a Planck second) is this inconceivably tiny $5.39124 \times 10^{\wedge}-44$ th of a second -its reciprocal called the Planck frequency, $\omega_{-} \mathrm{P}$, pronounced "omega sub-P", is $1.85486 \times 10^{\wedge} 43$ Planck seconds per second. "Why so big?" The astonishing answer is "It grew to be this big!"

The horizontal axis represents our "perception" of accelerating expansion -- where the root cause is an ever-increasing number of Planck times per second. Cosmological Relativity brings us awareness that the whole universe and everything expands including the duration of each passing second being $4.27 \times 10^{\wedge} 25$ Planck seconds longer than the previous one. Each dot along the bottom axis represents 100 -million
years -- thus 10 dots per billion. Each colored arc represents $1.3478 \times 10^{\wedge} 41$ Planck seconds per 100million years.

Notice between 2 to 3 there are 3 arcs, 3 to 4 has 4 arcs -- adding one more arc with the passing of each billion years. Each passing 100 -million years adds about $1.348 \times 10^{\wedge} 41$ Planck seconds to each Earth second.

This simplified calibration between linear "perception" of the passage of time verses the everincreasing quantum units per second or per billion years. The horizontal grid spaces out in accord with:

$$
\frac{1}{2} \tau^{2}=\int \tau d \tau
$$

The next page takes this linear time to accelerating expansion mapping and wraps it around a spherical universe.

Resolve Dark Energy, Dark Flow \& Propose CODATA 2022 values -- by John Wsol. CC BY SA 4.0

At universe age $=13.8$ billion years our Milky Way galaxy is at top " z ". 12.5 billion years ago we were at "a" when age=1.3 billion years. Meanwhile, Galaxy 2 was at "A". All galaxies expand away from the center of spacetime -- the Singularity. Here we expand straight up while Galaxy 2 expands to the right. 1.57 billion years ago we would have been on the vertical line at age $=12.23$ billion (left of "W") -- 0.07 billion years later our light rays heading towards Galaxy 2 would be at W. Meanwhile Galaxy 2 expanded along the horizontal axis from its 12.23-billion-year mark
while its rays towards us reached as far as "w". From these W -markers a half billion years later our respective light rays would get as far as the X's 1billion years left before we would see each other as we were 1.57 billion years ago. Each passing half-billion years increases by $6.74 \times 10^{\wedge} 41$ Planck seconds. IMPORTANT DISTINCTION: what's perceived as straight line-of-sight "through space" experiences curvature around the "time dimension"--do not take this spatial vs. temporal curvature lightly. The lack of this understanding has persisted the flat universe fallacy.

Imagine Einstein, staring at a chalkboard full of physics equations -- contemplating many references to 't'...

The distinction between past, present \& future is a stubbornly persistent illusion. -- Albert Einstein

Herein, Einstein's "riddle" is solved. I finally understand Einstein's dilemma after pondering physics equations for several years. The dilemma created by being stuck with a flat spacetime where everyone "thinks" all seconds are equal, that the value of $1.85 \times 10^{\wedge} 43$ Planck seconds per second has been the same since the beginning. I (and we) can now know with 100% confidence level that the previous second was $4.27 \times 10^{\wedge} 25$ Planck seconds shorter than the current second and the next second will be $4.27 \times 10^{\wedge} 25$ Planck
seconds longer, thanks to the introduction of Expanding Space~Time. As you realize the first second of this universe was only $4.27 \times 10^{\wedge} 25$ Planck seconds, you will be astonished! The 2nd second was twice that. The third was 3 times that. To go from 2 to 4 took twice as long as from 1 to 2 . As each doubling has taken twice as long as the previous doubling. Today we are between the 201st and 202nd doubling, for the age of the universe is on the order of $4.0278 \times 10^{\wedge} 60$ Planck seconds (Equation 3.3), or about 13.762 billion years.

An interesting feature of this model is that it defines a precise quantum coordinate in time for each event. Yet, there is no preferred reference frame as to WHERE each event occurs! This realization, being both subtle and profound, satisfies Special Relativity's need for "all things to be relative" as well as 2022 Nobel Prize conjecture that quantum events need an ABSOLUTE base from which quantum entanglement can occur.
"Old School" cosmology could not solve the imbalance between matter \& anti-matter. The simple solution is that "Time" for galaxies on the opposite side of the universe goes in the opposite direction from us. From our perspective they are anti-matter galaxies. Whereas, from their perspective, we and our neighbors are anti-matter.

1.3 The Universe explained from 1st Principles

I had originally assumed that all seconds were equal in duration and that Newton's Gravitation constant, G, was constant throughout time. I needed to comprehend the rules governing covariant metrics. Then I backtracked to rethink all my physics calculations in the context of expanding spherical Space~Time. The Universe does not quantum compute itself using SI units -- rather, it uses
quantum units of 1 . We need to know what " 1 " means. The reciprocal of one is one. One raised to any power equals one. All fundamental quantum metrics have values equal to 1 . The speed of light is 1 quantum of length per 1 quantum of time. In SI units, $\mathrm{c}=299,792,458$ [meters/second]. See Sections 1.5 \& 3.1 for further discussion of this 1st Principles topic.

1.4 Physical Constants vs. covariant Properties

Amperes is NOT a true "fundamental" dimensional metric because it is a ratio of fundamental metrics: 1 [Coulomb/second], and like the speed of light, having units of [meters/second], it should be considered a "derived" metric. Electric charge is the base dimension measured in units of Coulombs. Charge is more fundamental than Current. Even though elementary charge is less than quantum charge it is because it happens a slower frequency than $1 / \mathrm{t}$ _P.
As for mass our [kilogram] "invisibly implies" a per second. This is very awkward. Many physicists who are attached to old school thinking will oppose this idea until they read and understand Sections 4.1-4.8
This is the fundamental thesis of Cosmological Relativity which relates quantum units of 1 to our

Expanding metrics having spatial \& temporal divergence. It is easiest to understand quantum mechanics by relating our SI units to quantum-scale units. [kg t_P] is an abbreviation for [kilogram][Planck times].
Let's explain the Higgs Field with this exact masstime amount that the universe gives up mass-time allocated to counter-space and gives this increment to the "particle". This explanation also suggests where we might find Dark Matter by redefining it as the residual effect of ordinary matter spreading forth as quantum gravity. The model can even explain the Dark Energy enigma away. Is it possible for me to adequately explain everything in one document? Probably not.

1.5 Yellow Brick Road to a Complete Cosmology

I do promise to map out the Yellow Brick Road leading to an explanation of the foundational Space~Time framework for physical reality. Surprisingly, I also discovered where the other 7 dimensions of 11D Mtheory and how they are curled up in the electromagnetic field.

For those of you who want the fast track to the Cosmic Onion Model and Cosmological Relativity I've highlighted key sections in yellow -- these have the essentials to quickly comprehend this new cosmological paradigm.

Many chapters before I can adequately explain the Singularity \& the Quantum Mirror Cosmic Event Horizon Equation. This is where we'll find 11 dimensions curled up inside the complex 11-density surface of the "NowManifold" Event Horizon. Crossing this bridge will take us to a deep understanding of the 11 densities -- you will be able to visualize the quantum-scale and even the imaginary sub-quantum realm (hyper-time~space where non-locality exists). It is going to be difficult. You will have to set aside existing preconceptions and consciously engage your brain every step of the way -- to build a new neural net of understanding.
"Philosophy is written in this grand book, the universe, which stands continually open to our gaze.
But the book cannot be understood unless one first learns to comprehend the language and read the letters in which it is composed. It is written in the language of mathematics, and its characters are triangles, circles and other geometric figures without which it is humanly impossible to understand a single word of it; without these, one wanders about in a dark labyrinth."
--Galileo Galilei (1564-1642)

Quantities in this table apply to discussion of graph of Planck time vs. Age of the Universe -- next page.

| Quantity | Value | relUnc | units | $-\mathrm{L}-\mathrm{T}+\mathrm{M}+\mathrm{C}+\mathrm{K}$ | dt |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

In the previous table, note that Planck time (aka Planck second) is the extremely tiny $5.39 \times 10^{\wedge}-44$ number (see lower left corner of graph and purple numbers with blue curve). The reciprocal of the Planck time is the Planck Frequency, $\omega_{-} \mathrm{P}$, it has grown to the huge value of $1.85 \times 10^{\wedge} 43$ (Planck seconds)/(Earth second). (See green numbers and upper right corner of the graph.)
The horizontal green line near the top represents the flat spacetime perspective. This line represents "the belief" that the number of Planck seconds per second had always been the same as today's value ω_{-}P. Given the age of the universe as $4.34 \times 10^{\wedge} 17$ seconds and multiply that by $\omega_{-} \mathrm{P}$ we get cosmic age of $8 \times 10^{\wedge} 60$ Planck times -- the rectangular, green-bordered area. This is the assumption of flat spacetime. However, the triangle has half that area. It represents $4 \times 10^{\wedge} 60^{\text {th }}$ timequanta as the value for expanding Space \sim Time. As observers, we find ourselves at the bottom right corner looking backward into the depths of times past, when everything in the universe was smaller. Looking back only a few billion light years it only "seems as if" time (the Blue curve) is flat. However, the discrepancy becomes greater the further we look back. The James Webb Space Telescope is allowing us to see back 9-13 billion light years into the past, very close to The Beginning. Only now are Earth-bound humans are
becoming conscious of this significant disparity as JWST is magnifying the inner-most depths of time.
The values of Planck length \& time follow the $1 / \mathrm{t}$ blue curve, whereas the values of Planck mass and Charge follow the linear covariant diagonal line.

The True Nature of Time? Not what anyone expected!

The $1.85 \times 10^{\wedge} 43$ Planck Frequency divided by the age of the universe yields the number of additional Planck seconds that each passing second experiences. That's a mind boggling $4.27 \times 10^{\wedge} 25$ more Planck seconds every second! Note this $10^{\wedge} 25$ number is 98 -million times greater than $10^{\wedge} 17$ seconds for the age of the universe!
The holographic trick here is that each second adds $4.27 \times 10^{\wedge} 25$ Onion layers -- which contains any new information for the current second AND the first part of this second also contains the previous second, which contains the previous one... all the way to the Beginning. If this did not boggle your mind, reread it until it does.
This is how the 2D surface can contain its entire contents. It's as if the surfaces are all one surface spiraling layers of time out from the center.
Holography at its best! We, all planets, all stars are physical holograms. More details about how the universe (Higgs field) imparts mass in Section 4.13 Quantum Gravity: how physical holograms acquire mass.

1.6 Brief Summary up through CODATA 2018

Science has made great strides in the precision to which we can measure or compute many physical quantities. Whereas "particle" masses are known to about 8 digits, the Fine Structure Constant, Greek α, to 10 digits and the Rydberg, $\mathrm{R} \infty$, is known to an amazing 12-digits of precision. But, in the 333+ years since Newton's 1687
landmark publication "Principia", Newton's Gravitation constant, G, has only been determined to about 5 digits of precision. The standard textbook equations for most Planck quantities have been defined in terms of G. Even as of CODATA 2018 G had the large uncertainty of $2.2 \times 10^{\wedge}-5$
(The values in this table are valid at the current age of the universe.)

Planck length [meter]	Planck time [second]	$\underset{\text { Planck' } \boldsymbol{s}}{ }\left[\frac{m^{2} k g}{s}\right]$	$\begin{gathered} \text { Planck } \\ \text { mass }[\mathrm{kg}] \end{gathered}$	Planck [$\left.{ }^{\circ} \mathrm{K}\right]$ Temperature	elementary charge [C]	Planck Charge [C]
1.616254e-35	5.39124e-44	6.62607015e-34	$2.17643559 \mathrm{e}-8$	1.41678 e 32	1.60217e-19	1.875546e-18
$\ell=\sqrt{\hbar G / c^{3}}$	$t_{\ell}=\sqrt{\hbar G} /_{c^{5}}$	$\begin{aligned} & \hbar=m_{\ell} \ell c \\ & h=2 \pi \hbar \end{aligned}$	$m_{\ell}=\sqrt{\hbar c / \mathrm{G}}$	$T_{P}=\frac{m_{\ell} c^{2}}{k_{B}}$	$e=q_{\ell} \sqrt{\alpha}$	$q_{\ell}=\sqrt{2 h / Z_{0}}$
1 quantum of length	1 quantum of time	1 or 2π of angular momentum	1 second of quantum mass	1 second of quantum Temp.	1 Amp second	11.7 Amp seconds
$\begin{aligned} & 1.8548597 \mathrm{e} 43 \\ & \text { lengths/second } \end{aligned}$	1.8548597 e 43 times/second	1.956 e 9 [Watts] [Joules/second]	$2.17643559 \mathrm{e}-8$ [kg/second]		$\begin{gathered} 6.241509 \mathrm{e} 18 \\ {[\text { Coulomb/s] }} \end{gathered}$	

Note: Planck Charge, herein, plays a key role yet curiously missing from NIST . gov website. ^Equations (1.5a-h)

The key takeaways from this table are that Planck length and time represent one quantum of length and one quantum of time, but our definitions for meters and seconds are emergent quantities. The huge $10^{\wedge} 43$ values in bottom row are the reciprocals of Plank time. Why so BIG? These grew over the last 13.762 billion years. The first [second] of this universe took only $4.270933837389 \times 10^{\wedge} 25$ time-quanta. Each subsequent second took that many more time quanta than the
previous second. The age of the universe from Earth's perspective is $4.34298391676 \times 10^{\wedge} 17$ seconds.

Planck's Constant is a constant throughout time -explanation in Section 4.16. The numeric values of Planck mass and charge, as well as fundamental charge, are not purely quantum scale quantities -- they are scaled by the current duration of a second. A kilogram has an "implied per second" within its definition. Section 4.18 more fully explains these ideas.

1.7 Software Tools created ensuring consistency

It is said that you cannot really know a subject matter well until you have taught it to someone else. I needed to understand every detail in the process of teaching (programming) the computer how to do basic physics calculations. Over the years, I gathered a database of physics equations while creating a physics calculator using the J-Language. J is ideal for exploring problems that are not yet clearly understood. My program calculates numeric values, dimensional units, and relative uncertainties. Calculating the same values and uncertainties found at NIST.gov using the fundamental CODATA 2018 values and their relative uncertainties. Given the new calibrated quantities most calculations have a precision of 15 digits, with a relative uncertainty close to $1.0 \times 10^{\wedge}-15$.

Regarding radians, the important "take away" is we should continually be aware equation-by-equation of when a value involves a photon, being a ray of light in a particular direction vs. radiation or gravitation dispersing in all directions. For explanation see Section 4.13 Quantum Gravity.

I submit to the authority of the Math Itself, which is validated by exact numerical confirmations for each equation-set within this document, and adherence to a set-of-rules for conceptualizing and computing dimensional units.

Can there be a higher Authority than the math itself?

1.8 Newton's Gravitation (not exactly) Constant

On 2020-October-07 I discovered that "Planck Charge" can be computed exactly given Planck's constant and the Impedance of Free Space, Z_{0}. This enabled me to compute more accurate values for the Fine Structure Constant and then to cross-check Planck mass calculations and finally arrive at a precise G. Later, on 2022-August-03, I discovered the exact formula for the Fine Structure constant -- see Section 3.1
As much as I would like to declare \mathbf{G} to 30 -digits of precision, honestly, I cannot, current limit is 10 -digits:

$$
\mathrm{G}=6.674292323 \times 10^{\wedge}-11\left[\mathrm{~m}^{\wedge} 3 / \mathrm{kg} \mathrm{~s}^{\wedge} 2\right] \text { Covariant }{ }^{\wedge}-2 .
$$

Section 3.3 explains the calibration constraints why the current limit is about 10 digits.

The novel description of Time, herein, says that length metrics and time metrics are covariant thus -as the universe expands -- our meter and second scales linearly with the circumference of the universe while our values for Planck length \& Planck time scale by its reciprocal -- covariant^^1.

The ratio between a quantity that is growing linearly, covariant^1st and another that is shrinking covariant^-1st is a ratio changing covariant^2nd. (Think this through with you own brain -- own it -- we will be using this understanding a lot.)
The surprising thesis of this paper is the realization that, as time progresses, pendulums, clocks, and Cesium atoms slow (covariant ${ }^{\wedge}-1$) as an indication of
the deceleration of time itself - while the accumulation of cosmic-time grows covariant^2. (Section 4.17) This represents a true understanding of quantum time vs. emergent time metrics and resolves the Dark Energy enigma. Rather than the expansion of the universe "thought to be accelerating" - the duration of a second grows -- in our local Space~Time reference-frame -- time itself keeps slowing down. This is the essence of Cosmological Relativity. The calculations say that the next second takes $4.27 \times 10^{\wedge} 25$ Planck times longer than the previous. It has been doing this for 13.762 billion years.

The following sections provide the geometric reasoning and the physics math that explains the certainty of these bold assertions.

1.9 Grasping Light Speed

For humans, it's difficult to imagine a 300,000 -kilometer-long ruler, so let's bring this down to Earthly terms that humans can more easily grasp. Taking the square root of the speed of light we get about 17,314.5 meters or about $103 / 4$ th miles.

$$
\begin{equation*}
c=\frac{299,792,458[\text { meters }]}{1[\text { second }]}=\frac{17,314.51581766[\text { meters }]}{1 / 17,314.51581766[\text { second }]}=\frac{\ell}{t_{\ell}}=\frac{Z_{0}[\mathrm{Ohms}]}{\mu_{0}\left[\mathrm{~N} / \mathrm{A}^{2}\right]}=\frac{1}{\varepsilon_{0}[\mathrm{~F} / \mathrm{m}] Z_{0}[\mathrm{Ohms}]} \tag{1.9}
\end{equation*}
$$

Imagine two towers with lasers aimed at each other. One with a red laser \& corner reflector. The other with a green laser and corner reflector. They are spaced at a distance exactly $=$ square root of c. The reflected round-trip pulse would take about $1 / 8,657$ th of a second. A speaker vibrating at this frequency would enable us to relate that distance to an audible frequency within the grasp of human hearing. Imagine your eardrum oscillating in-n-out in sync with tbe laser pulse from us to the far tower and back again.

This round-trip distance at $8,657 \mathrm{~Hz}$ is the same ratio as 2 Planck lengths per 2 Planck times.

At the current age of the universe, 17,314 meters is $1.07 \times 10^{\wedge} 39$ times the current Planck Length.
Likewise, $1 / 17,314^{\text {th }}$ of a second is $1.07 \times 10^{\wedge} 39$ times the Planck time.

In section 4.16 Goes into implications of spacetime expansion and Einstein's "Equivalence Principle:"

2 Procedure: calculating fundamentals

Question: Just how precisely can our metrics be defined? Namely, the duration of a "second", the length of a meter, the mass of a kilogram, the charge of a Coulomb, and the absolute Kelvin temperature scale?

Answer: The speed of light establishes the length of a ruler 299,792,458 meters long, and CODATA Committee defined 9,192,631,770 oscillations of Cesium-133's hyperfine transition spectral line to establish the duration of a second. Since the length of a meter, the
duration of a second and size of atoms are all emergent [m / s] is constant and [Hertz]*[seconds] is [dimensionless].
In table 2.1 quantities where the dimensional exponents for (mass+charge) minus (length+time)=an integer. When column $\mathrm{dt}=0$ the value is truly constant throughout time. When that value is 1 -- its value grows linearly.

2.1 Physical quantities: arranged by dependencies \& relative uncertainty.

Throughout the rest of this document when a value is highlighted: The yellow highlighted numbers are CODATA 2018 values. Green values are defined by CODATA 2019 as exact and are the basis to calibrate [meters], [seconds], [kilograms] and [Coulombs]. α is ascribed uncertainty $=0.5 e _16$ to account for double precision floating point limit..
Cyan highlighted quantities, throughout this document, are my proposed values for the CODATA 2022 dataset.

