
A DoD Enterprise DevSecOps
Reference Design

DevSecOps with DoD Cloud IaC, Microsoft Azure, and
GitHub

Author: DOD Office of the CIO and DISA Hosting and
Compute Center (HaCC) with Microsoft Federal

26 September 2022, v0.01, b385

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is
unlimited.

dkluzik
Cleared

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

Document Approvals

Approved by:

George W. Lamb

DoD CIO, Cloud and Software Modernization Directorate

Jonathan M. Williams
DISA, Hosting and Compute Center, Infrastructure as Code PM

Pre-decisional - DRAFT UNCLASSIFIED 2

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

Contents

1 Introduction 7

1.1 Development Pattern and Design Elements . 7

1.2 Scope . 10

1.3 Target Audience . 10

1.4 Reference Documents . 10

1.5 Document Overview . 11

2 Software Factory Components and Interconnects 13

2.1 Digital Platform Reference Design Interconnects . 14

2.2 Applications . 15

3 Prerequisites 16

3.1 Azure Active Directory Tenant and Administrator Roles 16

3.2 Azure Enterprise Agreement and Subscriptions . 16

3.3 DoD Cloud IaC Deployment Virtual Machine . 17

4 DoD Cloud Infrastructure as Code (DoD Cloud IaC) 18

4.1 DoD Cloud IaC Overview . 19

4.2 Environment . 19

4.3 DoD Cloud IaC Templates . 19

4.4 Cloud-Native Access Point (CNAP) . 19

4.5 Baseline Updates . 20

4.6 Accessing the DoD Cloud IaC Baselines & Supporting Documentation 20

5 Azure Software Factory Reference Design 21
5.1 GitHub . 23

5.2 Organizations, Teams, and Private Repositories . 24

5.3 GitHub Actions . 25

5.4 Action Runners - GitHub-hosted and Self-hosted . 30

5.5 Using GitHub Codespaces (Dev Containers) . 33

5.6 Secure Access to Azure . 34

6 Logging and Continuous Monitoring 36

6.1 Azure Monitor . 36

6.2 Azure Application Insights . 39

6.3 Azure Network Watcher . 40

6.4 Microsoft Defender for Cloud . 42

Pre-decisional - DRAFT UNCLASSIFIED 3

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

6.5 Azure Policies . 43

6.6 Microsoft Sentinel . 46

6.7 Logging and Continuous Monitoring in DoD Cloud IaC . 48

7 Application Development with Azure-Managed Services 49

7.1 Automated Cloud Service Deployment . 49

7.2 Resource Groups . 50

7.3 Common Services . 52

7.4 Data Storage . 59

7.5 API Management . 60

7.6 Application Hosting . 62

8 APPENDIX: DevSecOps Lifecycle Tables 67

9 APPENDIX: Additional Azure-Native DevSecOps Offerings 69

9.1 GitHub Offerings . 69

9.2 Azure DevOps . 70

Pre-decisional - DRAFT UNCLASSIFIED 4

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

List of Tables

1 Recommended GitHub Actions for implementing key CI/CD pipeline activities 26

2 Additional (non-CI/CD) GitHub capabilities aligned to DevSecOps lifecycle phases 67

3 CI/CD Orchestrator features, benefits, inputs, and outputs, aligned with GitHub Actions. . 68

Pre-decisional - DRAFT UNCLASSIFIED 5

5

10

15

20

25

30

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

List of Figures

1 Azure Reference Design development pattern and design elements 8

2 DevSecOps Document Relationships . 11
3 DoD Software Factory Interconnects . 13

4 DoD Cloud IaC Baseline providing the IL5 DevSecOps Environment 18

Screenshot of DoD Cloud IaC in the Azure Marketplace . 20

6 GitHub.com providing the Program Developer Environment 22

7 GitHub Organizations, Teams, and Repositories . 25

8 CI/CD Overview . 26

9 Creating a new workflow to set up GitHub Actions . 29

Security scanning alerts . 30

11 Architecture - GitHub Action Runners in Context . 31
12 Self-hosted runner instructions . 32

13 Codespace hosting . 33

14 Monitor Screenshot . 37

Centralized Logging Design . 38

16 Application Insights Screenshot . 39

17 Application Insights Design . 40

18 Network Watcher Packet Logs . 41
19 Network Watcher Design . 42

Microsoft Defender for Cloud Design . 43

21 DoD Cloud IaC Custom Policies . 44

22 Azure Policy Code . 45

23 Sentinel Design . 47

24 Example Application Overview . 49

Basic Resource Group Design . 51
26 Virtual Network Design . 54

27 Application Gateway Design . 56

28 Front Door Design . 58

29 Data Store Design . 60

APIM Design . 62

31 Application Hosting Design . 65

32 Using guidance in this reference design, GitHub.com can be used for deployments up to

and including DoD Security Requirements Guide (SRG) Impact Level 5 69

Pre-decisional - DRAFT UNCLASSIFIED 6

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

1 Introduction

Modern information systems and weapons platforms are driven by software. As such, the DoD is modern-
