DDone-10 DIGITAL

Digital FM stereo broadcast exciter

Based on DSP and DDS technology
 For Production or FM-Airchain Use

MAIN FEATURES

Digital Signal Processing technology
Advanced Direct Digital Synthesizer (1 GSPS, 14-bit DAC)
24-bit A/D, 114 dB Dynamic Range, Sampling Rates up to 192 kHz
Complete digital solution in a compact 1U/19 Inch housing

AUDIO SECTION	
Audio connector	XLR Female
L/R input level	$\pm 1.2 \mathrm{Vp}-\mathrm{p}$ for 75 KHz deviation (1 KHz)
Pre-emphasis	Flat/25/50/75
Channel separation	60 dB min., (65 dB typ.), 20 Hz to 15 kHz ,
S/N Ratio	80 dB with CCIR unweighted
Frequency response	$\pm 0.5 \mathrm{~dB} @ 30 \mathrm{~Hz}-15 \mathrm{kHz}$
Encode mode	MONO-L, MONO-R, LR-MIX, STEREO
Spurious and harmonic suppressione	$<75 \mathrm{dBc}$ (Typical 80 dBc)
RF SECTION	
Output power	< 10W, adjustable
Output impedance	50Ω
Output connector	N,Female
Frequency range	87.5 to 108 MHz
Frequency step	10 KHz
RF Spurious	$>-80 \mathrm{dBc} @ \pm 1 \mathrm{MHz}$ min.
RF Harmonics	$>-45 \mathrm{dBc}$
Modulation capability	WFM (F3)
Frequency deviation	$\pm 75 \mathrm{KHz}$
GENERAL SECTION	
Remote Control	RS232, Connector DB9 female
AC power	110 V or 240 V selectable, $50 / 60 \mathrm{~Hz}$
Power consumption (typical)	25 W
Ambient temperature	-5° to $+40^{\circ} \mathrm{C}$
External dimensions ($\mathrm{W} \times \mathrm{D} \times \mathrm{H}$)	$483 \mathrm{~mm}\left(19{ }^{\prime \prime}\right) \times 200 \mathrm{~mm} \times 44 \mathrm{~mm}(1 \mathrm{U})$
Weight	2.5 kg

BLOCK DIAGRAM

INSTALLATION AND OPERATION

Unpacking and inspection

As soon as the equipment is received, inspect carefully for any shipping damage. If damage is suspected, notify the carrier at once, and then contact supplier.

We recommend that you retain the original shipping carton and packing materials, just in case return or reshipment becomes necessary. In the event of return for Warranty repair, shipping damage sustained as a result of improper packing for return may invalidate the Warranty!

Rear panel diagram

[1] MAINS
[2] REMOTE
[3] LEFT
[4] LEFTADJ
[5] TOGGLE SWITCH
[6] RIGHT
[7] RIGHTADJ
[8] RF. OUT
[9] AIR FLOW
[10] GND

Standard IEC connector for mains supply 110 or 230 V, $+10 /-15 \%$
Db9 connector to telemetry the equipment.
XLR connector, for balanced LEFT channel input.
Adjustment trimmer for the LEFT channel input.
Audio input impedance select and pre-emphasis setting.
XLR connector, for balanced RIGHT channel input.
Adjustment trimmer for the RIGHT channel input.
RF output connector, N-type.
Grid for the passage of the air flow of the forced ventilation.
GND

Front panel diagram

The exciter is able to work in all range frequency without calibration and setting operations.

The DSP system includes an LCD display and push-button panel for interaction with the user, and implements the following functions:
. Setting of working frequency.
. Setting of RFoutput power.
. Setting of Mono or Stereo operation.
. Setting of audio level atten...
. Measurement and display of the program level.
The operations that you can perform on the encoder are:
. rotation: modify the paramete,quickly rotation will ...
. pushing: push the button to enter menu or modify project, after the modification of parameter, push the button to save the new value.

Remote description

2 TX_D
$3 R X D$
5 GND

Remote port is a RS-232C compatible serial interface. The baud is 9600 Bps.
Comunication protocol:
Evey framing have 16 bytes., The message structure is show below.
When the command has been active, it return 'OK', otherwise return 'ERROR'.

Byte	Description	Length	Example	Comment
1	Head	1 byte	\$	Fixed
2-6	Frequency	5 byte	087510	Unit: KHz
7	Encode mode	1 byte	0	0: STEREO
				1: MONO-L
				2: MONO-R
				3: LR-MIX
8	Audio source*	1 byte	0	0: Analog input
				1: Digtal input
9	Pre-emphasis*	1 byte	0	0: OFF (Flat)
				1:50 ${ }^{\text {s }}$
				2: $75 \mu \mathrm{~s}$
10-11	Audio attenuate	2 byte	00	00~16
12-14	RF power	3 byte	080	000~100 (0~100\%)
15-16	End	2 byte	<CR>	ODH OAH

* No effects in this version

Audio connectors

1 GND
2 Positive
3 Negative

Attach audio inputs to the Left and Right XLR connectors on the rear panel. (The Left channel audio is used on Mono.) Pin 1 of the XLR connector goes to chassis ground. Pins 2 and 3 represent a balanced differential input. They may be connected to balanced or unbalanced left and right program sources.

By bringing the audio return line back to the program source, the balanced differential input of the transmitter is used to best advantage to minimize noise. This practice is especially helpful if the program lines are fairly long, but is a good practice for any distance.

The input impedance can be set at 600Ω or $10 \mathrm{~K} \Omega$ by the toggle switch of real panel.

Toggle switch Set

MODULE DESCRIPTION

There are senven section in the main board:
(1) Power :convert positive voltage to negative voltage.
(2) Analog process: Audio input,pre-emphasis process,buffer amplifier.
(3) ADC : Analog to digital convert.
(4) DSP : Digital signal processing. baseband processing, user interface, drive DDS
(5) DDS : Direct Digital Synthesizer,FM RF generator.
(6) RF PA : RF amplifier with low pass filter.

The user interface board include LCD and rotary encoder .

DC power supply

DC power schematic :

Main supply is a 12 V DC, supply by a switch power supply. typ. current is about $0.8 \mathrm{~A}(100 \% \mathrm{RF}$ output). It used seven regulators to product several voltage use for evey module.

U107 performs supply voltage conversions from +12 V to -12 V , after these voltage are supply to operational amplifier via the filter. final voltage is about $\pm 11 \mathrm{~V}$.

$\pm 11 \mathrm{~V}$ voltage have two test point in the main board. show as below.

Audio input and pre-emphasis

Attach audio inputs to the Left and Right XLR connectors on the rear panel. Pin 1 of the XLR connector goes to chassis ground. Pins 2 and 3 represent a balanced differential input. They may be connected to balanced or unbalanced left and right program sources.

The audio input cables should be shielded pairs, whether the source is balanced or unbalanced. For an unbalanced program source, one line (preferably the one connecting to pin 3) should be grounded to the shield at the source. Audio will then connect to the line going to pin 2.

By bringing the audio return line back to the program source, the balanced differential input of the transmitter is used to best advantage to minimize noise. This practice is especially helpful if the program lines are fairly long, but is a good practice for any distance.

Below circuit show the left channel of audio process. audio is fed in via P101. the impedance is $10 \mathrm{~K} \Omega$ when S 101 F is close and 600Ω when S 101 F is open.

S101D and S101E concern the pre-emphasis.these two switch can assemble to provider four preemphasis value: $0,25 \mu \mathrm{~s}, 50 \mu \mathrm{~s}, 75 \mu \mathrm{~s}$.

pre-emphasis is a typ