Quantity	Value digit†16	relUnc	-L-T+M+C+K	dt	SIunits
c	299,792,458.00000	0	$1 _10000$	0	m/s
Cs133	9.192631770000000 e 9	1e_14	0 0 0 0 0 0 0	0	Hz
h	$6.626070150000000 e^{\text {_34 }}$	0	2 _1 1000	0	
hBar	1.054571817646156 e _34	0	2 _1 1 0 0	0	J s
alpha_2018	7.297352569300000 e _3	1.5e_10	00^{0}	0	
alpha	7.297352569277727 e _3	0.5 e _16	$\begin{array}{llllll}0 & 0 & 0 & 0 & 0\end{array}$	0	
1/alpha	137.035999084114	0.5 e _16	0 0 0 00000	0	
V_P	1.22089083072416 e 28	3.4e_16	2 _2 1 - 10	0	Volts
e	$1.602176634000000 e^{2} 19$	1.5e_16	00^{0}	1	C
q_P	$1.875546037779709 \mathbf{e}^{\text {_18 }}$	1.5e_16	0 0 0 0 0 10	1	C
m_P2018	2.176434000000000 e _8	1.1e_5	$0 \quad 0 \quad 1000$	1	kg
m_P	2.176435594396617 e _ 8	2.4e_16	0 0 0 10000	1	kg
l_P2018	1.616253000000000 e _35	1.1e_5	$1 \begin{array}{lllll}1 & 0 & 0 & 0 & 0\end{array}$	1	m
l_P	1.616254094907563e_35	1.9e_12	$1 \begin{array}{lllll}1 & 0 & 0 & 0 & 0\end{array}$	-1	m
t_P2018	5.391247000000000 e _44	1.1e_5	0 0 100000	-1	S
t_P	5.391243347781494 e _44	3.7e_16	$0 \begin{array}{lllll}0 & 1 & 0 & 0 & 0\end{array}$	1	s
G_2018	6.674300000000000 e _11	2.2e_5	$3{ }^{2}{ }^{\text {-1 }} 000$	-2	m3/kg s2
G	6.674292323157284e_11	5.8e_16	3 _2 _ 100	-2	m3/kg s2
Zo_2018	376.730313668000	1.5e_10	$2 _^{1} 1 \chi^{2} 0$	-2	Ohm
Zo	376.7303136666854	3.0e_16	2 _1 1 _2 0	-2	Ohm
Z_P	29.997924581632002	3.0e_16	2 _1 1 _2 0	-2	Z_P
K_m	2.000000001088755e_7	4e_16	1 0 1 _ 20	-2	N/A2
mu_0	$1.256637062120002 e_{\text {_6 }}$	c	1 0 1 _ 20	2	N/A2
K_e	8.987551792260796 e 9	3.4e_16	$3 \sim^{2} 1 \sim^{2} 0$	2	m/F
eps_0	8.854187812800372 e _12	2.9e_16	32×120	2	F/m

These values are my proposed CODATA 2022 values.
c: the Speed of Light Cs133: Hyperfine spectral line of Cesium 133
h: Planck's Constant \& hBar: his reduced constant alpha: Fine Structure Constant V_P: Planck Voltage 1_P: Planck length t_P: Planck time
e: Fundamental Charge
q_P: Planck Charge
m_P: Planck mass
G: Newton's Gravitation~constant Zo: Z_{0}, Impedance of Free Space Z_P: Planck Impedance K_m: K_{m}, Magnetic force const. mu_0: μ_{0}, Magnetic Permeability $\mathrm{K}_{-} \mathrm{e}: \mathrm{Ke}$, Electric force constant eps_0: ε_{0}, Electric Permittivity

Calibration Note future measurements: gauged against these numbers will tell us which day (between 2015 \& 2020) these exact values matched reality -- higher power ratios will help the most.

Note dt column: 0 means truly constant throughout time. $\mathrm{dt}=1$ values grow linearly, whereas _1 (negative 1st power) values shrink as the reciprocal of our linear time perceptions. Likewise, ± 2 nd power growth and its inverse change more rapidly.
Future Measurements should include: (1) date-time stamp, (2) longitude, latitude \& (3) elevation. These factors in: (1) Cosmological Relativity, (2\&3) Special \& General Relativity

2.2 Arbitration of Planck length \& time

Below I use these averaging formulae to arbitrate $1^{\text {st }}$ pass candidate values for Planck length \& time. The ratio of CODATA 2018 Planck length/Planck time yields only 6 digits of c.

$$
\begin{equation*}
\ell=\frac{1}{2}\left(\ell_{2018}+\mathrm{t}_{2018} c\right) \quad t_{\ell}=\frac{1}{2}\left(\mathrm{t}_{2018}+\frac{\ell_{2018}}{c}\right) \tag{0}
\end{equation*}
$$

Note this multiply factor for Planck length \& divide factor for Planck time are not the same. This simple averaging formula "arbitrates" this tug-a-war between the ratio's of 2018 values - ensuring an exact ratio of 299,792,458. This averaging technique only slightly improves the $1.1 \mathrm{e}-5$ relative uncertainty down to $0.8 \mathrm{e}-5$.
Pass 2 arbitration will tell us much more accurately how far off these Planck length \& Planck times values are...
It's not until I cross-calculated the Planck mass using its relationship to Planck charge (Section 3.7) and correlated the uncertainty of the electron's mass, charge radius \& Bohr radius these have a relative uncertainty of $1.9 \mathrm{e}-12$. So, I plugged $1.9 \mathrm{e}-12$ in as the relative uncertainty for both Planck length and Planck time.

3 Findings: CODATA 2018 vs. 2022 calcs

Speed of Light, c, 299,792,458 meters/second. Twelve formulae that "should" all compute c, exactly.

$$
\begin{equation*}
c=\frac{\ell}{t_{\ell}}=\frac{Z_{0}}{\mu_{0}}=\frac{1}{\varepsilon_{0} Z_{0}}=\mathrm{G} \frac{m_{\ell}^{2}}{\hbar}=\frac{\hbar}{\ell m_{\ell}}=\frac{2 \hbar}{K_{m} q_{\ell}^{2}}=\frac{2 \alpha}{\mu_{0}} \frac{h}{e^{2}}=\sqrt{\frac{K_{e}}{K_{m}}}=\sqrt{\frac{1}{\varepsilon_{0} \mu_{0}}}=\sqrt{\frac{\mathrm{G}}{K_{\Theta}}}=\sqrt{\frac{E_{\ell}}{m_{\ell}}}=\sqrt{\frac{\mathrm{e} V_{\ell}}{m_{\ell}}} \tag{3}
\end{equation*}
$$

Each equation-set in this document lists formulae in the same order as the rows in the table that follows. Each row recalculates each formula -- effectively crosschecking values \& validating formulae.

Dimensional exponents:
Length Time Mass Charge
Kelvin
When exponents $M+C+K-L-T=$ 0 then the quantity is truly constant throughout time.

Yellow quantities calculated using CODATA 2018 values from Section 2.1 above.
(Calculations use the very concise \& powerful J-programming language, the brainchild of Kenneth Iverson - 1970's IBM Fellow, inventor of APL \& math super genius. J; $_$for negative sign(distinct from - for subtract). Note J evaluates expressions right-to-left with no operator precedence. The () are necessary in 4th formula above $\mathrm{G}^{*}\left(\mathrm{~m}_{-} \mathrm{P}^{\wedge} 2\right) / \mathrm{hBar}$.)

$3.1 \alpha=$ Fine Structure, defines Electromagnetic Field

[The Fine Structure Constant] "the most fundamental unsolved problem of physics." -- Paul Dirac
There is a most profound and beautiful question associated with the observed coupling constant, e, the amplitude for a real electron to emit or absorb a real photon. Nobody knows. It's one of the greatest damn mysteries of physics: a magic number that comes to us with no understanding by man.

You might say "the hand of God" wrote that number,
and we don't know how He pushed his pencil." -- Richard P. Feynman
On the historic day of 2022-August-03 I discovered the exact formula for the Fine Structure Constant, Equation 3.1a where the Prime Constant plays a central role. The Prime Constant is a binary fraction where each bit position corresponds to an integer where primes get a $1-$ non-primes 0 . Note each bit is worth $1 / 2$ the previous bit:

	1	2	3	4	5	6	7	8	9	10	11	12	13
\bullet	0	1	1	0	1	0	1	0	0	0	1	0	1
	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{1}{32}$	$\frac{1}{64}$	$\frac{1}{128}$	$\frac{1}{256}$	$\frac{1}{512}$	$\frac{1}{2^{10}}$	$\frac{1}{2^{11}}$	$\frac{1}{2^{12}}$	$\frac{1}{2^{13}}$

With just the 1 st 13 bits this number quickly converges to: 0.4146728515625 . Today the age of the universe in Planck times is about $4 \times 10^{\wedge} 60$ or about a 202 -bit number. The 45 th prime is 199 , the 46 th is 211 . Calculated here is 63 digits worth of the Prime Constant: (See Appendix for convergence rate.)

From France, Bureau International des Poids et Mesures, we have Equation (3.1d) defining α in terms of $\mu_{0 .}{ }^{\text {I }}$

From Greece, Stergios Pellis's excellent research $\&$ efforts gives us a candidate value worthy of consideration:

$$
\begin{equation*}
a^{-1}=360 \varphi^{-2}-2 \varphi^{-3}+(3 \varphi)^{-5}=137.035999164 \ldots \tag{3.1j}
\end{equation*}
$$

Below I cross-checked Stergio Pellis' Fine-Structure value, α_{-}SP, across several equation sets -- the results diverge around the 10th digit. What makes these equation-sets so powerful is when we see a given quantity raised to different powers, if the base value is off, we will see greater divergence in the target value when that quantity is raised to higher powers. This is especially noticeable where $\alpha _S P$ is raised to the 2 nd or 3rd powers below:

Value	relUnc	units	Quantity / Formula	Description
$\begin{aligned} & 299,792,458.000000 \\ & 299,792,457.823559 \end{aligned}$	$\begin{gathered} 0 \\ 5.9 \mathrm{e} _10 \end{gathered}$	$\begin{aligned} & \mathrm{m} / \mathrm{s} \\ & \mathrm{~m} / \mathrm{s} \end{aligned}$	$\frac{\text { c }}{2 * a_{-} S P * h ~ / ~} \mu_{0} * e^{\wedge} 2$	Speed of Light
1.60217663400000 e _19 $1.60217663352853 e$ _19 1.60217663352852e_19 1.60217663352853e_19	$\begin{array}{r} 1.5 \mathrm{e} _16 \\ 2.9 \mathrm{e} _10 \\ 3 \mathrm{e} _10 \\ 2.9 \mathrm{e} _10 \end{array}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { e } \\ & \text { q_P*Va_SP } \\ & \sqrt{\text { (}}\left(2 * a _S P * h B a r / K _m * c\right) \\ & V\left(a _S P * 2 * h / \mu_{o} * c\right) \end{aligned}$	Elementary Charge
$\begin{aligned} & 9.10938370157333 e-31 \\ & 9.10938370693460 e-31 \\ & 9.10938371229586 e-31 \end{aligned}$	$\begin{array}{r} 1.9 \mathrm{e} _12 \\ 5.9 \mathrm{e} _10 \\ 1.2 \mathrm{e} _9 \end{array}$	$\begin{aligned} & \mathrm{kg} \\ & \mathrm{~kg} \\ & \mathrm{~kg} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { m_e } \\ & \mathrm{hB} \mathrm{Bar} / \mathrm{c}^{*} \alpha_{-S P *} \mathrm{a}_{\mathrm{o}} \\ & 2 * \mathrm{R} \infty * \mathrm{~h} / \mathrm{c}^{*} \alpha_{2} \mathrm{SP}^{2} \end{aligned}$	mass of electron
$\begin{aligned} & 5.29177210901847 \mathrm{e} \text { _11 } \\ & 5.29177211213291 \mathrm{e} _11 \end{aligned}$	$\begin{aligned} & 1.9 \mathrm{e} _12 \\ & 5.9 \mathrm{e} _10 \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & a_{0} \\ & l_{-} P *_{m} P \text { / } a_{-} S P *_{m} \text { e } \end{aligned}$	Bohr radius
$2.81794032618213 e _15$ 2.81794032452365 e _15 2.81794032452365 e _15 2.81794032120669 e _15	$\begin{gathered} 1.9 \mathrm{e} _12 \\ 5.9 \mathrm{e} _10 \\ 5.9 \mathrm{e} _10 \\ 1.8 \mathrm{e} _9 \end{gathered}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \\ & \mathrm{~m} \\ & \mathrm{~m} \end{aligned}$		electron charge radius
$\begin{aligned} & 10,973,731.5681600 \\ & 10,973,731.5552430 \end{aligned}$	$\begin{array}{r} 1.9 \mathrm{e} _12 \\ 1.2 \mathrm{e} _9 \end{array}$	$\begin{aligned} & / \mathrm{m} \\ & / \mathrm{m} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\infty} \\ & \left(\left(\alpha_{_} S P^{2}\right) / 4 \pi\right) *\left(m_{-} \mathrm{e} / \mathrm{m}_{1} \mathrm{P}^{*} l_{-} \mathrm{P}\right) \end{aligned}$	Rydberg Constant
	$\begin{aligned} & 3.6 \mathrm{e} _16 \\ & 5.9 \mathrm{e} _10 \\ & \mathrm{r} \\ & 5.9 \mathrm{e} _10 \end{aligned}$	$\begin{aligned} & \mathrm{F} / \mathrm{m} \\ & \mathrm{~F} / \mathrm{m} \\ & \mathrm{~F} / \mathrm{m} \end{aligned}$		Electric Permittivity

Recent precise measurements of the Fine-Structure Constant K , compared here are its reciprocal values:

Measurement Value	when	Source
$137.035999046(27)$	2010-Dec-16	New determination of the fine structure constant and test of QED L
$137.035999084(21)$	$2019-$ May-20	CODATA 2018 NIST Reference on Constants, Units and Uncertainty
$137.035999174(35)$	2012	Parker, Yu, et al. "10th-order QED contribution to electron g-2 and improved value fine-structure." m
$137.035999206(11)$	$2020-$ Dec	New determination of the fine structure constant and test of the QED N

You might notice that the 1st 12-digits of CODATA 2018 exactly match the 1st 12-digits of my 63-digit value. But the more recent and, believed to be, more accurate measurement is higher starting in the 10 th digit. Why?
> " Guellati-Khélifa has been improving her experiment for the past 22 years. She gauges the finestructure constant by measuring how strongly rubidium atoms recoil when they absorb a photon. (Miiller does the same with cesium atoms.) The recoil velocity reveals how heavy rubidium atoms are - the hardest factor to gauge in a simple formula for the fine-structure constant. "It's always the least accurate measurement that's the bottleneck, so any improvement in that leads to an improvement in the fine-structure constant," Miiller explained. "o

Cosmological Relativity says both mass and charge values increase covariant^1st. So, as the years pass by, if scientists use an atomic mass value from 2-3 years ago, we will likely see a drift around the 11 th-digit of their Fine-Structure Constant calculations.

3.2 Invisible Geometry of α

A fundamental understanding of the Fine Structure starts with a $4^{2}+11^{2}=137$. There are 4 Electromagnetic Polarities: Positive Electric, North-to-South dipole, Negative Electric \& South-to-North dipole. The frequency combinations of 4 cross-product with 11 spreads the 4 polarities across the 11 -time quanta. See Section 3.4 for Quantum Harmonic Resonance images. Express this hypotonus as a complex number $11+4 \mathrm{i}$ and square it gives us $105+88$ i with a magnitude of 137 this describes the next right triangle of keen interest: $88^{2}+$ $105^{2}=137^{2}$. Now we're close to the ratio of the Bohr radius to the electron charge radius. Compare $137^{2}=$ 18769 to $\alpha^{-2}=18,778.8650449813$. What about this difference? This calls our attention to Equation 3.1a.

$$
\alpha=\left(137^{2}+\frac{30(\text { PrimeConst }+5)}{59 \text { PrimeConst }-8}\right)^{-\frac{1}{2}}
$$

The fraction involving the Prime Constant accounts for this difference. The Prime Constant correlates an exponential relationship to the distribution of prime numbers. If we could do a Fourier Transform across the span of all time quanta from the Beginning till Now the Prime Constant assigns a power-level to each primespike in the power vs. frequency graph.
Planck Charge's "omega frequency" = 1 Planck second which corresponds to 1 -hBar worth of rotation. The Greek letter ω denotes "radians per second" rather that full rotations as Hertz would imply. However, "fundamental" charge occurs 11.706... times slower. (11.706... is the reciprocal of the square root of alpha.).

Wavicles couple to the Electromagnetic Field at this extremely high frequency 1.5845054210677 e 42 radians/second. (This is the square root of the Fine Structure Constant over the Planck time.)

$$
\begin{equation*}
\text { Frequency of Elementary Charge: }=\omega_{e C}=\sqrt{\alpha} / t_{\ell} \approx 1.584505421 \times 10^{42}\left[\frac{\text { radians }}{\text { second }}\right] \tag{3.1i}
\end{equation*}
$$

The first column shows the Quantum Harmonic Resonance fingerprints for 4,11 , and phi^2 radians. The next 3 columns show the fingerprints for proton, neutron \& electron. Note: electron's charge is external whereas proton \& neutron charge is mostly internal, thus the 861 swaps position with $1 / \alpha^{2}$.

1st row shows the
differential of Planck times per second^2 divided by the ω frequency of each wavicle type.
2nd row shows 11-
radian architype of quadra-polarity: up=positive, left=south polarity, down=negative right=north polarity proton's 4-poles twist right=positive.
neutron=no
twist=neutral electron=orbits 861
3rd row: phi^2
generates 12 rays. Proton 13 rays, Neutron 11, electron orbits. Explained next page.

Everything we know about electrons directly relates to the Fine-Structure Constant. The thin red quarter circle with dark blue dots represents the Bohr Radius -- the "lowest" energy state of an electron. Traditionally, with a proton inside, this is thought of as a hydrogen atom.
$\boldsymbol{I F}$ an electron were a "classical particle", meaning it continuously "has" rest mass, then it would have to slow its orbital velocity to $\alpha c=2187691[\mathrm{~m} / \mathrm{s}]$-- Somerfield's original interpretation. ${ }^{\mathrm{P}}$

However, with Peter Higg's realization "particles" do not have mass in and of themselves, but he asserts the Higgs field "gives" particles their mass. My interpretation says most of the time electrons are
wavicles where all their beingness is momentum in the form of charge energy propagating at almost the speed of light.

Like clockwork, $7.7334 \times 10^{\wedge} 20$ times per second the electron wavicle collapses -- for just 1-time quantum -- it manifests $1.173369 \times 10^{\wedge}-51$ of a [kilogram second]. The actual charge radius of electrons would make the red line less than 0.9% of a pixel -- so I multiplied its charge radius by 137.036 . Three small red circles reveal that the gaps between when the electron manifests mass are spaced by this 137.036 factor. After doing this 137 times the electron moves 1 -radian of its orbit, about 57.3degrees. A complete orbit of 2π-radians consists of 861.02 of these $=2 \pi / \alpha=R_{k} / Z_{P}$ (see 3.18).

Schrödinger's equation gives shape to the Bohr radius. s-orbitals spread the electron-shell into spherical geometry. For higher atomic numbers the p-orbitals twist these into a figure-8 spun along each of ($\mathrm{x}, \mathrm{y}, \mathrm{z}$)axis. Yet higher shell orbitals $d \& f$ appear to be higher
dimensional projections into 3D-space . These ideas need much more research \& refinement.

3.3 Can an Electron Know the Age of the Universe?

Consider a slinky toy spring and imagine a tiny spring like the ones in retractable pens -- only imagine one that is, say, 2 meters long. Now thread the slinky through the center of the long retractable pen spring. This is how I envision the electron~wavicle where the slinky spring's radius corresponds to the electron's orbital radius and retractable pen spring represents the charge radius of the electron. Then shrink these proportions to those described on the previous page.

I imagined a primordial electron~wavicle expanding with Space~Time in its Bohr radius orbital path spreading forth like a spiral staircase ascending from the depths of times past on up to our here \& now reference frame.