izing software practices to deliver resilient software at the speed of relevance. DoD Enterprise DevSecOps
Reference Designs provide guidance on how specific collections of technologies come together to form a

secure and effective DevSecOps platform for building software.

This DoD Enterprise DevSecOps Reference Design uses Software-as-a-Service (SaaS) and Infrastructure

as Code (IaC) to quickly establish a DevSecOps environment. This environment includes development
tools to create and manage the software production process as well as separate cloud infrastructure

for integration, test, production, and operations management. The reference design makes significant
use of Cloud Service Provider (CSP) native services to secure and operationalize the environment into a

DevSecOps platform. It also provides patterns for using CSP native services to build and deliver production

applications.

This approach recognizes the advances CSPs have made in providing programmable infrastructure, on-
demand tools, and a catalog of robust services that run in the cloud. It is possible to build complex

applications and Application Programming Interfaces (APIs) for defense missions by configuring and

deploying CSP services in the CSP marketplace. This design does not dictate the products or services to

be acquired, but provides an implementation pattern leveraging these cloud resources. Note that CSP

services are proprietary, and programs must be aware of the potential for vendor lock-in as they select
and deploy services.

The DoD, in partnership with Microsoft, developed this reference design using Azure and GitHub technolo-
gies. Alternative technologies for the key aspects of this design are available through other CSP vendors.
Working directly with Microsoft was appropriate to leverage their commercial best practices for using

the Azure Government cloud. The DISA Hosting and Compute Center (HaCC)1 developed the key DoD

Cloud Infrastructure as Code (DoD Cloud IaC) used for this design along with templates to secure the Azure

Cloud Services. This reference design leverages provisional authorized CSP services, which allow for the

inheritance of controls when pursuing Authority to Operate (ATO). Systems using this reference design

must still be assessed for a full ATO, but the provisional approval simplifies the process.

1.1 Development Pattern and Design Elements

Using CSP native tooling is most appropriate for programs that run on the cloud with commodity compo-
nents. Within the cloud ecosystem, the CSP commercial clouds have the most complete offerings, while

those tailored for Federal and DoD specific workloads at Impact Levels (IL)4-5+ are more limited in both

tools and services. The development pattern used throughout this design takes advantage of the richness

1https://www.hacc.mil/Products/DoD-IaC

Pre-decisional - DRAFT UNCLASSIFIED 7

https://www.hacc.mil/Products/DoD-IaC

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

of commercial clouds for development then moving to more specific clouds for testing and operations.
This approach is referred to as code low, deploy high.

Figure 1 illustrates the development pattern using Microsoft GitHub tools and services at IL2 to build

software and pushing it up to IL4/5 for testing and operations. While this pattern is common across DoD

software factories, it is specifically called out in this design reference due to the focus on using CSP native

services.

Figure 1: Azure Reference Design development pattern and design elements

The development pattern presents the basic flow of software through the cloud environment via a DevSec-
Ops pipeline. There are three design elements necessary for implementing a complete software factory.
These are described briefly, then expanded throughout the document.

1. Use Infrastructure as Code to create the cloud infrastructure for the DevSecOps environment.
This element is labeled as #1 in Figure 1. It includes the subscriptions and virtual networks inside

the dark blue box of the IL4/5 cloud. All the cloud infrastructure is generated programmatically

including the integration, test, and production environments, as well as the security and centralized

logging environment and cloud native access point (CNAP). This design reference uses the DoD

Cloud IaC tools which are available on the Azure marketplace and include a DISA provisional ATO.
The DISA HaCC office maintains the Azure DoD Cloud IaC baseline and regularly pushes updates.