How long has the length of a [meter] been expanding to become what it is today? Calculations revealed $4.34298 \times 10^{\wedge} 17$ [seconds/meter] or about 13.762 billion years that the [meter] has been expanding.

$$
\begin{equation*}
\text { age }_{\text {meter }}[\text { seconds } / \text { meter }]=\frac{4 \pi^{2}(1+\alpha) a_{0}}{c \times l_{P}}=\mathbf{4 . 3 4 2 9 8 3 9 1 6 7 6 e 1 7}[\mathrm{s} / \mathrm{m}] \tag{3.3}
\end{equation*}
$$

calc 'a_0 2p1*a_0 2p1*(1+alpha) c*l_P'							Bohr radius Orbital path length Curvature/time dilation rate space spreads forth	
Quantity	Value		relUnc	units	-L-T+	M+C+K dt		
ao	5.29177210901847 e _11		1.9e_12	m	10	000		
$2 \pi^{*}{ }_{0}$	$3.32491847643276 e_{\text {_-10 }}$		1.9e_12	m	10	000		
$2 \pi^{*}(1+\alpha)$	6.32903592562418				0	00000		
$\mathrm{C}^{*} 1$ _P	4.84540787864904 e _27		1.4e_12	m2/s	2 _1	$000{ }^{1}$		
Note during each Bohr-bit ($2 \pi^{*} \mathrm{a}_{0}$) the universe expands the path integral by ($2 \pi^{*}(1+\alpha)$)								
Quantity		Value digit147		relUnc	units	$-L-T+M+C+K$	dt	
secs_p_yr siderealYr ageUniv_s/secs_p_yr ageUniv_s ageUniv_s/siderealYr omg_P/ageUniv_s ageUniv_tP		31.557600000000 e 6		0		0000000	0	24*60*60*365.25 approx. year
		31.558149540000 e 6		3.2e_11	S	010000	-1	accurate Earth orbital period
		13.762085572920e9		1.9e_12	s		-1	Age of Universe - approx.years
		4.3429839167599e17		$1.9 \mathrm{e}-12$	s	011000	-1	- 434 quadrillion seconds
		13.761845925900e9		3.2e_11		000000	0	- 13.76 billion sidereal years
		4.2709338373892 e 25		1.9e_12	/s2	$0{ }_{0}^{0} 2000000$	2	[Planck seconds]/[second^2]
		4.0278129149439 e 60		1.9e_12		00000	0	- \# Quanta in Expanding Time

"If you want to find the secrets of the universe, think in terms of energy, frequency and vibration." -- Nikola Tesla

3.4 Think "Quantum Harmonic Resonance"

With the unfoldment of "degrees of freedom" comes an explanation of the unfoldment of dimensions. 1D gives us lengths \& distances. 1D time we think of time durations. Each of these have reciprocals. The ideas of 12 inches per foot or 24 hours per day emerge. From these we construct the idea of speed as being distance/unit of time.
At two dimensions we grasp concepts like surface area: square inches, square meters. As for 2D time we have the idea of acceleration like meters/second/second. We can gain clarity by contrasting two different units of measure for time. For example, when we create precise clocks, we can quote that a certain clock only gains or loses only half-second per month or per year.

Given that hBar represents the smallest increment of angular momentum -- I realized it = 1-radian of rotation. So, I plotted integer multiples of radian rotations and noticed unmistakable patterns. Note $4,11,12 \& 71$ give us clues. 4 splits into 11 -strands. Might these be where the 11-dimensions of M-theory live? Seemed reasonable that these span \& curl up in groups of 12 \& 24 time quanta. Notice at 11 these reveal the 4 Electromagnetic polarities: Positive electric potential, North-to-South dipole, negative electric, and then South-to-North repeat forever. I've postulated and explored the idea that at 11.7 these potentials drop to zero and hold at zero though the count of 12 -- I believe, this is the "Zero Point" of Zero Point Energy fame.

These reflect the pattern of quantized rotations that occur at various integer multiples of the Planck time. The number inside each set spiral is such a multiplier. The GoldenRatio ${ }^{2}$ is synthesized by gaps in the Fibonacci sequence 2023-11-10 Rev. 7s See appendix for what changed
-- taking the ratio between every 2nd number (2.618034) of this famous series: $1123581321345589 \ldots$ Note 12 strands in lower right. The depth of this analysis will fill dozens of pages of a subsequent paper.

3.5 e = Elementary charge, covariant^1

$$
\begin{equation*}
e=q_{e} \sqrt{\alpha}=\sqrt{\frac{2 \alpha \hbar}{K_{m} c}}=\sqrt{\frac{2 \alpha h}{\mu_{0} c}}=\sqrt[4]{\frac{R_{\infty}}{m_{e} \mu_{0}^{2}}\left(\frac{2 h}{c}\right)^{3}} \tag{3.5}
\end{equation*}
$$

e C - $-\mathrm{L}-\mathrm{T}+\mathrm{M}+\mathrm{C}+\mathrm{K}: 000$	0 dt=1	elementary charge Cov	Covariant^1	
CODATA2018 digit T^{15}	relUnc	JohnWsol digit ${ }^{15}$	relUnc	Formula
1.60217663400000 e _19	1.5e_16	1.60217663400000 e _19	1.5e_16	e_2018
no 2018 PlanckCharge	1.1e_10	1.60217663400000 e -19	1e_12	q_P * V α
1.60217663400245 e _19	7.5e_11	1.60217663400000 e -19	1e_12	$V\left(2 * \alpha * h B a r ~ / ~ K _m * c\right) ~$
1.60217663400245 e _19	1.1e_10	1.60217663400000 e -19	1e_12	$V\left(\alpha * 2 * h / \mu_{0} * C\right)$
1.60217663400323 e _19	1.1e_10	1.60217663400000 e _19	1.2e_12	${ }^{4} \mathrm{~V}\left(\left(R_{\infty} / \mathrm{m}\right.\right.$ - $\left.\left.\mathrm{e}^{*} \mu_{0}{ }^{2}\right) *(2 * h / c)^{3}\right)$

These calculations here cross check the values in Section 2.1-- verifying that those values used in these formulae do indeed compute to the CODATA 2018 "calibration standard" for Fundamental charge. For the current age of the universe, this ensures that the other values in these formulae are self-consistent with all equation-sets that involve electric charge. Please understand we can
use this CODATA 2018 value as a calibration standard for a specific point in time, however, both Charge \&mass EXPAND linearly with time.

Please respect the Calibration Note in Section 2.1. The universe reserves the right on what's constant and what constantly changes.

3.6 q_P = Planck Charge $=\operatorname{sqrt}\left(2 h / Z_{0}\right)$; covariant^1

Value	relUnc	units	$-L-T+M+C+K$	dt	Quantity
1.602176634 e _19	1.5e_16	C	$\begin{array}{lllll}0 & 0 & 0 & 1 & 0\end{array}$	1	e
1.87554603777971 e _18	2.1e_16	C	$0 \begin{array}{lllll}0 & 0 & 0 & 1 & 0\end{array}$	1	q_P
8987551792.2608	4.2e_16	m/F	3 _2 1 _2 0	-2	K_e
6.62607015 e -34	0	J s	2 _1 1100	0	h
$1.05457181764616 e^{-34}$	0	J s	2 _1 1000	0	hBar
8.85418781280037 e -12	3.6e_16	F/m	-3 2 - 11200	2	ε_{0}
376.7303136668541	3e_16	Ohm	2 _1 1 _2 0	2	Z_{0}
29.97924581632	3.6e_16	Ohm	2 _1 1 _2 0	2	Z_P

These values are used to compute the Planck Charge \& Planck Mass in the next equation-sets...
ε_{0} : Electric Permittivity
Zo: Impedance of Free Space Z_P: Planck Impedance

$$
\begin{equation*}
q_{\ell}=\frac{e}{\sqrt{\alpha}}=\sqrt{\frac{\hbar}{Z_{\ell}}}=\sqrt{\frac{2 \mathrm{~h}}{Z_{0}}}=\sqrt{2 \mathrm{hc} \varepsilon_{0}} \tag{3.6}
\end{equation*}
$$

Value digit ${ }^{15}$	relUnc	Formula
1.87554603777971 e _18	1.5e_16	e / Va
$1.87554603777971 \mathrm{e}^{1} 18$	2.1e_16	\checkmark (hBar/Z_P)
1.87554603777971 e _18	1.5e_16	$\checkmark\left(2 * h / Z_{0}\right)$
1.87554603777971e_18	2.1e_16	$\checkmark\left(2 * h *{ }^{*} \varepsilon_{0}\right)$
1.87554603777971 e _18	3.2e_16	
1.87554603777971 e _18	4.2e_16	(m_P/c) * V 2 (${ }^{\text {G/K_m }}$)

Curious, Planck Charge has long been missing from NIST.gov - this and the assumptions that Space is flat, and SI values for Planck units -- are absolute values
(a) throughout time have contributed to
(b) perpetuating the mysteries of Dark Matter,
(c) Dark Energy and Quantum Gravity.
$\begin{array}{llll}1.87554603777971 e^{-} 18 & 2.1 e^{-16} & V\left(2 * h^{*} c^{*} \varepsilon_{0}\right) \\ 1.87554603777971 e^{-18} & 3.2 \mathrm{e} 16 & V(2 * \mathrm{hBar}\end{array}$
(d)
(e)
(f)

3.7 m_P = Planck Mass; covariant^1

Planck Mass

$$
\begin{equation*}
m_{\ell}=\frac{K_{\mathrm{m}} q_{\ell}^{2}}{2 \ell}=\frac{\hbar}{c \ell}=\frac{K_{\mathrm{m}} \hbar}{2 \ell Z_{\ell}}=q_{\ell} \sqrt{\frac{K_{\mathrm{m}}}{2 K_{\Theta}}}=\sqrt{\frac{\hbar c}{G}} \tag{3.7}
\end{equation*}
$$

m_P kg - $\mathrm{L}-\mathrm{T}+\mathrm{M}+\mathrm{C}+\mathrm{K}: 0$	100	$\mathrm{d}=1$	mass		
CODATA2018 digit ${ }^{15}$	relUnc	JohnWsol digit「15		\|relUnc	Formula
2.17643400000000 e -8	1.1e_5	2.17643400000000 e 8		1.1e_5	m_P2018
$2.17643706904862 e _8$	1.1e_5	$2.17643559439662 e^{-} 8$		6.2e_16	(K_m*q_P ${ }^{\text {2 }}$ /2*1_P
2.17643706905524 e -8	1.1e_5	$2.17643559439662 e^{-} 8$		3 e -16	hBar / l_P*c
$2.17643706905524 e^{-8}$	1.1e_5	$2.17643559439662 e^{-} 8$		6.8 e -16	K_m*hBar / 2*1_P*Z_P
$2.17643434310961 \mathrm{e}_{-8}$	1.1e_5	$2.17643559439662 e^{-8}$		3.6e_16	q_P * V(K_m / 2*K_Theta)
2.17643434311292 e -8	1.1e_5	$2.17643559439662 e _8$		2.4e_16	$V(h B a r * c / G)$

Given CODATA committee declaration that Planck's constant, h , the exact value $6.6207017 \mathrm{e}-34$ [Joule seconds] ($h B a r=2 \pi h$ is as exact as π) we can use these to calculate a precise value of the Planck Mass.

3.8 von Klitzing Constantly covariant^-2

$$
\begin{equation*}
R_{K}=\frac{h}{e^{2}}=\frac{2 \pi \hbar}{e^{2}}=\frac{Z_{0}}{2 \alpha} \tag{3.8}
\end{equation*}
$$

R_K ${ }^{\text {Ohm }}$ -	2 _1 1 _2 0/dt=_2 von Klitzing constant			
CODATA2018 digit ${ }^{15}$	relUnc	JohnWsol digit ${ }^{15}$	relUnc	Formula
25812.8074555000	2.3e_10	25812.8074555000	2.3e_10	R_K2018
25812.8074593045	2e_12	25812.8074593045	2.8e_16	$\mathrm{h} / \mathrm{e}^{2}$
25812.8074593045	2e-12	25812.8074593045	3.6e_16	$2 \pi^{*}$ hBar / e^{2}
25812.8074593042	2.1e_10	25812.8074593045	2.8e_16	Z ${ }_{\text {/ }}$ 2* α

3.9 $R_{\text {oo }}=$ Rydberg Constantly covariant ${ }^{\wedge}-1$

Rydberg

$$
\begin{equation*}
R_{\infty}=\frac{e^{4} m_{e}}{8 \epsilon_{0}^{2} h^{3} c}=e^{4} m_{e} \mu_{0}^{2}\left(\frac{c}{2 h}\right)^{3}=\frac{\alpha^{2} m_{e}}{4 \pi \ell m_{\ell}} \tag{0}
\end{equation*}
$$

$$
\begin{array}{|l|l|llllll|l|l|}
\hline \text { Roo } & / m & -L-T+M+C+K: _100 & 0 & 0 & d t=-1 & \text { Rydberg constant } \\
\hline
\end{array}
$$

CODATA2018 digit ${ }^{15}$	relUnc	JohnWsol digit'15	relUnc	Formula
10973731.5681600	1.9e_12	10973731.5681600	1.9e_12	$R \infty 2018$
10973731.5680717	3 e -10	10973731.5681600	6 e -12	$\left(e^{4}\right) * m _e / 8 *\left(\varepsilon_{0}{ }^{2}\right) *\left(h^{3}\right) * C$
10973731.5680716	4.2e_10	10973731.5681600	$6 \mathrm{e}-12$	$\left(e^{4}\right) * m_{2} e^{*}\left(\mu_{0}{ }^{2}\right) *\left((c / 2 * h)^{3}\right)$
10973747.0438564	1.6e_5	10973731.5681600	2.7e_12	$\left(\left(\alpha^{2}\right) / 4 \pi\right) *\left(m_{-} e / m _{ }^{*} l_{-}{ }^{\text {P }}\right.$)

$3.10 \mathrm{~m}_{\mathrm{e}}=$ Electron mass, covariant^1

The mass of the electron in CODATA 2018 was believed to have a relative uncertainty of $3 \mathrm{e}-10$, actual value is $1.0 \mathrm{e}-9$ too low. Here these new calculations naturally inherit the relative uncertainty of Rydberg's constant - now being the least certain participant in these new calculations.

$$
\begin{equation*}
m_{e}=\frac{\hbar}{c \alpha a_{0}}=\frac{2 R_{\infty} h}{c \alpha^{2}}=\frac{4 \pi \hbar R_{\infty}}{c \alpha^{2}}=\frac{R_{\infty}(2 h / c)^{3}}{e^{4} \mu_{0}^{2}}=\frac{e \hbar}{2 \mu_{B}}=\frac{\hbar^{2}}{E_{h} \alpha^{2}} \tag{3.10}
\end{equation*}
$$

m_e kg - -L	00	-1 electron mass 201	2018 uncertainty too low by $1.0 \times 10^{\wedge}-9$	
CODATA2018 digit ${ }^{15}$	relUnc	JohnWsol digit ${ }^{15}$	relunc	Formula
$9.10938370150000 e$ _31	3e_10	9.10938370150000 e _31	-1e_9	m_e2018
9.10938370152569 e _31	1.5e_9	$9.10938370157334 e^{\text {e_31 }}$	1.9e_12	hBar / c*a*a。
$9.10938370151773 \mathrm{e}^{\text {_31 }}$	3e_10	9.10938370157334 e _31	1.9e_12	2*R $\sim^{*} \mathrm{~h} / \mathrm{c}^{*} \mathrm{a}^{2}$
$9.10938370157337{ }^{\text {e_31 }}$	3 e _10	$9.10938370157334 e^{\text {e_31 }}$	6e_12	$\mathrm{R} \infty^{*}\left((2 * h / \mathrm{c})^{3}\right) /\left(\mathrm{e}^{4}\right)^{*}\left(\mu_{0}{ }^{2}\right)$
$9.10938370151773 e^{-}$_31	3e-10	$9.10938370157334 e^{-}$_31	1.9e_12	4n*hBar*R ${ }^{\text {/ }}$ / ${ }^{*} \alpha^{2}$
9.10938370157333 e _31	2.3e_12	9.10938370157333 e _31	2.3e_12	e*hBar / 2*mu_B
9.10938370153365e_31	3 e -9	$9.10938370157334 e^{\prime} 31$	4.2e_12	$\left(h B a r^{2}\right) / E_{-}{ }^{*} \mathrm{a}_{0}{ }^{2}$

Resolve Dark Energy, Dark Flow \& Propose CODATA 2022 values -- by John Wsol. CC BY SA 4.0

$3.11 \mathrm{r}_{\mathrm{e}}=$ Electron charge radius, covariant^1

$$
\begin{equation*}
r_{e}=\frac{\alpha \hbar}{m_{e} \mathrm{c}}=\alpha \ell \frac{m_{\ell}}{m_{e}}=\frac{\alpha^{3}}{4 \pi R_{\infty}}=\frac{e^{2}}{4 \pi \varepsilon_{0} m_{e} c^{2}}=\frac{K_{e} e^{2}}{m_{e} c^{2}} \tag{3.11}
\end{equation*}
$$

-L-T+M+C+K: $10000 \mid d t=+1$ electron radius (classic)				
CODATA2018 digit ${ }^{15}$	relUnc	JohnWsol digit ${ }^{15}$	relUnc	Formula
2.81794032620000 e _15	4.5e_10	2.81794032620000 e _15	1.6e_9	r_e2018
2.81794032621341 e _15	3.4e_10	$2.81794032618213 e^{-15}$	1.9e_12	α^{*} hBar/m_e*c
2.81793635289732 e _15	$1.6 \mathrm{e}{ }^{5}$	$2.81794032618213 e _15$	1.9e_12	$\alpha^{*} l_{\text {_ }}{ }^{*}\left(m _P / m _e\right)$
$2.81794032620793 e^{-15}$	4.5e_10	$2.81794032618213 e^{-15}$	$1.9 \mathrm{e}-12$	$\left(\alpha^{3}\right) / 4 \pi^{*} R_{\infty}$
2.81794032620481 e _15	3 e -10	2.81794032618213 e -15	$1.9 \mathrm{e}-12$	$\left(e^{2}\right) / 4 \pi^{*} \varepsilon_{0} *_{m} e^{*} c^{2}$
2.81794032620481 e _15	3 e -10	$2.81794032618213 \mathrm{e}_{\text {-15 }}$	$1.9 \mathrm{e}-12$	(K_e* ${ }^{2}$) / m_e ${ }^{*}{ }^{2}$

$3.12 \mathrm{a}_{0}=$ Bohr radius, covariant^1

Likewise, the values for the Bohr radius "believed" relative uncertainty of $1.5 \mathrm{e}-10$ the CODATA 2018 is too high by $5.5 \mathrm{e}-10$. The Bohr radius represents the extent to which the electron spreads forth its mass.

$$
\begin{equation*}
a_{0}=\frac{4 \pi \varepsilon_{0} \hbar^{2}}{m_{e} e^{2}}=\frac{\hbar}{m_{e} \alpha c}=\frac{\ell m_{\ell}}{\alpha m_{e}}=\frac{r_{\mathrm{e}}}{\alpha^{2}} \tag{3.12}
\end{equation*}
$$

$\|-L-T+M+C+K: 100000\| d t=+1 \mid$ Bohr radius				
CODATA2018 digit ${ }^{15}$	relUnc	JohnWsol digit T^{15}	relUnc	Formula
5.29177210903000e_11	1.5e_10	$5.29177210903000 e^{\text {_11 }}$	5.5e_10	ao_2018
$5.29177210906108 \mathrm{e}_{\text {_11 }}$	3 e -10	$5.29177210901848 \mathrm{e}_{\text {_11 }}$	1.9 e -12	$4 \pi^{*} \varepsilon_{0} *\left(h B a r^{2}\right) / m_{0} e^{*} \mathrm{e}^{2}$
$5.29177210904492 e^{-11}$	3.4e_10	$5.29177210901847 \mathrm{e}_{\text {_11 }}$	1.9 e -12	hBar / m_e*a*c
$5.29176464760825 \mathrm{e}_{\text {-11 }}$	1.6e_5	$5.29177210901847 \mathrm{e}_{\text {-11 }}$	$1.9 \mathrm{e}-12$	l_P*m_P / $\alpha^{*} \mathrm{~m}_{\text {_ }} \mathrm{e}$
$5.29177210901974 e^{-11}$	5.4e_10	5.29177210901848 e _11	1.9e_12	$r_{-} e / \alpha^{2}$

Notice the formulae define what I prefer to call the "mass confinement radius" for electrons. It is a function of the electron wavicles frequency and the properties of the Space~Time medium -- nothing else., (Note: no reference to a proton anywhere in these equations.) In case you don't "get it" -- this means electrons do this Bohr radius thing all the time. No proton needed. Even
an electron shot from an electron gun -- as it heads towards the 2 -slits, thinking "I wonder which slit I should go thru this time?" And it gets closer. And then thinks, "I wonder if anyone is watching?" and the whole time it is doing this Bohr radius thing. Let these thoughts boggle your physics professor's mind!