While the Azure DoD Cloud IaC is used for this reference there are other options for implementing

the design. Microsoft also provides a baseline for the Azure DoD cloud, called Mission Landing

Zone (MLZ)2 . MLZ is being assessed for provisional ATO and Microsoft is developing a Cloud Access
Point (CAP) as an option to the DISA CNAP to connect the Azure Cloud to the DoDIN.

2http://aka.ms/MissionLZ

Pre-decisional - DRAFT UNCLASSIFIED 8

http://aka.ms/MissionLZ

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

2. Leverage CSP managed development suite provided as a service. This element labeled #2 in

Figure 1 simplifies the provisioning of DevSecOps tools and presents a familiar suite for new team

members. CSP managed development services just require a license and account to start building

software. There are many different development suites available across CSPs. This design reference

uses Microsoft GitHub Enterprise suite. Guidance for configuring GitHub to create organizations,
teams, repos, CI/CD pipelines, and limiting scope for the code low, deploy high development pattern

is provided. While this guidance is GitHub specific, it illustrates configuration aspects for establishing

a DoD DevSecOps software factory.

3. Develop applications using CSP native services and policies to secure the services. CSP ser-
vices are powerful building blocks used to build internet applications. They are easy to use and

can be assembled into production applications quickly. The service catalog for Azure services is
notionally represented by #3 in Figure 1. CSP services are used throughout the DoD Cloud IaC base-
line, notably the Azure logging and monitoring services. The DoD Cloud IaC baseline also provides
wrappers to secure services for application use.

Every CSP has their own service portfolio, and not all services are supported across clouds at
different impact levels. The list of CSP’s, CSP services, and IaC secured services continues to grow. It
is the responsibility of the Program Management Office (PMO) or development organization to verify

that services used for development are indeed available in the target production cloud environment.
The final section of this document includes examples that use common services in typical DoD

applications.

This design does not cover containers or Cloud Native Computing Foundation (CNCF) Kubernetes and

service mesh for managing containers. By using CSP native services the runtime complexity is managed

by the CSP. Throughout the examples in this reference design, Microsoft Azure as the CSP, controls the pro-
visioning and implementation details, while developers focus on configuring and customizing services to

build program specific services and applications. If necessary, Azure provides a fully managed Kubernetes
service3, that can be used to build more complex systems. Other CSP’s provide similar support for native

CSP services, Kubernetes, and service mesh.

The deployment pattern and design elements together form the basis for a fully functioning software

factory. Software pipelines will be created by the development teams using the GitHub tools and secured

by the proper service configurations automated by the DoD Cloud IaC baseline. This approach to using

CSP services covers a large portion of DoD applications that can be quickly built and securely deployed

into production.

3https://aka.ms/AzureKubernetesService

Pre-decisional - DRAFT UNCLASSIFIED 9

https://aka.ms/AzureKubernetesService

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

1.2 Scope

This reference design is intended for programs that will primarily leverage CSP native capabilities as
part of a DevSecOps software factory. The DoD Cloud IaC created environment fully resides in the cloud.
Transitioning to other production runtime environments is possible but outside the scope of this reference

design. CSPs are developing edge capabilities that include managed services and extend the cloud to new

operational environments. As mentioned above, containerized applications are covered by other DoD

DevSecOps reference designs.

The deployment pattern presents development at IL2 and production to IL4/5. It is possible to use this
reference design to push products to higher impact levels (IL6+) via cross-domain solution, but there are

additional required controls which are not covered by this design.

The DoD Cloud IaC baseline has a DISA provisional ATO for building a fully functional cloud software

factory environment. They also include configurations for many CSP services used to deploy applications.
Programs will need to work with their security officer to transition from provisional ATO to full ATO.

1.3 Target Audience

The target audiences for this document include:

• DoD PMOs and project teams who use DevSecOps to develop, secure, deploy, and operate mission

applications, services, and APIs.
• DoD organization DevSecOps teams who manage (instantiate and maintain) DevSecOps software

factories and associated pipelines.
• DoD Enterprise DevSecOps capability providers who leverage CSP native functionality.
• Authorizing Officials (AOs) who need to understand the controls and tools to monitor cloud applica-
tions and services, especially applications developed with cloud native services.

1.4 Reference Documents

This reference design aligns with these documents:

• DoD Digital Modernization Strategy, 2019.
• DoD Software Modernization Strategy, 2022.
• Cloud Native Access Point Reference Design, 2021
• DISA Cloud Computing Security Requirements Guide.
• Presidential Executive Order on Strengthening the Cybersecurity of Federal Networks and Critical
Infrastructure (Executive Order (EO) 1380).