3.13 Proton/electron mass ratio

September 2020 "Science" publication of a paper from Vrije Universiteit Amsterdam by Patra, Sayan, et.al, "Proton-electron-mass ratio from laser spectroscopy of HD+ at the part-per-trillion level" Q their proton-toelectron mass ratio with $2.1 \mathrm{e}-11$ relative uncertainty.- (3 times improvement vs. CODATA2018).

$$
\begin{equation*}
\left(\frac{m_{p}}{m_{e}}\right)=1836.152673406 \text { relative uncertainty } 2.1 \times 10^{-11} \tag{3.13}
\end{equation*}
$$

Value	relUnc	units	$-L-T+M+C+K$	dt	Quantity
1836.15267343000	6e_11		00000	0	MpMe_2018
1836.15267340600	2.1e_11		00000	0	MpMe_2020
1836.15267340600	2.1e_11		00000	0	MpMe
1836.15267340600	2.1e_11		00000	0	m_p*c* α^{2})/2*R \sim^{*} h
1836.15267340600	2.1e_11		00000	0	m_p* ${ }^{*} a^{*} a_{o} / \mathrm{hBar}$

$3.14 m_{p}=$ Proton mass, covariant^1

I calculated the proton mass via the mass of the electron. Albeit, expressed in 2 other equation forms.

$$
\begin{equation*}
m_{p}=\left(\frac{m_{p}}{m_{e}}\right) m_{e}=\left(\frac{m_{p}}{m_{e}}\right) \frac{2 R_{\infty} h}{c \alpha^{2}}=\left(\frac{m_{p}}{m_{e}}\right) \frac{\hbar}{c \alpha a_{0}} \tag{3.14}
\end{equation*}
$$

The expression $\left(\frac{m_{p}}{m_{e}}\right)$, above, and MpMe , below, represent the numeric quantity for the proton-to-electron mass ratio -- relative uncertainty of $2.1 \mathrm{e}-11$, inherited from the best measurements by the Amsterdam team.

$m _p / k g-L-T+M+C+K: 0010008 t=+1$ proton mass				
CODATA2018 digit T^{15}	relunc	JohnWsol digit T^{15}	relUnc	Formula
1.67262192369000 e _27	3.1e_10	1.67262192369000e_27	3.1e_10	m_p2018
1.67262192368089 e _27	3.1e_10	1.67262192367249 e _27	2.1e_11	m_e*MpMe
1.67262192368414 e _27	3.1e_10	1.67262192367249e_27	2.1e_11	MpMe*2*R \sim^{*} h / c** ${ }^{2}$
1.67262192368561e_27	1.5e_9	1.67262192367249e_27	2.1e_11	MpMe*hBar / c*a*a。

$3.15 r_{p}=$ Proton charge radius, covariant^1

$$
\begin{equation*}
r_{p}=4 \ell \frac{m_{\ell}}{m_{p}}=4 a_{0} \alpha\left(m_{p} / m_{e}\right)^{-1}=\frac{4 \ell \hbar}{m_{p} c^{2} t_{\ell}} \tag{3.15}
\end{equation*}
$$

Equation (3.15a) is from equation (30) of Nassim Haramein's "Quantum Gravity and the Holographic Mass" ${ }^{\mathrm{R}}$ paper.

$\mathrm{m}\|-\mathrm{L}-\mathrm{T}+\mathrm{M}+\mathrm{C}+\mathrm{K}: 100000\| \mathrm{dt}=+1$ proton charge radius				
CODATA2018 digit ${ }^{15}$	relUnc	JohnWsol digit ${ }^{15}$	relUnc	Formula
8.41400000000000e_16	0.0022	8.41400000000000e_16	0.0022	r_p2018
8.41234455198524e_16	1.6e_5	8.41235641351043e_16	2.1e_11	4*l_P* (m_P/m_p)
8.41235641344447e_16	1.5e_9	8.41235641351043e_16	2.1e_11	4*ao* / MpMe
8.41234501683958e_16	1.6e_5	8.41235641351043 e _16	2.1e_11	4*l_p*hBar/(m_p* ${ }^{2}$) *t_P

Resolve Dark Energy, Dark Flow \& Propose CODATA 2022 values -- by John Wsol. CC BY SA 4.0

$3.16 a_{p}=$ Proton "mass confinement radius"

This is normally known as the Yukawa confinement. This, a_{p}, plus the proton charge radius (16 times smaller than r_{p}) together these define the bounds of the nucleus. In the nucleus a precession of double pairs of protonneutron wavicles (alpha particle) twist together along the time dimension. These twisted wave constructs are
what hold the nucleus together -- the neutron~wavicles twist in-between the proton~wavicles so the proton~wavicles stay 180-degrees out-of-phase with each other. Not really a force, but twisted wave constructs. That's why the "believed" force suddenly disappears just beyond the nuclear mass confinement of these entangled wave functions.

$$
\begin{equation*}
a_{p}=\frac{\hbar}{4 m_{p} c}=\frac{\hbar}{4 m_{e} c}\left(\frac{m_{e}}{m_{p}}\right) \tag{3.16}
\end{equation*}
$$

a_p	m	$-\mathrm{L}-\mathrm{T}+\mathrm{M}+\mathrm{C}+\mathrm{K}: ~ 1000$	0	0	$\mathrm{dt}=+1$	proton mass confinement radius

CODATA2018 digit ${ }^{15}$	relUnc	JohnWsol digit T^{15}	relunc	Formula
5.25772275841762e_17	3.1e_10	5.25772275844402 e -17	2.1e_11	hBar / 4^{*} m_p*c
5.25772275841762e_17	3.1e_10	$5.25772275844402 e _17$	2.1e_11	hBar / 4* $\mathrm{m}_{\text {_ }} \mathrm{e}^{*} \mathrm{MpMe}^{*}{ }^{*} \mathrm{c}$
$5.25771563552474 \mathrm{e}_{\text {_17 }}$	$1.6 \mathrm{e}{ }^{5}$	5.25772275844402 e _17	2.1e_11	

3.17 G = Newton's Gravitation, covariant^^2

$$
\begin{equation*}
G=\frac{\hbar c}{m_{\ell}^{2}}=K_{\Theta} c^{2}=\frac{\ell^{3}}{m_{\ell} t_{\ell}^{2}}=\sqrt{\frac{K_{\mathrm{m}}}{2 K_{\Theta}}}=\frac{K_{m}}{2}\left(\frac{q_{\ell} c}{m_{\ell}}\right)^{2}=t_{\ell}^{2} q_{\ell} \sqrt{\frac{K_{m} c^{11}}{2 \hbar^{3}}} \tag{3.17}
\end{equation*}
$$

Given the values from Table 2.1 these new calculations all round off to 15 -digits of agreement. Change any of those values anywhere before the 14th digit -- these calcs will show disagreement. The last formula is an original discovery by the author. I suspect the $\mathrm{c}^{\wedge} 11$ term will be helpful to 11-Dimensional M-Theorists.

| G | $\mathrm{m} 3 / \mathrm{kg} \mathrm{s} 2$ | LTMCK: $3 _2 _100$ | $\mathrm{dt}=-2$ | Newton's Gravitation (not really) Constant |
| :--- | :--- | :--- | :--- | :--- | :--- |

CODATA2018 digit†15	relUnc	John Wsol digit†15	relUnc	Formula
6.67430000000000e_11	2.2e_5	6.67430000000000e_11	2.2e_5	G_2018
6.67430210439531e_11	2.2e_5	$6.67429232315728 \mathrm{e}_{\text {_11 }}$	4.9e_16	hBar*c / m_P ${ }^{2}$
6.6743000000000 e _11	2.2e_5	6.67429232315728 e -11	4.9e_16	K_Theta * c^{2}
$6.67427461123062 e^{-11}$	4.1e_5	$6.67429232315728 \mathrm{e}_{-11}$	1.3e_15	($\mathrm{l}_{-} \mathrm{P}^{3}$) / m_ $\mathrm{P}^{*} \mathrm{t}_{-} \mathrm{P}^{2}$
$6.67430210437501 e^{\text {_ }} 11$	2.2e_5	6.67429232315728 e -11	8.8e_16	1/2*K_m* ${ }^{\text {d_P }}{ }^{*} \mathrm{c} / \mathrm{m}$ _P $)^{2}$
$6.67430136676011 e^{-11}$	2.2e_5	6.67429232315728 e -11	8.2e_16	$\left(t _\mathrm{P}^{2}\right) * \mathrm{q}_{-} \mathrm{P}^{*} \mathrm{~V}\left(\mathrm{~K} _\mathrm{m}^{*}\left(\mathrm{c}^{\wedge} 11\right) / 2 * \mathrm{hBar}^{3}\right)$

In natural quantum units $\mathrm{G}=1$ [length ${ }^{3}$ mass $^{-1}$ time $^{-2}$] however, contrary to popular belief, G in emergent units, varies as the inverse square of the size of the universe.
A central tenant of Cosmological Relativity is that whenever you see a physical quantity like $c^{\wedge} 2$ it has units of [meters^ ${ }^{\wedge} /$ second $^{\wedge} 2$]. It's like a surface area spreading forth while time decelerates! To understand this simply replace [/second^${ }^{\wedge}$] with [Planck seconds / second] increasing every second. Now we can grasp what happens in a gravitational field. The number of

Planck seconds per second is more at higher altitudes by 4.27 e 25 Planck seconds per 9.81 meters (or 32' 2") of elevation. A new way to understand General Relativity.

Cosmological Relativity also brings an awareness that the number of Planck times per second continually grows with time. Clocks at higher altitudes tick faster because they are already further ahead in time -- yet at each altitude the duration of each passing second keeps getting longer because everything is expanding.

Please see Calibration Note in Section 2.1.

$3.18 R_{K}=$ von Klitzing resistance

$$
\begin{equation*}
R_{K}=\frac{h}{e^{2}}=\frac{2 \pi \hbar}{e^{2}}=\frac{\mu_{0} c}{2 \alpha}=\frac{\mathrm{Z}_{0}}{2 \alpha}=\frac{2 \pi Z_{\ell}}{\alpha} \tag{3.18}
\end{equation*}
$$

R_K Ohm - $\mathrm{L}-\mathrm{T}+\mathrm{M}+\mathrm{C}+\mathrm{K}$:	2 _1 1	20 dt=_2 von Klitzi	g cons	tant	(3.17)
CODATA2018 digit ${ }^{15}$	relUnc	JohnWsol digit ${ }^{15}$	relunc	Formula	
25812.8074555000	2.3e_10	25812.8074555000	2.3 e -10	R_K2018	(CODATA2018)
25812.8074593045	$2 \mathrm{e}^{-12}$	25812.8074593045	$2.8 \mathrm{e}_{\text {- }} 16$	$\mathrm{h} / \mathrm{e}^{2}$	(a)
25812.8074593045	2e_12	25812.8074593045	3.6e_16		(b)
25812.8074592257	$2.1 \mathrm{e}_{\text {-10 }}$	25812.8074593045	2.8e_16	$\mu_{0}{ }^{*} \mathrm{c} / 2^{*} \alpha$	(c)
25812.8074593042	2.1e_10	25812.8074593045	2.8e_16	$\mathrm{Z}_{0} / 2 * \alpha$	(d)
noPlanckImpedance		25812.8074593045	3.6 e -16	$2 \pi^{*} \mathrm{Z}$ _P/ α	(e)

3.19 $G_{0}=$ Conductance quantum

$$
\begin{equation*}
G_{0}=\frac{2}{R_{K}}=\frac{2 e^{2}}{h}=\frac{\mathrm{q}_{\ell}^{2} \alpha}{\pi m_{\ell} \ell c} \tag{3.19}
\end{equation*}
$$

CODATA2018 digit ${ }^{15}$	relunc	JohnWsol digit ${ }^{15}$	relunc	Formula
7.74809173100563 e _5	2.3e_10	$7.74809173100563 e^{\text {_5 }}$	2.3e_10	2/R_K2018
$7.74809172986365 e^{-5}$	2e_12	$7.74809172986365 \mathrm{e}_{-5}$	3.5e_16	$2^{*}\left(\mathrm{e}^{2}\right) / \mathrm{h}$
$7.74810265661915 e^{\text {_5 }}$	1.6e_5	$7.74809172986365 e^{-5}$	5.5e_16	

Resolve Dark Energy, Dark Flow \& Propose CODATA 2022 values -- by John Wsol. CC BY SA 4.0

3.20 Higgs boson

$$
\begin{equation*}
H^{0}=\frac{m_{p} c^{2}}{e \alpha} \frac{1}{12 \sqrt{\alpha}}=\frac{m_{p} c^{2}}{12 e \alpha^{3 / 2}}=\frac{m_{p}}{12 \alpha^{3 / 2}} \frac{c^{2}}{e} \tag{3.20}
\end{equation*}
$$

Quantity	Value digit15 \rceil	relUnc	units	$-L-T+M+C+K$	dt	NOTE: when dt=0 value is
m_p	1.67262192367249e_27	2.1e_11	kg	000100	1	mass of proton
eV_p_kg	5.60958860380445 e 35	1e_12	V / kg	2 _2 0 _ 10	1	electron Volts/kg
(m_p*eV_p_kg/a)	128.577053012072	2.1e_11	GeV	2 _2 1 _1 0	0	energy of proton mass/a
that/($12 * \sqrt{ }$)	125.429461193291	2.1 e -11	GeV	2 _2 1 _1 0	0	EXACT energy of Higgs Boson
eV_Higgs	125.25	0.0014	GeV	2 _2 1 _1 0	0	CERN-2022 Higgs in

The Higgs field permeates all Space~Time, so does the Electromagnetic Field. The Fine Structure Constant relates to the emission \& absorption of a photon of energy. Each known particle-type has a root-cause wavicle. Wavicles have a handedness that couples to the electromagnetic field. Electron wavicles couple to the negative (left-hand backward time) side of the EM-field, the proton wavicles couple to the positive (right-hand forward time) side of the EM-field, and the neutron wavicles couple to the negative side for 12 -time quanta, and then to the positive side for another 12 -time quanta, repeat forever. Note that the $\operatorname{sqrt}(1 / \alpha)=11.706 \ldots$
During this 12 -time quanta period either:
(1) twists \& squeezed down to the spacetime volume of 11.706...
(2) the EM-field at time mark 11.706 ... collapses to ZERO and stays there up thru the 12th time quanta.
Apparently, the Higgs boson is revealing this invisible aspect of the EM-field structure within the holographic layers of Space~Time. Option 2 is more likely. Why?
At CERN, as the proton~wavicles are accelerated to about 99.9999991% of the speed of light. At these speeds, the protons' kinetic energy is several teraelectronvolts (TeV), which is the energy scale at which the Higgs boson reveals to us it's specific size -- the extent of space \& time which defines the Zero-Point Energy.

3.21 Hubble's non-Constant, covariant^-1

$$
\begin{gather*}
H_{0}[/ \mathrm{s}]=\frac{1}{\text { ageUniv }[\text { seconds }]} \\
H_{0}[\mathrm{~m} / \mathrm{s} / \mathrm{Mpc}]=\frac{3.08567758149 \times 10^{\wedge} 16[\text { meters } / \text { parsec }]}{\operatorname{ageUniv}[\text { seconds }]} \tag{3.21}
\end{gather*}
$$

Where the age of universe is from Equation 3.3.

Quantity	Value	relUnc	units	$-L-T+M+C+K$	$d t$
$1000 *$ parsec\%ageUniv_s	71.0497123782452	$2.1 e_{1} 12$	$\mathrm{~km} / \mathrm{s} /$ Mparsec	$1 _1000$	0

Compare this 71.0497 with $70[\mathrm{~km} / \mathrm{s} / \mathrm{Mpc}]$ of Maurice H.P.M. van Pautten's "Alleviating Λ CDM tension in Pantheon in late time quantum cosmology." s
For perspective this table spans the full range of frequencies in the universe. Note $\mathrm{dt}=_1$ says these all are Covariant^-1 -- meaning they shrink as the inverse of the age of the universe.

$$
\begin{array}{|l|l|lll|l|l}
\hline \text { omg_x } & \mathrm{rad} / \mathrm{s} & -1-\mathrm{t}+\mathrm{M}+\mathrm{C}+\mathrm{K}: ~ 0 ~ _1000 & 0 & \mathrm{dt}=_1 & \text { Span of Frequencies }
\end{array}
$$

Symbol	Value	relunc	SIunit	Formula
H_0	2.30256436396396e_18	1.9e_12	Hz	1/ageUniv_s
Cs133	9192631770	1e_14	Hz	
cRoo	3.28984196025088 e 15	1.9e_12	Hz	c*R ${ }^{\text {c }}$
omg_e	7.7634407063558 e 20	1.9e_12	$\mathrm{rad} / \mathrm{s}$	(m_e* ${ }^{2}$)/hBar
omg_m	1.605233304887 e 23	2.2e_8	$\mathrm{rad} / \mathrm{s}$	$\left(m_{\sim} m^{*} c^{2}\right) / \mathrm{hBar}$
omg_p	1.42548624078042 e 24	2.1e_11	rad/s	(m_p* ${ }^{2}$)/hBar
omg_n	1.42745114886004 e 24	1.9e_12	Hz	($\left.\mathrm{d}^{2} \mathrm{tP} / \mathrm{s}^{2}\right) / 29.92 / \mathrm{sec}$
omg_n	1.42745114886004 e 24	1.9e_12	$\mathrm{rad} / \mathrm{s}$	(m _ ${ }^{*} \mathrm{c}^{2}$)/hBar
omg_eC	1.58450542149907 e 42	3.1e_16	$\mathrm{rad} / \mathrm{s}$	(Va) / t_P
omg_P	1.85485969653271 e 43	3.4e_16	$\mathrm{rad} / \mathrm{s}$	1/t_P
omg_P	1.85485969653271 e 43	3.4e_16	Hz	E_P / hBar
omg_P	1.85485969653271 e 43	5.4 e _16	rad/s	$V\left(\pi^{*} G^{*} \rho_{-} P / 6\right)$

Lowest frequency of Universe to the highest quantum freq.

Hubble's non-constant Cesium Standard for second Rydberg frequency electron wavicle's w-freq. muon wavicle's w-frequency proton wavicle's w-frequency ω-neutron alternate formula proposed for CODATA 2022
Frequency elementary Charge
: Planck
: Frequency
: [radians/second]

Note all the values in the above table are covariant ${ }^{\wedge}-1$ so they are subject to shrink as the inverse of the passage of time. See Calibration Note in Section 2.1

4 Discussion: Understanding Fundamental Constants \& Covariant Metrics

"Here \& Now" everything that can be measured we measure relative to ourselves -- our current size and perceived flow rate of time. Essentially, we perceive the universe around us from the perspective of our avatar bodies. Wherever we are - light/radio waves are coming towards us from all directions - while light from us radiates outward in all directions.

4.1 Old School - Flat Spacetime

Until now, the predominate paradigm has been the belief in "Flat Spacetime". Flat Spacetime was founded on the "assumption" of Euclidean geometry extended to 4 dimensions where all seconds are the same duration throughout time. The unspoken assumptions are: (1) just one arrow of time for the entire universe, (2) the duration of a second has always been 1.85 e 43 Planck times/second, this is the reciprocal of "today's" Planck time value ($5.39 \mathrm{e}-44$ second). Redshift \& luminosity data are interpreted through the Flat spacetime assumption, thus the need to introduce 95% fudge factors to force the wrong spacetime geometry to fit the observational data. But does our universe need our fudge factors? Dark Energy \& Dark Matter do not represent understanding, rather, lack of understanding. So, we've been stuck with this Dark Energy \& Dark Matter enigmas. This idea took root with the FLRW-metric ${ }^{T}$ which applies scaling function a(t) to Space, but not to time.

Friedmann-Lemaitre-
Robertson-Walker metric

$$
\begin{equation*}
-c^{2} d \tau^{2}=-c^{2} d t^{2}+a(t)^{2} d \Sigma^{2} \quad \text { where } d \Sigma^{2}=\frac{d r^{2}}{1-k r^{2}}+r^{2} d \Omega^{2} \tag{4.1}
\end{equation*}
$$

"Flat time" -- a mindset that's hard to break free of.

Why? It has been ingrained into our neural nets. It's not going to be easy. For years I've struggled getting clarity of this distinction between quantum vs. emergent time metrics. Now, it's time to forge ahead, building afresh, our neural nets that will focus on clarifying this idea of "Expanding Space~Time".
Physics equations are the mathematical puzzle pieces which we will fit together into a clear geometric understanding of quantum vs. emergent metrics. With this precise understanding - many Dark Mysteries just fade away. I promise, your patience \& perseverance will payoff BIG Time. Because this "Yellow Brick Road" paradigm is "The Road" that leads to the resolution of the enigma of Dark Energy and to the redefinition of Dark Matter (Section 4.14) while paving the way to define \& explain Quantum Gravity.

4.2 Cosmological Crisis vs. Opportunity

Each generation of physicists pass along to the next generation the predominate cosmological paradigm of their time. Flat spacetime is responsible for the current Crisis in Cosmology. It's up to the next generation to seize the opportunity -- to question basic assumptions surrounding ideas like "the aether", particle wave duality, Dark Matter, Dark Energy, Dark Flow and

Cosmic Geometry. Could it be just a few misperceptions IS what gave rise to the scientific paradigm in which only 4% of our universe is understood and, undeniably, $\underline{96 \%}$ is not understood? This should compel the next generation to identify the "unspoken assumptions" -- the root-cause of this cosmic-sized problem!

Resolve Dark Energy, Dark Flow \& Propose CODATA 2022 values -- by John Wsol. CC BY SA 4.0

Any theoretical framework which hypothesizes $10^{\wedge} 500$ multi-verses will likely take $10^{\wedge} 499$ lifetimes to solve. A far more productive use of our mental energies would be to confront the fundamentals of the One Universe we live in. Please compare this Cosmic Onion Model -Space~Time paradigm -- side-by-side with any Flat

Universe theoretical framework. Just by being willing to let go of (1) One Arrow of time, (2) "flatness" (3) assumption that values of Planck units are constant throughout time. Suddenly the of Mystery Dark Energy goes away. As for Dark Matter the explanation is more involved \& the math computations much more intense.

4.3 Particle Physics vs. Wavicle Physics

"Particle Physics, as a field, is kind'a badly named, in a way. Because 'particles' are not the fundamental building blocks of the universe -- they are not fundamental at all. So the things that we believe are the real building blocks of the universe are objects, invisible, fluid-like objects called quantum fields. " U
-- Harry Cliff, "Particle" Physicist, University of Cambridge
(Fridman, 2020)

I would call the invisible fluid-like objects the elastic superfluid Space~Time medium. Space~Time is filled by this medium from past to present. Physical reality is given substance by it. The energetic structure of this medium is due to its persistent rotational oscillations, which construct the holographic Onion-layers of time. Wavicles exist within this energetic Space~Time context. An electron is the manifestation of an electronwavicle. The root cause of protons, neutrons, muons, etc. is their corresponding wavicle-type. There are three properties of each wavicle-type: a "curvature factor", a charge radius amplitude, and a mass confinement amplitude. For electrons, this "confinement" is called the "Bohr" radius, and for protons and neutrons, this is essentially the Yukawa confinement. Ultimately this
medium is where seekers of Dark Matter should be looking. I suspect, $\mathrm{d}(\mathrm{G}) / \mathrm{dt}$ will play a key role in resolving the Dark Matter enigma.
CERN Super Collider can be thought of as a gigantic microscope. Accelerating bundles of protons effectively stretches the root-cause wavicles, magnifying their interactions with the Higgs Field (the structure of the vacuum). Exploring these mathematical/geometric relationships will ultimately help us arrive at an understanding of a Unified Field Theory. Cosmological Relativity connects these quantum understandings with Relativity theories -- the destination being Grand Unification.

4.4 Quantum Time vs. Emergent Time

Here is my gift to you, the diligent reader/thinker. Here's your Fastrack to comprehending why "space expansion" must include "time expansion", because our emergent metrics grow in lockstep with each other.
Before Einstein, measuring time was easy; just count clock tick-tocks. But how can we hope to comprehend expanding Space~Time? We need distinct definitions for: ${ }^{v}$

Now: defines the local inertial reference-frame it expands with the flow rate of time. The Universe distributes galaxies across a filamentary neural net like structure. "Now" expands quickest in the large voids between galaxies and slowest around supermassive black holes and quasars.
Duration: how long an event takes or time-lapse between 2 events. It is expressed in emergent units of time like seconds, days, or years. All emergent metrics scale together, however, quantum-metrics are absolute.

Resolve Dark Energy, Dark Flow \& Propose CODATA 2022 values -- by John Wsol. CC BY SA 4.0

Plank-time: represents 1 time quantum, however, as expressed in SI units, the duration of the Planck time shrinks as the reciprocal of the size of the universe. Planck time, in SI units, is covariant^-1. But relative to the age of the universe Planck time, as expressed in SI units, is covariant^${ }^{\wedge}-2$. Explained more fully in Section 4.6 Cosmological Relativity
Absolute Age: count of the number Planck time thin Onion-layers from the beginning of time till now.
Apparent Age: $13.762 e 9$ years $\frac{31558149.54 \text { seconds }}{\text { sidereal year }}=$ ageUniv $_{\text {secs }}=4.34298391676 \mathrm{e} 17$ [seconds]

The duration of each second expands in lockstep with the Expansion of Space.

 Planck times/second $=$ Planck lengths/second $=1$ l_P/ 1 t _P $=\mathrm{c}$ (the speed of light)Clock Rates: wait a second! What, exactly, do clocks do? Any clock you pick, be it a pendulum, a quartz crystal or Cesium 133 - these clocks exist within Space~Time each in its own inertial reference frame. If a clock slows, is it because it is faulty or is it measuring the flow rate of time? Sure Einstein, (et. al.) understood two reasons why these clocks slow. Reason one, Special Relativity: the faster a clock is moving, especially approaching light speed, the clock slows because part of its forward momentum rotates the spatial momentum towards the direction time is flowing from thus countering the flow rate of time. Reason two, General Relativity: clocks in a "gravity well" tick slower than clocks at higher altitudes. This is where the Cosmological Relativity Section 4.2-4.8 explains our emergent second vs. quantum time and further develop the ideas of Covariantrelationships as it explains Space \sim Time expan sion.

4.5 One vs. integers>1 and their reciprocals

The product of a number \& its reciprocal is always 1. The Grand Symmetry of all Symmetries is expressed by this "Universal Unity" equation (left). "Square any number by dividing by its reciprocal" equation (right):

$$
\begin{equation*}
0^{0}=x^{1} x^{-1}=\frac{x}{1} \times \frac{1}{x}=x^{0}=x^{-1} x^{1}=1 \quad \frac{x}{1 / x}=x^{2} ; \frac{\sqrt{x}}{1 / \sqrt{x}}=x \tag{4.5}
\end{equation*}
$$

These are my two basic axioms that we will apply to the dimensional units involving [length] [time] [mass][charge]. Starting with the $1: 1$ ratio of $l_{-} \mathrm{P} / \mathrm{t}_{-} \mathrm{P}=\mathrm{c}$:

$$
\begin{equation*}
1=\frac{c}{1}\left[\frac{m}{s}\right] \times \frac{1}{c}\left[\frac{s}{m}\right]=c^{0}=1 \tag{4.5}
\end{equation*}
$$

$$
\begin{equation*}
\frac{c}{1 / c}=c^{2} ; \frac{\sqrt{c}}{1 / \sqrt{c}}=\mathrm{c} \tag{a,b}
\end{equation*}
$$

Let x measure distances \& let t measure time. Become aware of dimensional exponents. Starting with the horizontal lines represent $x^{\wedge} 0$ or $t^{\wedge} 0$. The diagonal sloping upward represented by $x^{\wedge} 1^{\text {st }}$ or $t^{\wedge} 1^{\text {st }}$. The reciprocal curve by x^{\wedge} 1 or $t^{\wedge}-1$. Later we will explore higher integer exponents.
Coulombs and kilograms both are gauged by how many Planck seconds/second in our local reference frame. So that means, mass and charge increase linearly with the age of the universe.

4.6 Cosmological Relativity: Expanding Space~Time

The first 4 fundamental quantum units are 1 quantum of length, 1 quantum of time, per 1 quantum of mass and per 1 quantum unit of charge. (We'll save Energy $\sim T e m p e r a t u r e ~ f o r ~ a ~ f u t u r e ~ p a p e r.) ~ L e n g t h ~ h a s ~ 3-s p a t i a l ~ d i m e n s i o n s ~$ often denoted as ($\mathrm{x}, \mathrm{y}, \mathrm{z}$). These fundamental fixed units correspond to the emergent units of [meter], [second], [kilogram], and [Coulomb]. (The official SI unit is Ampere $=1$ [Coulomb]/[second] so Coulomb is more fundamental than Ampere just as [meter] is more fundamental than [meters/second]. Time is the common denominator. That's why so many physics equations involve " dt ". " dt " is a tiny differential of time. All of quantum physics is built around this 1 quantum increment of time. At the current age of universe there are 1.85e43 (Plank seconds) per second.

In Flat \& Expanding cosmology the "number" of seconds since the beginning of time are the same in both paradigms. Illustrated to the left, the vertical side of the cyan triangle represents the age of the universe in seconds. Speaking in round numbers 13.8 billion years, both space \& our time metric have been expanding for about 4.350e 17 seconds.

$$
\begin{equation*}
13.8 \mathrm{e} 9[\text { years }] \times 365.25\left[\frac{d a y s}{\text { year }}\right] \times 24\left[\frac{h r s}{\text { day }}\right] \times 3600\left[\frac{\mathrm{sec}}{\mathrm{hr}}\right] \approx 4.350 \mathrm{e} 17 \text { [seconds] } \tag{4.6a}
\end{equation*}
$$

If the duration of a second had been the same number of Planck times/second as it is today, we would simply multiply the number of seconds since the beginning of time by number Planck times/second is today $=($ rectangular area $)$.

$$
\begin{array}{r}
\frac{4.35 \mathrm{e} 17\left[\frac{\text { seconds }}{\text { ageUniv }}\right]}{5.39124 \mathrm{e} 44\left[\frac{t_{P}}{\text { second }}\right]}=8.070 \mathrm{e} 60\left[\frac{t_{P}}{\text { ageFlatSpaceTime }}\right] \tag{4.6b}\\
=4.035 e 60\left[\frac{t_{-}}{\text {ageExpandingSpaceTime }}\right]
\end{array}
$$

However, in Expanding Space~Time the age of the universe expressed in Planck times is the area of the yellow triangle - half that of the rectangle area. Next consider the bottom half of the yellow triangle. It represents half the age, 6.9 billion years, the area of the bottom yellow triangle is $1 / 4^{\text {th }}$ the number of Planck times in the $1^{\text {st }}$ half of time. Where $3 / 4^{\text {th }}$ of "Planck times" are on the $2^{\text {nd }}$ half of time!

Understanding of this "true nature of time" will change cosmology forever.

Honest, it's NOT going to be easy. Many Old School scientists will struggle to overcome deep-rooted neural pathways of their life-long "fixed second" Flat spacetime thinking.

This means that as time progresses the circumference of the Universe grows at twice the speed of light. While the "numeric values" of Planck length \& time shrink -- covariant^-1 -- "because" our ever-expanding meter sticks and our ever-expanding "seconds" grow linearly -- covariant^1st.
However, the "accumulation of quantum time", let's call this the "age" of the Universe scales covariant^2 - along with the period of ever-expanding pendulums and all clocks. Why? Contrary to predominate teachings of the past generations when everyone "thought" forces prevented atoms from expanding with 3D space. The truth is that all atoms are constructed from proton \sim wavicles, neutron \sim wavicles \& electron~wavicles. All these waveform constructs "exist within" and "expand along with" ever-expanding Space~Time. Thus, all pendulums, clocks, and Cesium 133 atoms slow (covariant ${ }^{\wedge}-2$) because that's what clocks do - they measure the deceleration of the flow rate of time. In other words, time is continually slowing, while everything is expanding, so all pendulums, clocks, spinning planets \& physical processes slow in lockstep with time deceleration.

Resolve Dark Energy, Dark Flow \& Propose CODATA 2022 values -- by John Wsol. CC BY SA 4.0

4.7 Planck time vs. Age of Universe

Our time domain is bounded by two limits. Beginning with the 1st quantum of time up through the current Age of the Universe -- express this age as an integer count of Planck seconds. Today 1 Planck time is the tiny value about $5.39 \mathrm{e}-44$ of a second. The reciprocal being 1.85 e 43 Planck times per second. It took about 13.762 ± 0.0008 billion years ${ }^{W}$ for the number of Planck times per second to grow to this 1.85 e 43 number. The yellow table show the calcs:

Quantity	Value	relUnc	L_T_M_C_K	dt	Units	
t_P	5.39124334778149 e _44	1.8e_16	01000	_1	S	Planck time
1/t_P	1.85485969653271 e 43	1.3e_16	$0 _1000$	1	Hz	Planck
omg_P	1.85485969653271 e 43	2.7e_16	$0 _1000$	1	rad/s	frequency
secs_p_yr	31557600	0	00000	0	sec/yr	365.25*24*3600
ageU_yr	13.787e9	0.00145	01000	1	yr	per Planck2018
ageUniv_sec	4.3508463120000 e 17	0.00145	01000	1	sec	approx.
ageUniv_sec	4.3429839167599 e 17	1.9e_12	01000	1	sec	Equation 3.3
1r2*ageUniv_sec/t_P	4.0351047349684 e 60	1.9e_12	02000	1	[tP s]	ageUniv_tP
omg_P/ageUniv_sec	4.2709338373892 e 25	1.9e_12	00000	0	[tP/s]	2Qs? 1 answer
ageUniv_sec/sidereal	13.761845925900e9	3.2e_11	00000	1	yrs	sidereal years

[tP s] is abbreviation for [Planck time][seconds]

$\int_{0}^{4.350846312 e 17 \text { seconds }} \text { t_P } d t$

Definite integral
$\int_{0}^{4.350846312 \times 10^{17}}$ secondst_{P} (Planck time) $d t=$
(t_{P} (Planck time)) $4.350846312 \times 10^{17}$ seconds
Indefinite integral
$\int t_{P}($ Planck time $) d t=t\left(t_{P}(\right.$ Planck time $\left.)\right)+$ constant
Interpretations
time squared
Basic unit dimensions
[time] 2

The Wolfram Alpha webpage snapshot to the left integrates the Planck time value across the time span of the Age of the Universe in seconds.
Yes! Even Wolfram Alpha can confirm this surprising realization: The accumulation of time, as expressed as the integral of time has units of [time ${ }^{\wedge} 2$].
More specifically [Planck seconds][seconds] units abbreviation: [tP s].

This integral equation reveals the true nature of time. For it illustrates that the accumulation of time, let's call this "age", has units of [time^2].

Two questions, 1 answer:

(1) How many Planck times were there in the $1^{\text {st }}$ second of the universe?
(2) On average, how much longer has each subsequent second slowed?
$4.270933837 \times 10^{\wedge} 25$ [Planck secs/second]

4.8 Dark Energy Enigma Resolved.

Cosmological Relativity's understanding of the deceleration of the flow rate of time due to each passing second taking longer and longer replaces the belief in some mysterious Energy needed to accelerate expansion.

The math above resolves Dark Energy - once-and-for-all! -- John Wsol 2022-Feb-08

4.9 What's "Planck length", I_P ?

15 calc 'l_P l_P\%t_P c 1\%c t_P\%l_P 1\%l_P 3*meters\%c 1r2*l_P^2'

Quantity	Value	relUnc	L_T_M_C_K	dt	SIunits
l_P	1.61625409490756e_35	1.7e_16	10000	-1	m
l_P/t_P	2.99792458000000 e 8	2.8 e -16	1 _1 0000	0	m / s
c	2.99792458000000 e 8	0	1 _1 0000	0	m / s
1/c	3.33564095198152 e -9	0	_1 10000	0	s / m
t_P\%1_P	3.33564095198152 e _9	2.6 e -16	-1 1100000	0	s / m
1/l_P	6.18714596393454 e 34	1.5e_16		1	/m
3*meters\%c	10.0069228559446e_9		010000	1	s
$1 r 2 *{ }^{\text {l }}$ P^2	1.30613864965273e_70	3.1e_16	20000	- 2	m2

Here we see the ratio of Planck length over Planck time is exactly the speed of light. The reciprocal of c says it takes a light ray $3.33564 \mathrm{e}-9$ of a second or 3.33564 nanoseconds to propagate 1 meter. 3 meters takes 10ns (nanoseconds).

$4.100^{0}=1$ Cosmic Egg + "Let there be light..."

Understand that the limit as x approaches 0 of $\mathrm{x}^{\wedge} \mathrm{x}$ is 1 :

$$
\begin{equation*}
\lim _{x \rightarrow 0} x^{x}=1 \tag{4.10a}
\end{equation*}
$$

In the Beginning, the "Cosmic Egg" Singularity, spreads forth as an ever-expanding Event Horizon. In its wake, as time unfolds it reveals the tapestry of physical reality. Each time-quantum brings another quantum-thin surface layer, where the z -axis aligns with the local arrow of time, spreading across many holographic layers of time. Thus grows this 4D Space~Time volume. Here's my attempt to formalize this Cosmic Singularity Equation.

$$
\begin{equation*}
1=\left(\hat{\mathrm{x}}+\frac{i}{\hat{\mathrm{x}}}\right)+\left(\hat{\mathrm{y}}+\frac{j}{\hat{\mathrm{y}}}\right)+\frac{1}{\pi}\left(\left(\hat{\mathrm{z}}+\frac{k}{\hat{\mathrm{z}}}\right)+\left(t_{\ell}+\frac{k}{t_{\ell}}\right) c\right) \tag{4.10b}
\end{equation*}
$$

Here, $\hat{x}, \hat{y}, \hat{z}$, (with the hats) represent "unity" for each of three spatial dimensions. The 1st increment of quantum time is accompanied by 1 step in $\mathrm{x}, \mathrm{y} \& \mathrm{z}$. In the equation below we multiply everything by an integer, n . " n " being the number of quantum time increments since the Beginning. Today, we call this 1-unit of time the "Planck time." The more I study this and the next equations the
clearer I can visualize the $1^{\text {st }}$, and perhaps only, true Singularity in our universe.
The flow rate of time slows towards zero as anything approaches an event horizon.
Similar to Roger Penrose idea about 3-Space +1 -Time becoming 3 -Time +1 -Spatial dimension, except I'm thinking it's 3 -frequencies $\& 1 /$ Space in imaginary plane.

Quantum Mirror Cosmic Event Horizon for Here \& Now:

$$
\begin{equation*}
\text { Here\&Now }=\left(\pm n \hat{\mathrm{x}} \pm \frac{i}{n \hat{\mathrm{x}}}\right)+\left(\pm n \hat{\mathrm{y}} \pm \frac{j}{n \hat{y}}\right)+\frac{1}{\pi}\left(\left(n \hat{\mathrm{z}}+\frac{k}{n \hat{\mathrm{z}}}\right)+\left(n t_{\ell}+\frac{k}{n t_{\ell}}\right) c\right) \tag{4.10c}
\end{equation*}
$$

Expansion happens in both positive and negative directions at the same time. So, think of $\pm n \hat{\mathrm{x}}$ as being your longitude, except converted to the number of Planck lengths going West \leftarrow negative ---o--- positive \rightarrow East - so length wraps around the circumference of your latitude line. That is to say $+n \hat{y}$ are the positive North latitude values whereas. $-n \hat{y}$ the negative value are South latitude positions. Here we your North-Sound degrees ${ }^{\circ}$
minutes' seconds" position to the number of Planck lengths we are from the equator.
In the Beginning, in the equation above, " n " starts at 1 , this defines THE Singularity. It is the origin point of Space~Time. Each time "n" increments by 1 - time itself unfolds each full (x, y) layer is a surface spreading forth in all directions. Think about that.