• National Institute of Standards and Technology (NIST) Cybersecurity Framework.

Pre-decisional - DRAFT UNCLASSIFIED 10

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

1.4.1 DoD DevSecOps Document Relationships

This reference design is to be included with the DoD DevSecOps document set as shown in Figure 2. It is
compatible with the DevSecOps Tools and Activities Playbook version 2.1.

Figure 2: DevSecOps Document Relationships

1.5 Document Overview

This document is organized as follows:

• Section 1: describes the background, design elements and scope of this document.
• Section 2: provides a mapping of this design reference to the DoD DevSecOps software factory

components.
• Section 3: describes the prerequisites for using the DoD Cloud IaC baseline, which includes the

Azure accounts and roles necessary to get started.
• Section 4: covers the DoD Cloud IaC baseline which automatically builds the software factory and

production enclaves along with the operations, security, and centralized logging environment and

DoDIN cloud access point.
• Section 5: covers the GitHub build and development tools used as a service from the Azure GovCloud.
These tools also orchestrate the DevSecOps pipeline across the DoD Cloud IaC environments.

Pre-decisional - DRAFT UNCLASSIFIED 11

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

• Section 6: covers the logging and monitoring environment used by the operations team to continu-
ously monitor the DevSecOps software factory and production environments.

• Section 7: presents a mission application that was developed using the components of this reference

design.
• The appendices provide a mapping from this reference design to the fundamental tools and activities
necessary for specification as a DoD DevSecOps software factory.

Pre-decisional - DRAFT UNCLASSIFIED 12

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

2 Software Factory Components and Interconnects

The DevSecOps Fundamentals document describes a digital platform as a group of resources and capabil-
ities that form a base upon which other capabilities or services are built and operated within the same

technical framework. Use of a digital platform is encouraged to accelerate development, delivery, and

cybersecurity accreditation. Each DoD DevSecOps reference design focuses on the digital platform as part
of a complete software factory. Figure 3 shows a notional software factory which includes applications,
a digital platform with essential configurations for DevSecOps, and the underlying infrastructure. The

digital platform configurations are known as Reference Design Interconnects. Well-defined interconnects
enable tailoring of the digital platform, while ensuring that core capabilities of the software factory remain

intact.

Figure 3: DoD Software Factory Interconnects

This design reference identifies interconnects as appropriate for the development patterns and design

elements using CSP native services in a software factory. The cited capabilities are those provided by

Microsoft Azure and DISA. Tailoring to leverage comparable technology from other CSP vendors may be

appropriate subject to cyber certification.

Pre-decisional - DRAFT UNCLASSIFIED 13

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

2.1 Digital Platform Reference Design Interconnects

The reference design interconnects for a DevSecOps digital platform are presented in four areas: environ-
ment, CI/CD Pipelines, Logging, and Monitoring.

2.1.1 Environment

Azure Commercial includes a complete Software as a Service (SaaS) implementation of GitHub. GitHub is
a key component used for developing and managing the software factory pipelines. Since it is provided

as a service, there is no configuration necessary, just acquiring the appropriate accounts and using the

tools. GitHub runners are used to pull code from the repository and insert into the integration, test, and

production environments that are established by the DoD Cloud IaC.

The DoD Cloud IaC templates can be used to create a complete environment or a subset depending on

program requirements. The complete environment includes the operations, security, and centralized

logging enclave for monitoring across the various software factory enclaves. The templates can also deploy

a CNAP to connect the Azure Government cloud to the DoDIN. By using the DoD Cloud IaC templates a

significant portion of the security controls and policies are automatically configured to establish the basic

DoD cybersecurity protections for the enclaves. Microsoft is also developing a set of Azure blueprints that
can be used in place of or to augment the DoD Cloud IaC templates.

2.1.2 CI/CD Pipelines

DevSecOps pipelines are created and managed using GitHub. Chapter 5 includes guidance to create

pipelines that are secured using zero-trust principles such as least privilege and application segmentation.
Specific pipelines are created based on the software being delivered. Chapter 7 includes reference pipelines
for typical applications such as web apps, data access, and API creation.

2.1.3 Logging

This design leverages the full suite of Azure logging services which includes Azure Monitoring, Azure

Network Watcher, and Azure Log Analytics. Chapter 6 provides guidance for using the logging services for
DoD programs.