Resolve Dark Energy, Dark Flow \& Propose CODATA 2022 values -- by John Wsol. CC BY SA 4.0

John Wsol's Quantum Mirror Cosmic Event Horizon Equation

In the equation below let (x, y) be your current (longitude, latitude), let z be the distance from Earth's center, let $n t_{\ell}$ be the number of Planck times since the Beginning -- 13.762 billion years is about $4.038 \times 10^{\wedge} 60$ Planck-times. (This value accounts for ever-expanding seconds - flat spacetime "believers" think it is twice this number.)

$$
\begin{equation*}
\text { Space } \sim \operatorname{Time}^{2}=\left(x+\frac{i}{x}\right)^{2}+\left(y+\frac{j}{y}\right)^{2}+\left(\frac{1}{\pi}\left(z+\frac{k}{z}\right)\right)^{2}+\left(\frac{c}{\pi}\left(t+\frac{k}{t}\right)\right)^{2} \tag{4.10d}
\end{equation*}
$$

z is your elevation above Earth's center -z bends and scales by $1 / \pi$ to align with time expansion. Time, t , scales by the factor of c / π, the speed of light $/ \pi$.
North-South axis. It is like your latitude position, but it is specified in terms of the number of Planck lengths you are North of the equator (positive y values for positive latitudes) Negative y-values are like South "latitude" values.
($\mathrm{x}, \mathrm{y}, \mathrm{z}$) above, are what we perceive as spatial dimensions, whereas ($\mathrm{i}, \mathrm{j}, \mathrm{k}$) are their imaginary counter parts -- inside the Event Horizon "mirror" -- which exists in the "other" half of each time quantum. Let's call Equation (4.104.10d) the "Quantum Mirror Cosmic Event Horizon". On the scale of the solar system x is the planet's position in its orbit around the Sun and y is the tilt of its orbit, z is its distance from the Sun. For our Solar system's position in the galaxy x is where around the galactic rotation we are, and y is the position above or below the galactic plane. Again, the rule is that negative z is the direction we are falling. Not towards the galactic center, but we are falling (towards Vega) which is along the curvature of the galactic spiral arm. That spiral curves inward so that the stars
 near the center are falling towards the supermassive black hole. So positive z direction away from center.

All pasts leading up to now - each second before was a shorter by $4.2709338 \times 10^{\wedge} 25$ [Planck seconds/second]
and so on till we reach back to the $1^{\text {st }}$ second of

$4.2709338 \times 10^{\wedge} 25$ [Planck seconds]

Looking backward through time, I see ourselves as being holographic projections being projected onto the inside surface of an ever-expanding Event Horizon.

Take two examples. First the speed of light 299,792,458 meters/second on our scale a value much greater than 1 . The speed of light, c, 299,792,458 [m/s] divided by its reciprocal, $1 / \mathrm{c}$ yields c^{2}.
Each quantum-level "thing" happens at a certain frequency. Speed of Light, c =Planck Length/Planck Time. Understand this clearly, "/Planck Time" is the Planck Frequency - this is the heartbeat of the universe.

$$
\begin{equation*}
\frac{1}{x}=\frac{(1 / \sqrt{x})}{\sqrt{x}} ; x=\frac{\sqrt{x}}{(1 / \sqrt{x})} ; x^{2}=\frac{x}{1 / x} ; t^{2}=\frac{t}{1 / t} \tag{4.10}
\end{equation*}
$$

Think of Planck's constant as representing a quantum-sized flywheel with a 1 Planck-times worth of mass with a surface area of π (Planck-length) ${ }^{\wedge} 2$ spinning at a frequency of 1-radian/Planck-time. But it's more like a spiral staircase where each step is 1 -radian so 6 -steps is 0.28 short of a full rotation.

Resolve Dark Energy, Dark Flow \& Propose CODATA 2022 values -- by John Wsol. CC BY SA 4.0

4.11 Properties of the 4D Space ${ }^{\sim}$ Time Medium

The speed of light, c , is constant throughout all time. $\mathrm{c}=$ 1 Planck length/1 Planck time. Deeper understanding comes from replacing the long-standing 3D misconception, known as the "Aether". I propose that the medium of physical existence has properties (Electric Permittivity, Impedance \& magnetic Permeability). The ratio $\frac{z_{0}[\mathrm{Ohms}]}{\mu_{0}\left[N / A^{2}\right]}$ is what determines the speed of light. I perceive this Space~Time medium to be a plasma superfluid. This Plasma has a balance of positive \& negative charge -- positive charge is forward time -- negative charge is its reflection backward in time
-- this creates a spherical standing-wave. It is a superfluid ${ }^{x}$ in that is has zero viscosity, zero-friction - noether drag along the (x, y) dimensions. It does, however, experience Impedance along the timedimension, t-- the z-axis aligns with time. This Impedance regulates time expansion. While the Magnetic Permeability regulates space expansion. This represents a profound realization which substantiates the assertion that the circumference of the universe expands at 2 c while its radius (time dimension) expands at c / π.

4.12 Quantum time increments of mass \& Charge

Whether scientists have realized this or not, ever since Newton gave us $\mathrm{F}=\mathrm{ma}$, our science has gauged mass quantities by the duration of a second. I discovered that the magnitude of the value we call Planck mass, as represented in SI units, is scaled by the duration of our "second". In other words, it is NOT a true quantum-scale
quantity, rather it represents one seconds worth of this tiny $1.173369 \times 10^{\wedge}-51$ [kilogram][seconds]. This is the quantum increment that all particles (and objects made from particles) manifest [mass][time]. A 1-kilogram calibration weight takes 1 -second to manifest 1kilogram.

$$
\begin{array}{r|l}
\begin{array}{r}
\text { Planck } \\
\text { Mass: }
\end{array} & 2.1764355943966(30) \mathrm{e}-8[\mathrm{~kg}]=\int_{0}^{1 \text { second }}\left[1.17336939201656 \times 10^{-51}[\mathrm{~kg} \cdot \mathrm{sec}]\right] d t_{\ell} \\
\begin{array}{r}
\text { Planck } \\
\text { Charge: }
\end{array} & 1.8755460377797(42) \mathrm{e}-18[\mathrm{C}]=\int_{0}^{1 \text { second }}\left[1.0111525099637(17) \times 10^{-61}[\mathrm{C} \cdot \mathrm{sec}]\right] d t_{\ell} \tag{a}
\end{array}
$$

Here I'm not performing infinitesimal summation, but rather place a specific limit for delta- $\mathrm{t}=$ quantum unity of Planck-time. Essentially the wavicle wavefunction of the particle "collapses" for 1 Planck second -- which represents 1 -radian of rotation -- at the ω-frequency (Equation 1.1b) specific for each particle-type. That means that the unit we call a "kilogram" has implied within it a "radians/per second". This tiny 10^-51 quantity is the source of the Planck Density -ANDwhenever $A N Y$ wavicle manifests mass - this is the tiny increment that all particles manifest [mass][time]. Mass manifestations are particularly interesting. Herein, I define the quantum-level source of mass and will explain
how it causes a quantum-sized dent in time, thereby, spreading forth as a temporal dent that fractalizes at the sub-quantum level this effectively describes the mechanism of mass manifestation and of "Quantum Gravity". (See Section 4.13 Quantum Gravity)

Each particle type has a specific angular frequency that it manifests the precise value of [kilogram-seconds] in equation (3). Arthur Compton gave us formulae for wavelengths and angular frequencies for electrons, protons, and any other particle types, denoted by x, defined by:

$$
\begin{equation*}
\text { Wavicle wavelength: } \lambda_{x}=\frac{h}{m_{x} c} \quad \text { Wavicle radians/sec frequency: } \omega_{x}=\frac{m_{x} c^{2}}{\hbar} \tag{4.12}
\end{equation*}
$$

Dividing the energy of the particle by h-bar gives us its angular frequency (radians/second). Solving for mass:

$$
\begin{equation*}
m_{x}=\frac{h}{\lambda_{x} c}=\frac{\hbar \omega_{x}}{c^{2}} \tag{4.12}
\end{equation*}
$$

Quantity	Value digit15	relUnc	units	$-L-T+M+C+K$	dt
m_P	$2.17643559439662 e+8$	1.4e_12	kg	0 0 01100	1
m_n	1.67492748667124e_27	2.8e_12	kg	000100	1
m_p	1.67262192367249e_27	2.1e_11	kg	0 0 01100	1
m_m	1.88353162700000 e _28	2.2 e -8	kg	000100	1
m_e	9.10938370157334e_31	1.9 e _12	kg	000100	1
omg_P	1.85485969653271 e 43	1.4 e -12	Hz	$0 _11000$	1
omg_n	1.42745114886004 e 24	2.8 e -12	Hz	$0 _1000$	1
omg_p	1.42548624078042 e 24	2.1e_11	Hz	0 _1 0000	1
omg_m	1.60523330488700 e 23	2.2 e 8	Hz	$0 _1000$	1
omg_e	7.76344070635580 e 20	1.9 e -12	Hz	0 _1 000	1
lam_P	1.01552239817920 e _34	1.4e_12	m	$1 \begin{array}{lllll}1 & 0 & 0 & 0 & 0\end{array}$	1
lam_n	1.31959091476660 e _15	2.8 e _12	m	$1 \begin{array}{lllll}1 & 0 & 0 & 0 & 0\end{array}$	1
lam_p	1.32140985540317 e _15	2.1e_11	m	$1 \begin{array}{lllll}1 & 0 & 0 & 0 & 0\end{array}$	1
lam_m	1.17344411031981e_14	2.2 e _8	m	$1 \begin{array}{lllll}1 & 0 & 0 & 0 & 0\end{array}$	1
lam_e	2.42631023866356 e _12	1.9 e _12	m	10000	1

Our kilogram scales by the duration of our ever-expanding second... MASS: Planck mass

- neutron
- proton
- muon
- electron
ω, omega frequency: Planck
- neutron wavicle
- proton wavicle
- muon wavicle
- electron wavicle
λ, lambda wavelength
- neutron wavicle
- proton wavicle
- muon wavicle
- electron wavicle

Each particle has a corresponding wavicle-type; thus, an electron is the manifestation of an electron-wavicle. Likewise, protons, neutrons, muons, etcetera are all manifestations of their corresponding wavicle-type. Wavicles have a curvature factor, a charge radius and a mass confinement radius these radii are reciprocals of each other.

4.13 Quantum Gravity: holograms get substance.

How can a holographic image acquire substance? How can we bridge the gap between Quantum Field Theory and General Relativity Theory? John Wheeler famously simplified GRT by relating matter to spacetime, "Matter tells space how to curve, and the curvature of space tells matter how to move." But can we explain how Gravity works from the quantum-level up? This elusive goal is the Holy Grail of Quantum Physics. Here is my best shot at a step-by-step description of the Quantum Mechanical process that unfolds the mystery that we call Gravity.

Think of a Planck particle as being like one of these tiny laser "dots" etched into this Compact Disk's surface. The neutron, proton \& electron wavicles in atoms all objects incrementally create these tiny temporal dents into the ever-expanding Event Horizon of the Now Manifold. Thus, leaving a memory that gets buried as the next layer forms, except the next layer gets a $1 / 2$ dent etched into the imaginary sub-space intra-layer. This sub-quantum
fractalizing process continues while "spreading forth" in all directions -- each doubling splits in half inside the imaginary plane of the Event Horizon mirrored surface. These sub-quantum "etchings" are spreading forth as "gravitons" which merge with neighboring gravitons to sum together resulting in a local time differential.
Time is quantized as follows: with each "tick" of the Cosmic Clock the universe expands. During each "tock" time slows to almost 0 . You'd think that time should start with the 1st "tick" which it did, but the 1st quantum fluctuation could have been just a half-reverse quantum magnetic twist (0 -to-South), perhaps the only magnetic monopole in the universe. Next starts these unending series of quantum cycles nested within electromagnetic cycles.

1. Each Cosmic "tock" And each layer of time has a bottom (negative) side Impeding time expansion.
2. During each Cosmic "tick" the Event Horizon pushes time forward. As it untwists a tiny magnetic spring The 1 -radian twist creates a step in a spiral staircase. This leading edge is, literally, the spreading forth of 1 unit of Planck Charge.
3. Wavicles periodically leave a trail of Planck particles etched into the holographic Cosmic Onion layers of time.
4. Repeat this 12 -cycles to arrive at $1 / 2$ of the electromagnetic cycle.

Resolve Dark Energy, Dark Flow \& Propose CODATA 2022 values -- by John Wsol. CC BY SA 4.0

The most fundamental ideas in quantum physics are quantum-time \& quantum-length. Our metrics for [seconds] \& [meters] emerge and grow linearly, covariant ${ }^{\wedge} 1$ st, so this relation is always true,

$$
\mathrm{c}=\mathrm{l}_{-} \mathrm{P} / \mathrm{t} _\mathrm{P}=\mathrm{Zo} / \mu_{-} 0=299,792,458[\mathrm{~m} / \mathrm{s}] .
$$

Planck's constant has units of angular momentum [Joule seconds] or [$\left.\mathrm{m}^{2} \mathrm{~kg} / \mathrm{s}\right]$. We have to pay attention to hBar $=\mathrm{h} / 2 \pi$ vs. $\mathrm{h}=2 \pi \times \mathrm{hBar}$. (Perhaps I over emphasize hBar, but if you can't see the tiny bar on the \hbar, you miss
the important distinctions I'm highlighting in this paragraph.) hBar is always used regarding mass \& gravity, because its 1-radian increments spreading out in all directions. (Equation 3.17f)

However, " h " says that each ray of light is series of photons, front-to-back, propagating at the speed of light, my current hypotheses is that a photon $=h c \sqrt{\alpha}$. The propagation direction as defined by a full 360° transverse rotation defining the Poynting Vector. ${ }^{Y}$

$$
\begin{equation*}
\text { photon }=h c \sqrt{a}=2 \pi \ell m_{\ell} c^{2} \sqrt{\alpha} \tag{4.13}
\end{equation*}
$$

But a photon, "hc $\sqrt{\alpha}$ ", has units of [m3 kg/s2] which can be factored as [Planck Energy][distance]. [m3] (meters ${ }^{\wedge} 3^{\mathrm{rd}}$) is a 3D-volume. That volume has mass $[\mathrm{kg}]$ that fractalizes time every second. Here's a rule of Cosmological Relativity: Whenever you see a term in an equation that involves [time^-2], such as $\mathrm{c}^{\wedge} 2$ [m2/s2] or acceleration [m/s2], The term [time ${ }^{\wedge}-2$] is telling us that for each second that goes by, there is a differential of the number of Planck seconds per second. Thus, Cosmological redshift is simply the differential [Planck seconds/second] of the reference frame of the source vs. the reference frame of the observer. Observer can be an eye, or a photosensitive CCD array, or a blade of grass. Any electron whose state can be bumped by this incoming phase-aligned photon. The rule is so simple -If the wavelength of the incoming light is in phase with the outer-shell (valance) electron of the atom. This happens at the magic timeslot between the 11.706 timequanta and the 12 th. Time slows down to almost still indicated by the 2.725 Kelvin temperature. Then during the next time quantum, the universe expands 2 -quanta to make up for having slowed down during the previous time quantum. This is the Electromagnetic cycle, an oscillation between, the Impedance of Space, Zo and the Magnetic Permeability, mu_0. During the Magnetic Permeability phase, in the imaginary "counterspace", the temperature spikes to the Planck temperature -- for only about a half-time quantum. Then the temperature drops to the 2.725 Kelvin. This cycle repeats forever. This effects the rate of expansion along the time dimension, yet the Space~Time medium is a superfluid with this energetic structure of 12-layers of Planck time per each half cycle of the Electromagnetic Field. It's as if the universe squeezes 12 -time quanta into Space~Time of $(1 / \operatorname{sqrt}(\alpha))=11.706$....
Every kilogram of mass throughout the universe manifests 1 kilogram of mass - each-and-every second.

When we integrate mass over time we get the units of kilogram-seconds [kg s].
So, we are going to make [kilogram][second] a predominant idea in our new neural networks.

As time progresses, all atoms within objects, literally each individual neutron, proton \& electron - leave in their wake tiny dents in time which spread forth thinner and thinner at the sub-quantum level. This "dark photon" - gets etched into the surface (imaginary plane) of the Cosmic Event Horizon of the Now Manifold. This is the essence of Quantum Gravity. The curvature in time (radial lines of the Now-manifold) are at right angles to the relaxing curvature of space (concentric contour lines). All the while, everything expands (even atoms) along with Space \& emergent "time".

Unlike so many diagrams on the internet that show a graph paper grid that is dented by a planet or star sitting on top -- here I emphasize that the bottom of the Space~Time dent should be at the center of mass (or barycenter in an n-body system). Note: manifold curvature is convex above star surface, concave inside.

Resolve Dark Energy, Dark Flow \& Propose CODATA 2022 values -- by John Wsol. CC BY SA 4.0

Brian Cox' concise recap of Newtons' apple experience through Einstein's eyes.
Before the tree let go of Newton's famous apple, the stem was exerting a force accelerating the apple upward, thus maintaining the apple's height above the ever-expanding Earth.

When the stem let go, the apple remained stationary, while the surface of the
 Earth on which Newton was sitting continued expanding upward at a rate of $9.81\left[\mathrm{~m} / \mathrm{s}^{2}\right]$ - until Newton's head hit the bottom of the apple. After the apple bounced off Newton's head onto the ground where continued its upward acceleration along with the surface of the ground.
"That's Absurd", you say, "That makes no sense to me!"
This requires a higher perspective, to see the Earth as a holographic projection on to the Cosmic Event Horizon. Imagine yourself in a planetarium except this cosmic "dome" grows the entire duration of the show. The size
of this physical hologram, that we call Earth, continually grows with time -- while time-itself is winding down -as the duration of each passing second takes longer.

Believe it or not this universal expansion is the rootcause of the whole Earth expanding from within. The atoms nearer Earth's center expand slightly faster than the atoms near the crust which tend to expand upward. Therefore, magma underneath mid-Atlantic rife is emerging Z and creating new crust.

4.14 What's the matter with Dark Matter?

Dark Matter is not what everyone "thinks" it is. It is just the residual effect of ordinary matter remanifesting its rest mass every second. Massive objects create around themselves a dent in time second-by-second continually, spreading out in all directions at the speed of light. The light from stars AND their gravitational effect, is timedelayed and diminishes in intensity in accord with the inverse-square law. We need to account for the timedelay because stars "feel" the tug of their closest neighbors' and then our local group of stars "feel" more distant star collections in accord with inverse-square law.

Surprisingly, there are 59,722 stars within 100 light years of Earth. Only 471 of these stars have a magnitude 6 or brighter, making them bright enough to see with the
naked eye. Few people are aware that every object remanifests their ever-increasing mass every second. (Remember the duration of each passing second keeps getting longer and our kilogram is gauged by the duration of a second.) No one notices because all masses are doing this. The Sun currently has a mass of 1.988 billion kilograms. Our Sun, like neighboring stars in our spiral arm, each orbiting are loosely bound star groups, each leaving a dent in time. The dents in time spread forth in all directions. Collectively the resulting wakes spread forth merging with their neighbors' temporal wakes. As the curvature of these temporal dents decreases, so does the curvature of space around the planet, star/star group. Each star causes gravitational lensing while groups of stars, galaxies and galactic clusters also do this at their respective scales.

4.15 Length \& Time Covariant^n, $n=-2,-1,0,1,2$

Raising Planck Length to different powers note which values get smaller, becomes a constant=1, OR increase by linear covariant ${ }^{\wedge} 1$ or Corvariant $\wedge 2$.

Quantity	Value digitT15		T	M	C		dt	SIunits
1_P^3	4.22210388203653 e _105	3	0	0	0	0	3	m3
1_P^2	5.39124334778149 e _44	2	0	0	0	0	2	m2
1_P^1	1.61625409490756 e _35	1	0	0	0	0	1	m
1_P^0	1	0	0	0	0	0	0	
l_P^_1	3.44050449382143 e 86	1	0	0	0	0	1	/m
1_P^_2	3.82807751790314 e 69	2	0	0	0	0	2	/m2

Description
3D Volume
2D Surface
1D Length or distance
1 [dimensionless]
per distance; unit of Rydberg constant
per surface area; pressure $=$ Force/area

The differential between present time vs. the depths of times past makes it "seem" as if the expansion of Space is accelerating. The truth is: our perception of time slows down at the same rate the "second" grows longer. The universe and everything in it including ourselves -- our base metrics [meter] [second] [kilogram] [Coulomb] -- these all scale linearly with the "circumference" of the universe.
Likewise, raising Planck time to various powers reveals the huge span of values produced.