2.1.4 Continuous Monitoring

Continuous Monitoring combined with logging provides real time insight into how the software factory is
operating and identifies anomalies that may be operational or security risks. This design applies Azure

Pre-decisional - DRAFT UNCLASSIFIED 14

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

Policy, Microsoft Defender for Cloud, and uses Microsoft Sentinel as the Security Information and Event
Manager (SEIM) to perform continuous monitoring. Chapter 6 provides guidance on using these Microsoft

services.

2.2 Applications

The digital platform provides the base capability to develop applications and services for DoD missions.
CSP service catalogs include many powerful building blocks that can be customized into mission capable

applications. Examples of such applications include web-based applications, data access, and APIs to

expose microservices. These are essential components for modern software systems. Chapter 7 provides
examples using typical Azure services to implement modern cloud-based systems. The examples focus on

building and deploying secure, scalable, production ready software across the global Azure cloud.

Pre-decisional - DRAFT UNCLASSIFIED 15

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

3 Prerequisites

This chapter describes prerequisites required to deploy a software factory using this reference design. A

comprehensive instruction manual is provided with DoD Cloud IaC that provides greater detail on each of
these requirements.

3.1 Azure Active Directory Tenant and Administrator Roles

To leverage DoD Cloud IaC full administrative rights to an empty Azure Active Directory (AAD) Tenant is
required.

3.1.1 Create a DoD Cloud IaC provisioning account

Create a DoD Cloud IaC “provisioning account.” This account requires:

• AAD Premium P2 license

• Roles: Global Administrator, User Access Administrator, Privileged Role Administrator
• Protected by Conditional Access (CA) Policies and Multi-factor Authentication (MFA)

3.2 Azure Enterprise Agreement and Subscriptions

DoD Cloud IaC requires five named subscriptions that are part of an Enterprise Agreement for Microsoft

Azure. DoD Cloud IaC is incompatible with “Pay as You Go,” or PAYGO, Azure Subscriptions.

3.2.1 Preparing the Azure Enterprise Agreement and Subscriptions

Obtain an Enterprise Agreement for Azure (if you do not already have one) by working with your Azure

seller.

Create five empty subscriptions as part of your Enterprise Agreement:

• Operations
• Development
• Test
• Production

• Forensics

Pre-decisional - DRAFT UNCLASSIFIED 16

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

3.3 DoD Cloud IaC Deployment Virtual Machine

The DoD Cloud IaC baseline is deployed from a Virtual Machine (VM) running inside your environment. This
VM contains all the code, scripts, and software required to stand up the software factory environments.

3.3.1 Deploy a DoD Cloud IaC provisioning VM

This VM can be deployed directly from the Azure Marketplace (see Section 4.6). Alternatively, the VM can

be provisioned manually; this process is described at length in the DoD Cloud IaC Installation Guide. The

VM contains the following items:

• DoD Cloud IaC code baseline

• DoD Cloud IaC configuration files
• Supported version of PowerShell, with required PowerShell modules

Pre-decisional - DRAFT UNCLASSIFIED 17

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

4 DoD Cloud Infrastructure as Code (DoD Cloud IaC)

This reference design specifies using Infrastructure as Code to create the cloud infrastructure for the

DevSecOps environment. The DISA DoD Cloud IaC templates provide a DISA cyber-security approved

baseline from which to build an environment that has the attributes for a DevSecOps software factory.
This section introduces the DoD Cloud IaC baseline and describes the salient DevSecOps features that any

baseline must have.

Figure 4 shows an example of the environment created by DoD Cloud IaC at IL5.

Figure 4: DoD Cloud IaC Baseline providing the IL5 DevSecOps Environment

Deploying code into the environment and orchestrating the DevSecOps pipeline is managed using tools
available in GitHub provided via SaaS and described in the next chapter. Code will be programmatically

delivered into the IL5 environment and the CI/DC pipelines will move it through test and into production.
As shown in the diagram, the DoD Cloud IaC created environment includes the subscriptions that are

necessary to operate the software factory.