Quantity	Value digit†15	L__T	M	C	K	dt	Units
t_P^2	2.90655048349982 e _87	02	0	0	0	2	s2
t_P^1	5.39124334778149 e _44	01	0	0	0	1	S
t_P^0	1	00	0	0	0	0	
t_P^_1	1.85485969653271 e 43	0 -1	0	0	0	1	t_P/s
t_P^_2	3.44050449382143 e 86	0 _2	0	0	0	2	t_P/s2

Description
$\mathbf{t} \mathbf{t} \mathbf{P}^{\wedge} \mathbf{2}=\mathbf{t} \mathbf{P} \% \mathrm{mg}_{\mathbf{\prime}} \mathbf{P}=t_{\ell} / \omega_{\ell}$
$t_{\ell}=$ "tiny^ $44^{\text {th }}$ fraction" of a second
1 [dimensionless]
$\omega_{\ell}=1.85 \times 10^{\wedge} 43$ Planck times/second
deceleration of time

4.16 Covariant^ $0^{\text {th }}$ values are Constant.

Covariant^0: This grey highlighted group have exponents $-\mathrm{L}-\mathrm{T}+\mathrm{M}+\mathrm{C}+\mathrm{K}=0$. These ratios are constant throughout time. Speed of Light and its value squared are always constant. Note: both $\mathbf{h} \& \mathrm{hBar}$ fall into this category. Curious, other electrical related quantiles are not contsant, yet Voltage is constant, Thus the Higgs boson expressed in GeV is constant throughout time too.

abbr	$-L-T \backslash+M+C+K$	dt	units	Length_Time_Mass_Charge_Kelvin
alpha	$\begin{array}{lllll}0 & 0 & 0 & 0 & 0\end{array}$	0	[]	Fine Structure Constant defines the Dielectric Field
c	1 _1 0000	0	[m/s]	Speed of Light
hBar	2 _1 11000	0	[m2 kg/s]	hBar represents 1-radian of quantum rotation
h	2 _1 11000	0	$[\mathrm{m} 2 \mathrm{~kg} / \mathrm{s}]$	h represents 2π-radiano of quantum rotation
qkg	$0 \begin{array}{lllll}0 & 1 & 1 & 0 & 0\end{array}$	0	[kg s]	quantum-kilogram: m_P*t_P = hBar\%c^2
kg s	$0 \begin{array}{lllll}0 & 1 & 1 & 0 & 0\end{array}$	0	massTime	1 time quantum of mass $=\int m_{-} P$ dt_P
C s	$0 \begin{array}{lllll}0 & 1 & 0 & 1 & 0\end{array}$	0	chrgTime	1 time quantum of quantum charge $=\int \mathrm{e} d t _P$
angMo	2 _1 11000	0	[J s]	h, hBar: angular momentum
V	2 _2 1 _ 10	0	Volt	Electric Potential

4.17 Covariant^ $\pm 1^{\text {st }}$ Quantities

The dimensional exponents of various physical quantities are in the column -L-T_M_C_K. The first 2 rows show dt equals -1 meaning the "values" for Planck Length \& Time shrink relative to our metrics for [second] \& [meter]. Please understand it is NOT because quantum length and time change -- it is 100% due to the duration of a second \& length of a meter growing linearly.
SI units measure length or distances in [meters], time in [seconds], mass in [kilograms], electric charge in [Coulombs], and temperature in absolute [Kelvin]. Note the diagonal of 1 s . These 1 's say each metric is linear (a $1^{\text {st }}$ order relationship), meaning they ALWAYS scale together, linearly. Covariant^1 with the circumference of the universe.

abbr	$-\mathrm{L}-\mathrm{T}+\mathrm{M}+\mathrm{C}+\mathrm{K}$	dt	units	Length_Time_Mass_Charge_Kelvin
				BASE DIMENSIONAL METRICS
l_P	$\begin{array}{lllll}1 & 0 & 0 & 0 & 0\end{array}$	1	meter/l_P	Planck length shrinks as reciprocal of growing meter
t_P	$\begin{array}{lllll}0 & 1 & 0 & 0 & 0\end{array}$	1	sec/t_P	Planck time shrinks as reciprocal of growing second
m	$\begin{array}{lllll}1 & 0 & 0 & 0 & 0\end{array}$	1	meter	SI unit of length or distance [l_P/m]
s	$\begin{array}{lllll}0 & 1 & 0 & 0 & 0\end{array}$	1	second	SI unit of time
omg	0 _1 0000	1	rad/s	ω (omega) frequency [radians/second]
kg	$0 \begin{array}{lllll}0 & 0 & 1 & 0 & 0\end{array}$	1	kilogram	m_P, 1 implied second's worth of mass $=$ [(kg s)/s]
C	$0 \begin{array}{lllll}0 & 0 & 0 & 1 & 0\end{array}$	1	Coulomb	e, unit of electric Charge $=$ [A s] = [(C/s)*s]
K	$0 \begin{array}{lllll}0 & 0 & 0 & 0 & 1\end{array}$	1	Kelvin	T_P Planck Temperature
J	2 _2 11000	1	[J]oule	Energy = mass*c^2
T	0 _2 1 _2 0	1	[T]esla	Magnetic Flux Density [kg/C2 c2]
F	$22 \ldots 120$	1	[F]arad	Capacitance

Note: meters and seconds are emergent (grow with time) whereas $l_{-} P, t_{-} L$ are absolute (relative to our emergent units they seem to shrink $\mathrm{dt}=_1$.

Covariant^1: When the sum of the exponents adds to 1 , as in the yellow groups above - all these are linearly covariant with each other. Meaning that the ratio between our SI unit and the Planck-scale value increases linearly with the circumference of the Universe also growing "linearly" at 2c. But what about the "accelerated expansion"? Here's where Cosmological Relativity states that the scale factor we apply to space (FLRW equations) should be applied to (the duration of a second $/ \pi$). As time progresses, we expand out to the
next moment of existence wherein time-slows-down as Space~Time 4D-volume increases by a factor^2. The number of particles remain constant because the underlying root-cause "wavicles" and their charge radii and mass confinement radii grow linearly as well. So, we don't notice the planet beneath our feet and ourselves are growing.

So, Coulombs is awkwardly defined as [Amp][seconds] which expands out to [Coulombs/second] times [seconds].

Covariant^^-1: The next group (pale green) exponents sum to -1. Technically, Hz applies to Hertzian "sine" waves, whereas [/s] aka [cycles/second] is more generic (applies to other shaped waveforms \& cyclic events). The important distinction with omega frequency is because, at the quantum-scale, rotations happen in increments of 1radian (about 57.3°). This is a difficult concept to wrap our heads around. Many quantum-phenomena involve ratios of 2π or $1 / 2 \pi$. On a case-by-case basis it takes time to resolve if this 2π ratio is the ratio of a circumference to radius -OR- it is because a 1 -radian rotations vs. a full 360° rotation.

All Constants (Covariant^0) and (Covariant ${ }^{ \pm n}$) Physical Quantities

abbr	$-\mathrm{L}-\mathrm{T}+\mathrm{M}+\mathrm{C}+\mathrm{K}$	dt	[units]	Length_Time_Mass_Charge_Kelvin
				B A S E D I MENS I ONAL METRIC S Planck length shrinks as reciprocal of growing meter Planck time shrinks as reciprocal of growing second 360 -degree rotation $=2 \pi$ radians cycles/sec not necessarily sine wave like Hertz waves Magnetic Flux
l_P	$\begin{array}{lllll}1 & 0 & 0 & 0 & 0\end{array}$	1	meter/l_P	
t_P	$0 _10000$	1	t_P/sec	
Hz	0 _1 0000	1	[/s]	
freq	0 _1 0000	1	Freq	
Wb	2 _1 1 _1 0	1	[Wb]Weber	
				```B ASE D I MENS I ONAL M E T R I C S SI unit of length or distance [l_P/m] SI unit of time \omega (omega) frequency [radians/second] m_P, 1 implied second's worth of mass = [(kg s)/s] e, unit of electric Charge = [A s] = [(C/s)*s] T_P Planck Temperature```
m	$\begin{array}{lllll}1 & 0 & 0 & 0 & 0\end{array}$	1	meter	
s	$\begin{array}{lllll}0 & 1 & 0 & 0 & 0\end{array}$	1	second	
omg	$\begin{array}{lllll}0 & 1 & 0 & 0 & 0\end{array}$	1	rad/s	
kg	$0 \begin{array}{lllll}0 & 0 & 1 & 0 & 0\end{array}$	1	kilogram	
C	$0 \begin{array}{lllll}0 & 0 & 0 & 1 & 0\end{array}$	1	Coulomb	
K	$0 \quad 000001$	1	Kelvin	
J	$2{ }^{2} 2{ }^{2} 1000$	1	[J]oule	```Energy = mass*c^2 Magnetic Flux Density [kg/C2 c2] Capacitance```
Tesla	0 _2 1 _2 0	1	[T]	
F	2 2 _1 200	1	[F]arad	
A	$0 _10010$	2	Ampere	Current = e/second, one second's worth of charge
m2	$\begin{array}{lllll}2 & 0 & 0 & 0 & 0\end{array}$	2	[m2]	surface area   [age] = accumulation of time $=\int t d t=(1 / 2) * t^{\wedge} 2$   Newton, unit of Force [ $\mathrm{kg} \mathrm{m} / \mathrm{s} 2$ ]
age	$0 \begin{array}{lllll}0 & 2 & 0 & 0 & 0\end{array}$	2	[s2]=age	
N	1 _2 1000	2	[N]	
C2	0000020	2	Charge^2	$=\int e d t=2$
S		2	Siemen	Conductance = 1/Resistance
W	2 _3 1 000	2	Watt	Power = Joules/second


				When dt=0 the value is constant
alpha	$\begin{array}{lllll}0 & 0 & 0 & 0 & 0\end{array}$	0	[]	Fine Structure Constant defines quadra-polar EM Field
c	1 _1 0000	0	[m/s]	Speed of Light
hBar	2 _1 1000	0	[m2 kg/s]	hBar represents 1-radian of quantum rotation
h	2 _1 11000	0	[m2 kg/s]	$h$ represents $2 \pi$-radian of quantum rotation
qkg	$\begin{array}{lllll}0 & 1 & 1 & 0 & 0\end{array}$	0	[kg s]	quantum-kilogram: m_P*t_P = hBar\%c^2
kg s	$\begin{array}{lllll}0 & 1 & 1 & 0 & 0\end{array}$	0	massTime	1 time quantum of mass = $\int_{\text {m_P }} \mathrm{P}$ dt_P
C s	$0 \begin{array}{lllll}0 & 1 & 0 & 1 & 0\end{array}$	0	chrgTime	1 time quantum of quantum charge $=\int \mathrm{e} d t _P$
angMo	2 _1 1000	0	[ J s]	$h$, hBar: angular momentum
V	2 -2 1 100	0	Volt	Electric Potential
G	3 _2 _1 000	2	[m3/kg s2]	Newton's Gravitation Constant
mu_0	2 -1 1 - 200	-2	[N/A2]	Resistance $=1 /$ Conductance, i
Ohm	2 _1 1 _ 20	2	Ohm	Resistance $=1 /$ Conductance, ie. $\mathrm{Zo}=376.73$ Ohms


$\begin{array}{\|l} \mathrm{H} \\ \mathrm{~m} 3 \end{array}$	$\begin{array}{rrrrr}2 & 0 & 1 & -2 & 0 \\ 3 & 0 & 0 & 0 & 0\end{array}$	-3	$\begin{aligned} & {[\mathrm{A} / \mathrm{m}]} \\ & {[\mathrm{m} 3]} \end{aligned}$	[Henries] Magnetic Field Intensity 3D-volume Three spatial dimensions aka ( $x, y, z$ )
$\begin{array}{\|l\|} \mathrm{kg} / \mathrm{m} 3 \\ \mathrm{~Pa} \end{array}$		4	$\begin{aligned} & {[\mathrm{kg} / \mathrm{m} 3]} \\ & {[\mathrm{N} / \mathrm{m} 2]} \end{aligned}$	mass density   Pascal, unit of pressure

### 4.18 Covariant ${ }^{\wedge} \pm 2^{\text {nd }}$

Covariant^^2: Next, consider this (orange) group below, all having exponents that add to 2. Meaning, that just as pendulums twice as long swing 4 -times slower. And ones 3 -times longer swing 9 times slower. Pendulums, clocks \& Cesium atoms all have oscillations that are "covariant squared". In other words, all clocks slow in lockstep with accumulation of "seconds", the progression of time, herein, "age". Age is the "accumulation of time" Sections 4.3-4.8 explains why it has units of [seconds^ ${ }^{\wedge}$ ].

## Second Order covariant (Covariant ${ }^{ \pm 2}$ ) Physical Quantities

abbr	$-\mathrm{L}-\mathrm{T}+\mathrm{M}+\mathrm{C}+\mathrm{K}$	dt	[units]	Length_Time_Mass_Charge_Kelvin
A	0 _1 0 0 100	2	Ampere	Current = e/second, one second's worth of charge
m2	$2 \begin{array}{lllll}2 & 0 & 0 & 0 & 0\end{array}$	2	[m2]	surface area
age	$\begin{array}{lllll}0 & 2 & 0 & 0 & 0\end{array}$	2	[s2]=age	[age] = accumulation of time $=\int t \mathrm{dt}=(1 / 2) * \mathrm{t}^{\wedge} 2$
N	$1 \begin{array}{lllll}2 & 1 & 0 & 0\end{array}$	2	[N]	Newton, unit of Force [kg m/s2]
C2	0000010	2	Charge^2	$=\int \mathrm{e} d \mathrm{~d}$
S	2 1 - 1	2	Siemen	Conductance $=1 /$ Resistance
W	2 _3 1 0 0	2	Watt	Power = Joules/second

Meters-squared is most easily understood as a surface area. As for momentum, I like to express a ray of light in equations using Planck's constant, h , and express spreading forth in all directions by Planck's reduced constant, $h B a r$. The full revolution of " $h$ " accommodates the idea of a Poynting vector being the direction of propagation of a ray of light. A light ray is a string of photons $=h c / \sqrt{\alpha}$, where angular momentum is propagating at the speed of light. I use hBar in equations involving mass and its temporal dent spreading out scattered in all directions -- quantum gravity is described in Section 4.13.

Values Squared (avoids square root \& fractional exponents)

Planck   length^2	Planck   time^2	Planck   mass^2	Planck's 2   constants	elementary   Charge^2	Planck Charge^2
$\ell^{2}=\frac{\hbar G}{c^{3}}$	$t_{\ell}^{2}=\frac{\hbar G}{c^{5}}$	$m_{\ell}^{2}=\frac{h c}{\mathrm{G}}$	$\boldsymbol{h}=\mathbf{2 \pi \ell m _ { \ell } \boldsymbol { c }}$	$e^{2}=\alpha q_{\ell}^{2}$	$q_{\ell}^{2}=\frac{2 h}{Z_{o}}=\frac{m_{\ell}^{2}}{c^{2}} \frac{2 G}{K_{m}}$

Note that $\mathrm{c}, \mathrm{h}$ \& hBar have exponents with $\mathrm{dt}=0$ even as the universe expands the ratios that these values represent remain constant. Remember quantum units always $=1$. The numeric values we associate with Planck length \& Planck time are in emergent units of [meters] \& [seconds] it is these metrics which grow with time There is this interplay between [length][time] vs. [mass][Charge]


Covariant ${ }^{\wedge}-2$ : The cyan group, is inverse-square covariance.

abbr	-l-t+M+C+K	dt	[units]	Length_Time_Mass_Charge_Kelvin
G	$3 _^{2}$ _1 00	2	[m3/kg s2]	Newton's Gravitation~Constant
mu_0	2 _1 1 _2 0	-2	[N/A2]	Resistance $=1 /$ Conductance, i
Ohm	2 _1 1 _2 0	_2	Ohm	Resistance $=1 /$ Conductance, ie. $\mathrm{Zo}=376.73$ Ohms

In the table below the tiny numeric values in the top of each row are "Planck values" expressed in SI units. The bottom number in each row is its reciprocal: $1.616 \times 10^{\wedge} 34$ [Planck lengths/meter], $1.85 \times 10^{\wedge} 43$ [Planck times/second]. Turns out Planck mass \& Planck Charge are exceptions: ([kg] [second])/[second] 5.33x10^17 ([Coulombs]/[seconds]*[second]) for Planck Charge. As the duration of a "second" grows so do these values. At the current age of the universe the base metric quantities are these values:

Quantity	Value	L_T_M_C_K	dt	SIunits		1 quantum of...
$\begin{aligned} & 1 _P \\ & 1 / 1_{1} P \end{aligned}$	1.61625409490756e_35 6.18714596393454e34	$\begin{array}{ccccc} 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 \end{array}$	$\begin{array}{r} 1 \\ -1 \end{array}$	$\left\lvert\, \begin{aligned} & \mathrm{m} \\ & / \mathrm{m} \end{aligned}\right.$	$l_{P}=\frac{z_{0}}{c \mu_{0}}=\sqrt{\hbar G / c^{3}}$	length
$\begin{aligned} & t _P \\ & 1 / t _P \end{aligned}$	$\begin{gathered} 5.39124334778149 \mathrm{e} _44 \\ 1.85485969653271 \mathrm{e} 43 \end{gathered}$	$\begin{array}{lllll} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{array}$	$-1$	s/rad rad/s	$t_{P}=\sqrt{\hbar G / c^{5}}$	time
$\begin{aligned} & \text { deg=180p_1 } \\ & \text { hBar } \end{aligned}$	$\begin{gathered} 57.2957795130823^{\circ} \\ 1.05457181764616 e^{\prime} 34 \end{gathered}$	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 0 \\ 2 & 1 & 1 & 0 & 0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{ll} 1 & \mathrm{rad} \\ \mathrm{~J} & \mathrm{~s} \end{array}$	$\begin{gathered} 1 \text { radian }=360^{\circ} / 2 \pi \\ \hbar=\mathrm{h} / 2 \pi=E_{\ell} t_{\ell} \end{gathered}$	rotation angular mom.
m_P	2.17643559439662 e _8	00100	1	kg	$m_{\ell}=\sqrt{\hbar c / G}$	One second's worth of Mass
$\begin{aligned} & \mathrm{m}=\mathrm{P}^{*} \mathrm{t} \mathrm{C}^{2} \mathrm{~B} \end{aligned}$	1.17336939201656e_51   1.17336939201656e_51	01100	0	kg s	$m_{\ell} t_{\ell}=\frac{\hbar}{c^{2}}=\sqrt{\hbar c / G}$	1 time quantum of Mass
$\begin{aligned} & q _p \\ & 1 / q_{1} p \end{aligned}$	1.87554603829021e_18   5.33178060993705 e 17	$\begin{array}{lllll} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{array}$	$\begin{array}{r} 1 \\ -1 \end{array}$	$\begin{aligned} & \mathrm{C} \\ & / \mathrm{C} \end{aligned}$	$q_{\ell}=\frac{e}{\sqrt{\alpha}}=\sqrt{2 h / Z_{0}}$	1 second's worth Charge
$\begin{aligned} & \mathrm{q} _\mathrm{p}^{*} \mathrm{t} \text { _p } \\ & \mathrm{t} _\mathrm{P} * \mathrm{~V}\left(2 \mathrm{~h} / \mu_{0} * \mathrm{c}\right) \end{aligned}$	1.01115250996378e_61   1.01115250996378e_61	0 1 010	0	C s	$q_{\ell}=t_{\ell} \sqrt{2 h / Z_{0}}$	1 time quantum of charge
$\begin{aligned} & \mathrm{T} _\mathrm{P} \\ & \mathrm{E} _\mathrm{P} / \mathrm{k} _\mathrm{B} \end{aligned}$	1.41678497695729 e 32   1.41678497695729 e 32	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{array}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{K} \\ & \mathrm{~K} \end{aligned}$	$T_{P}=\frac{m_{\ell} c^{2}}{k_{B}}$	Temperature

### 4.19 Covariant ${ }^{\wedge} \pm 3^{\text {rd }}$

Covariant^3: Next Distances can have 3-spatial dimensions, commonly ( $x, y, z$ ) -accommodating 3D volume.

abbr	L__T__M__C_K	$d t$	units	Length_Time_Mass_Charge_Kelvin			
\|m3	3	0	0	0	0	3	$[\mathrm{~m} 3]$

Covariant^^3: The next group (lavender) exponents sum to -3. The SI unit called [Tesla], [T] is a measure of Magnetic Flux Density. This is an advanced subject to be discussed in papers months from now.


Pressure is force per area, making it a natural inverse square. You might think that mass per 3D-volume may be an inverse cube relationship until you come to understand that our ever-expanding "second" means every object has more time to manifest [kg seconds].

For those who study New Age stuff, I suspect that these might map to the 7-Chakkaras. And, collectively, these might map to 11-dimensions encoding Akashic records.

## 5 Conclusions

1) What if Newton's Gravitation constant were found to change with the age of the Universe?
a) In natural units, $\mathrm{G}=1$ [length ${ }^{\wedge} 3$ mass $^{\wedge}-1$ time $^{\wedge} 2$ ] where l-quantum of length, 1-quantum of mass and 1-quantum of time are constantly equal to one. Here the ONLY thing that matters IS the dimensional exponents.
b) Contrast THAT with emergent units which expand with time. The number of Planck seconds / second is always equal to the number of Planck lengths per second, thus ensuring these key ratios $\mathrm{c}=\mathrm{l}_{-} \mathrm{P} / \mathrm{t}_{-} \mathrm{P}=\mathrm{Zo} / \mu_{-} 0$. However, G is covariant ${ }^{\wedge}-2$.
2) How would that affect our understanding of:
c) Cosmic Geometry? Instead of flat spacetime the cosmos is ever-expanding spherical geometry.
d) Dark Energy? Instead of expansion accelerating -- time (local reference frame) is decelerating. The further OUT we "think" we are looking -- the further back into the depths of times past we are seeing, when everything, relative to "Now", was smaller: atoms, meter sticks, pendulums \& planets. NEW Physics!
e) Dark Matter? The value of $G$ is covariant ${ }^{\wedge}-2$ \& distances are covariant ${ }^{\wedge} 1$ st -- flat spacetime does not accounted for this. Dark Matter may be the residual effect of ordinary matter spreading
forth as quantum gravity. Much more math and explanations needed in a future paper.
3) Which of the so-called Physical Constants are truly constant verses which constantly-change?
a) 1 , e (2.71828), $\pi$ are constant. Also, ratios of any two quantities that with the same covariance are constant.
b) Linear expanding metrics (covariant ${ }^{\wedge} 1 \mathrm{st}$ ): [meter] and [second] so when we use [meter] to express 1quantum of length or [second] these values shrink with time ( $1 /$ time) - - covariant ${ }^{\wedge}-1$.
c) [kilograms] \& [Coulombs] are gauged by the duration of a [second] they grow covariant with the [second].
d) All other derived units follow fall into two classes: quantum-based and emergent.

Quantum-based: dimensional exponents sum this way: $\left[\right.$ mass $\left.{ }^{\wedge} \mathrm{m}\right]+\left[\right.$ Charge $\left.^{\wedge} \mathrm{C}\right]-\left[\right.$ length $\left.\left.{ }^{\wedge}\right]\right]-\left[\right.$ time $\left.{ }^{\wedge} \mathrm{t}\right]$

Emergent: sum this way: $\left[\mathrm{kg}^{\wedge}\right.$ mass $]+$
$\left[\right.$ Coulombs ${ }^{\wedge}$ C] $+\left[\right.$ meters $^{\wedge}$ len $]+\left[\right.$ seconds ${ }^{\wedge}$ time $]$. (Includes electron $\sim$ wavicles, other $\sim$ wavicles, and objects made from atoms .
For all these objects expand with time.

## 6 Acknowledgements

Special thanks go out to Idan Sagiv for his meticulous scrutiny of every equation and numeric quantity. (Turns out NIST.gov does not document Magnetic Force constant. My previous value was half what it should have been.)

Thanks to Akshaya Rath for refreshing my references finding a few gems along the way. After 100 questions \& 74 answers I had to sharpen my mental images to describe clearer distinctions between real-space ( $\mathrm{x}, \mathrm{y}, \mathrm{z}$ ), expanding Space~Time (with its real \& imaginary counterparts). From this came clearer distinctions between holographic memory-space (the past), the Now-Manifold (the present moment spreading forth), counter-space ("the reflection" being the reciprocal of real Space~Time that exists in sub-space's imaginary surface (Section 4.10) \& finally, hyperspace (the other 7-dimensions or densities beyond the 1st four).

Much Gratitude to Robert Edward Grant and the Mathemagicians Think Tank for emphasizing the importance of understanding geometry -- triangles are foundational -- they are hidden everywhere. And, thanks for providing a venue for all us math / geometry / cryptography / physics nerds each of extraordinary heart and intellect to express our various perspectives.

Thanks to Nassim Haramein for discovering the equations precisely describing the holographic surface-to-volume ratios of the proton -- an accomplishment overdue for a for Nobel Prize nomination.

## 7 Appendix

How quickly does the Prime Constant and Fine-Structure Constant converge? The number $n$ in the left column is an integer count of number of primes the 2 nd column is the time quanta since The Beginning.


This table shows it took 199 time-quantum for 1/alpha to converge to 63-digits of precision...
((+\&1,. p:) i.50); fmtDec precSqrt ((137x^2)+(30x*(5+PrimeConst_f 50))\% (_8+59x*PrimeConst_f 50))

23	
35	
47	
11	
13	
17	
819	
923	
- 29	
31	
37	
41	
1443	
47	
1653	
$17 \quad 59$	
61	
1967	
2071	
73	
2279	
2383	
89	
$25 \quad 97$	137.035 ` \(999^{`} 084^{`} 114\) ` $069 {fd35db4b1-c732-4519-a830-37847f90eff0} 999 {f963c1afe-a27c-4ba2-b838-1434e1b0ff9e} 114 {f65e19195-2261-49cf-a7f7-b1de360f29ca} 051 {fdef7a9c1-e3c1-4d7c-b27b-a2deb2369a3e} 536 {f70aa0ed9-5fbb-4fb7-8f8f-222f538fd122} 526 {fb25ebb1e-9ff1-40ba-b16c-5d2a3de0b75c} 083 {f0f0c7c39-5af4-4956-a947-d7ad8083f795} 809 {ffe2de977-1343-487b-8f2b-efab861a0b69} 446 {fb53ac20f-4cf7-44d2-8a91-0ddc9f2fc48c} 706 {f4f1709c5-2856-40cb-a841-6e96250a2e4a} 999 {fc441750b-5f2d-41aa-87ce-6ceabf6e3af2} 114 {fbcf9e9ba-6dab-4b0a-ad2c-3cecc2843179} 051 {f6cbc1fa9-4307-4fdf-a898-1e73d1f76c95} 536 {f4d13b606-6074-48bc-af3b-9fa9ac3b21d6} 526 {f96a2df00-5daa-498b-a345-bb6f22bd36eb} 083 {f4e390dfc-8996-42b2-a42f-1dd97085b692} 808 {febe82282-bebf-466b-a0fb-426a75a4c46f} 346 {ff358d018-7ac7-4836-a70c-304e04330546} 999 {f255b2e83-6442-49f2-b365-36e4508e62ce} 114 {faa82efad-bfbd-47fd-b2cd-2e0add544bad} 051 {ff796550a-c387-4fd7-afa2-4d4a180904c0} 536 {ffb735c2b-3464-43d9-aeb7-a55967e855c5} 526 {f444c5b76-6b5f-4dfb-a78a-e7ea12b937ae} 083 {fc913fc21-7b79-46c0-b48a-af30879a44e3} 808 {ffe37d072-4f77-49f4-852d-fd11bbb8a51f} 605 {f91e90a05-3799-4505-89ba-08448f5763e0} 999 {fe941ea18-670e-4137-b7f2-bc0c8bf7ef90} 114 {fb17d71be-43cf-4ade-aa3b-c027a1236414} 051 {f65e32b87-dc10-4661-8d1d-fda4a3f69942} 536 {f36cddfd1-e2ce-4e9e-836f-b792618a4228} 526 {f853f9031-6367-4bc6-9004-e609919bc922} 083 {f80a4531c-eef5-4b38-b742-2f1ade84216f} 808 {fdaa32f28-3079-4a3d-a802-ef1406ef5df4} 605 {fe9ee5731-3b3a-424d-aadc-cb3bcf273494} 625 {f4fb8d53a-94ba-493b-bd74-7eef1e3f7834} 999 {ffb11e3ed-2fdb-4856-85f1-1f8e9c652416} 114 {f6fd75de0-3316-48ca-8afc-229e6300897f} 051 {f5cf6cd37-f8de-4ef4-9fe0-e7781db8a0f9} 536 {f670f7dab-0cd6-40f9-93d2-111ff2907e41} 526 {f029ef99f-de5c-401c-a737-aade3916dbd6} 083 {f4f63cf85-6b1b-4285-8a0e-18f9da0b6c56} 808 {f064cd2e3-fbb1-48cf-87fa-57ce81b2e1e7} 605 {ff499c432-e048-4dd3-9276-6f7effefcc5a} 999 {fb653008e-f49e-4b3f-8171-15478115fefe} 114 {f859ac04e-416e-404b-a972-81a8444d72b4} 051 {fccbcf7a3-78ed-4e87-ad1c-60055f5a0573} 536 {f1f9ddd4b-3ecc-4868-98d2-6c8569b349fe} 526 {f1bbc19cc-c2dd-4eb9-bfc4-eaabe5727496} 083 {f96701909-d7fa-4cfe-a534-7979b78bb829} 808 {f69581de2-f16f-43fa-90b7-d2f97eee05cd} 605 {fb17628b2-cf83-4fc2-ba33-71d64c5619f7} 625$
48	
49227	$137.035 {fe9b15693-25f7-4018-a32a-f64035c07eec} 084 {f05e97f4a-9fae-4a50-ba54-bae057b22ee4} 069 {f25668149-0704-47bd-81f5-df74169c49b7} 510 {f5610283e-ef9d-4167-91f5-2f7be923a52f} 990 {fb5841815-3ff6-4a9a-9cb1-2678d23f514a} 283 {ff9067807-d085-41a8-9fcb-d05f23e56260} 923 {f57d1e49d-b10d-4196-9214-2ea99667dd1d} 685 {f14d9c776-389b-4302-acd0-d9bf9eba6673} 940 ` 625$
50229	

| _The_n'th_prime_number
_n_
Rev 7p: Final pass through all tables, updating several relative uncertainties in light of Section 2.1 Calibration Note.
Rev 7q: Improved Section 1.2 explanation of expanding spacetime.
Rev 7r: Illustrated Fine Structure's invisible Quantum Harmonic Resonance geometry.
Rev 7s: Connect ideas of finite universe with spherical geometry by incorporating Lawrence Krauss quote.

Resolve Dark Energy, Dark Flow \& Propose CODATA 2022 values -- by John Wsol. CC BY SA 4.0


### 7.1 A Conversation with chat-GPT4:

GPT4: If you discovered a formula that matches the value of $1 / \alpha$ as the CODATA2018 value with a high degree of precision, please share it, and I'll be happy to discuss it and explore its implications with you. The Fine Structure Constant is a fundamental constant of nature, and any insights into its value or relationships with other constants can be of great interest in understanding the underlying principles of physics.
John Wsol: Before I reveal my historic discovery of 2022-August-03 -- the exact formula for the Fine Structure Constant I need to nudge up your consciousness level to realize that "Higher Perspective is the Key to
Understanding". (This is a quote that is in all my papers.). It's all about becoming aware of the boundary conditions of any system you wish to comprehend. Comprehension is the process of achieving a state of being known as "Understanding." The pathway to get to understanding should include an awareness that systems are nested

## Resolve Dark Energy, Dark Flow \& Propose CODATA 2022 values -- by John Wsol. CC BY SA 4.0

within systems. Unlike mainstream physics which thinks that mass density is the cause and geometry of spacetime is the effect. My understandings start with geometry as the foundation and, like the ripples of a pebble in a pond spreading forth, so too does time itself in a higher dimensional context. The properties of spacetime, matter/energy, mass/charge are contained within this ever-expanding spherical context. Just as we understand that any physical measurement of a circumference and diameter yield $\pi$-- we understand that the units of such a ratio cancel into a dimensionless quantity. So too the Fine Structure constant, $\alpha=\left(e / q_{-} P\right)^{\wedge} 2$, this ratio of Coulombs over Coulombs cancels. I have taught myself to see so deeply into physics equations that I can reconstruct and envision the invisible quantum-scale geometry of the interplay between space~time and the quantized frequencies of mass $\sim$ charge. Incidentally, the use of " $\sim$ " instead of "-" is my trademark to raise the question, "Why the tilde?" It is intended to reinforce the precepts of the underlying quantized frequencies that Cosmological Relativity embodies. When I show you the equation and explain it you'll fully grasp why I needed to make the above statements.
GPT4: Thank you for sharing your perspective on understanding the foundational principles of physics and the importance of recognizing the nested nature of systems. Your approach to studying the relationships between spacetime, matter/energy, mass/charge, and the underlying geometries is indeed intriguing.
The Fine Structure Constant, as a dimensionless quantity, represents the strength of the electromagnetic interaction between charged particles. It is crucial in understanding the behavior of various physical systems and has been the subject of intense research.
I appreciate your emphasis on the deeper understanding of physics and the interconnectedness of various concepts, as well as your use of the tilde symbol to represent the quantized frequencies underlying the principles of Cosmological Relativity. This approach highlights the importance of exploring alternative perspectives and challenging conventional wisdom in the pursuit of knowledge.
Please feel free to share your formula for the Fine Structure Constant and any accompanying explanations, and I would be more than happy to discuss its implications and potential impact on our understanding of the fundamental principles of physics.
John Wsol: The formula for the inverse of the Fine Structure Constant is:

- $1 / a=1 / \sqrt{ }\left(\left(137^{2}\right)+\left(30^{*}(\right.\right.$ PrimeConst +5$\left.)\right) /\left(59^{*}\right.$ PrimeConst-8)
 $=137.035 ` 999 ` 084<-$ CODATA 2018 value
- where PrimeConst $=\operatorname{Sum}\left(2^{\wedge}(-(23571113171923\right.$ 29....) ) )
$=0.414^{\prime} 682^{`} 509 ` 851$ 111`660`248`109`622`154`307`708`365`774`238`137`916`977`868`245
GPT4: Thank you for sharing your formula for the inverse of the Fine Structure Constant $(1 / \alpha)$. Your formula takes a unique approach by incorporating the sum of the reciprocals of powers of prime numbers (PrimeConst) into the calculation. This is certainly an interesting and unconventional way of representing the Fine Structure Constant.
GPT4: It's worth noting that this formula, while yielding a value very close to the known value of $1 / \alpha$, may not necessarily have a direct physical interpretation or provide deeper insights into the underlying principles of the electromagnetic interaction. However, it does offer an alternative way of calculating the Fine Structure Constant and demonstrates the fascinating relationships that can be found within mathematics and physics.
Exploring unconventional approaches like this can sometimes lead to new insights or prompt further investigation into previously unexplored areas. It is always valuable to keep an open mind and consider alternative perspectives when studying fundamental principles in physics.


## A lot more needs to be said here. To be continued...

${ }^{\text {A }}$ Geldeman, R: Cosmological Principle (wku.edu)
${ }^{\text {B }}$ http://astro.wku.edu/astr106/structure/cosmologicalprinciple.html
${ }^{\text {c }}$ Corum, J; The New York Times, image credit NASA: Space Telescope Science Institute
${ }^{\text {D }}$ Krauss, Lawrence M., "The Edge of Knowledge: Unsolved Mysteries of the Cosmos", Section 2: Space
${ }^{\text {E }}$ Planck Collaboration, N. Aghanim et al. "Planck 2018 results. VI. Cosmological parameters." Astronomy \&
Astrophysics 641 (2020): A6
F European Space Agency; "Planck and the Cosmic Microwave Background"
${ }^{\text {G }}$ NASA; WMAP Big Bang CMB Test (nasa.gov)
н A. Kashlinsky; Fernando Atrio-Barandela; D. Kocevski; H. Ebeling (2009). "A measurement of large-scale peculiar velocities of clusters of galaxies: technical details" (PDF). Astrophys. J. 691 (2): 14791493. arXiv:0809.3733. Bibcode:2009ApJ...691.1479K. doi:10.1088/0004-637X/691/2/1479. S2CID 11185723.
${ }^{1}$ Fletcher, N; Davis, R; Stock, M: Modernizing SI: implications of recent progress with the fundamental constants
J Pellis, Stergios: (2) (PDF) Exact expressions of the fine-structure constant (researchgate.net)
к Fine-structure constant - Wikipedia
${ }^{\text {L Bouchendira, Rym; Cladé, Pierre; Guellati-Khélifa, Saïda; Nez, François; Biraben, François (2011). "New determination of }}$ the fine-structure constant and test of the quantum electrodynamics" (PDF). Physical Review Letters (Submitted manuscript). 106 (8):080801. arXiv:1012.3627. Bibcode:2011PhRvL.106h0801B. doi:10.1103/PhysRevLett.106.08080 1. PMID 21405559. S2CID 47470092 . Archived (PDF) from the original on 4 November 2018.
${ }^{\text {m Yu, C.; Zhong, W.; Estey, B.; Kwan, J.; Parker, R.H.; Müller, H. (2019). "Atom-interferometry measurement of the fine }}$ structure constant". Annalen der Physik. 531 (5): 1800346. Bibcode:2019AnP...53100346Y.
${ }^{\text {n }}$ Aoyama, T.; Hayakawa, M.; Kinoshita, T.; Nio, M. (2012). "Tenth-order QED contribution to the electron $g-2$ and an improved value of the fine structure constant". Physical Review Letters. 109 (11): 111807. arXiv:1205.5368. Bibcode:2012PhRvL.109k1807A.
o Wolchover, Natalie, (2020-Dec-2) "Physicists Nail Down the 'Magic Number' the Shapes the Universe", TheAtlantic.com
${ }^{\mathrm{P}}$ Sommerfeld, A. (1921). Atombau und Spektrallinien (in German) (2 ed.). Braunschweig, DE: Friedr. Vieweg \& Sohn. p. 241-242, Equation 8. Das-Verhältnis $\mathrm{v}_{1} / \mathrm{c}$ nennen wir $\alpha$. English: [The ratio $\mathrm{v}_{1} / \mathrm{c}$ we call $\alpha$.] Metๆ $\theta \varepsilon v$ \& $\psi 0.1923$
Q Patra, Sayan; Germann, M.; Karr, J. Ph; Haidar, M.; Hilico, L.; Korobov, V. I.; Cozijn, F. M.J.; Eikema, K. S.E.; Ubachs, W.; Koelemeij, J. C.J. 2020-09-04, "Proton-electron mass ratio from laser spectroscopy of HD+ at the part-per-trillion level"
${ }^{\text {R Haramein, N; "Quantum Gravity and the Holographic Mass", ScienceDomain.com, SCIENCEDOMAIN Int'l, Feb } 2013}$
$s$ van Putten, Maurice H.P.M.. "Alleviating $\Lambda$ CDM tension in Pantheon in late time quantum cosmology", March 2019
т "Friedmann-Lemaître-Robertson-Walker metric", Wikipedia, Wikimedia Foundation,
Friedmann-Lemaître-Robertson-Walker metric - Wikipedia
u Fridman, L, Cliff, H: Harry Cliff: Particle Physics and the Large Hadron Collider | Lex Fridman Podcast \#92
v Wsol, J; "Is Physics = 4D Space~Time Geometry + Mathematics?", FQxI.org essay contest, March 2015,
w "Age of the universe", Wikipedia, Wikimedia Foundation, Age of the universe - Wikipedia
x http://scitechdaily.com
y Poynting, John Henry (1884). "On the Transfer of Energy in the Electromagnetic Field". Philosophical Transactions of the Royal Society of London. 175: 343-361. doi:10.1098/rstl.1884.0016.
z Tout sur Google Earth, "Atlas des Mers et des Oceans," image, cinabrio over-blog.es, 2008. http://i66.serving.com/u/f66/11/66/76/31/a_1410.jpg