Pre-decisional - DRAFT UNCLASSIFIED 18

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

4.1 DoD Cloud IaC Overview

The DoD Cloud IaC baselines generate preconfigured, preauthorized, Platform as a Service (PaaS)- envi-
ronments, which exist in the form of IaC templates that organizations can deploy to establish their own

decentralized cloud platform. These baselines reduce mission owner security responsibilities by leverag-
ing inheritance from Cloud Service Provider (CSP) PaaS managed services, where host and middleware

security, including hardening and patching, is the responsibility of the CSP. The PaaS services utilized

by the DoD Cloud IaC baseline have achieved a DISA Provisional Authorization (PA). Whenever possible,
DoD Cloud IaC leverages managed security services offered by CSPs over traditional data center tools for
improved integration with cloud services. DoD Cloud IaC baselines can be built into DevSecOps pipelines
to rapidly deploy the entire environment and mission applications.

While mission owners still must conduct an application-level Assessment and Authorization (A&A), the

underlying environment deployed by the DoD Cloud IaC has an authorization from DISA Risk Management
Executive (RME) and inheritable controls in eMASS. The inheritance from the PaaS and underlying Infra-
structure as a Service (IaaS) accounts for approximately 40% of all controls, significantly expediting the

authorization process for mission owners.

4.2 Environment

The DoD Cloud IaC for Azure baseline builds out a secure, multi-subscription environment in Azure,
consisting of Test, Production, Shared Services, Centralized Logging, and Forensics subscriptions. Traffic

is routed in a hub and spoke model from the Outer-boundary VNET hub with Azure Firewall to the spoke

subscriptions. Services utilized in each subscription are properly configured for security and centralized

logging.

4.3 DoD Cloud IaC Templates

A complete list of IaC templates is available at the DoD Cloud IaC website4. The baseline encompasses
IaC for Application and Database Hosting, Container Hosting, Artificial Intelligence/Machine Learning,
Internet of Things, Hybrid Cloud computing and other cloud services.

4.4 Cloud-Native Access Point (CNAP)

The DoD Cloud IaC employs Azure tooling as a Cloud Native Access Point. This includes Azure Active

Directory as an Identity Provider (IDP) as well as Azure Firewall, Azure Application Gateway including Azure

WAF or Azure Front Door.
4https://www.hacc.mil/Products/DoD-IaC/

Pre-decisional - DRAFT UNCLASSIFIED 19

https://www.hacc.mil/Products/DoD-IaC/

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

4.5 Baseline Updates

DoD Cloud IaC baselines are updated monthly.

4.6 Accessing the DoD Cloud IaC Baselines & Supporting Documentation

The DoD Cloud IaC baselines are Distribution C and limited to the US Government and their contractors.
The baseline is available in the Azure Marketplace (Figure 5) and as a DISA HaCC repo.

Figure 5: Screenshot of DoD Cloud IaC in the Azure Marketplace

To access the private preview, go to the Azure Marketplace5. Select “Get it Now”. Customers need to verify

that they have a .mil email address to receive access.

5https://aka.ms/DoD-IaC-Azure-Marketplace

Pre-decisional - DRAFT UNCLASSIFIED 20

https://aka.ms/DoD-IaC-Azure-Marketplace

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

5 Azure Software Factory Reference Design

This reference design specifies using GitHub to create the program development environment. GitHub

provides DISA cyber-security approved managed capabilities from which to build, test, and deliver software

securely within a DevSecOps software factory. This section introduces GitHub and describes the design

and configuration patterns required to meet DevSecOps guidelines.

Figure 6 shows an example of the program development environment deployed at FedRAMP Moderate /
IL2.

Pre-decisional - DRAFT UNCLASSIFIED 21

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

Figure 6: GitHub.com providing the Program Developer Environment

Microsoft provides two options for comprehensive DevSecOps tooling with Azure-native integration:
GitHub and Azure DevOps. While both are viable implementation options for a secure Software Factory,
this reference design recommends the use of GitHub.

GitHub is the appropriate choice for most organizations as it is home to the largest global developer
community, it is the long-term successor to Azure DevOps, and it provides a rich, integrated DevSecOps

Pre-decisional - DRAFT UNCLASSIFIED 22

https://GitHub.com

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

experience and a large ecosystem of relevant capabilities.

For a brief discussion on Azure DevOps, see Azure DevOps in the Additional Azure-Native DevSecOps Offerings
appendix.

5.1 GitHub

GitHub is a software development platform, purchased by Microsoft in 2018. Its hosted version, GitHub.com,
is home to much of the world’s software and most of the Open-Source community. It provides many

essential DevSecOps capabilities, including source code repositories, continuous integration/deployment
automation, issue tracking, and more.

Microsoft offers GitHub as several distinct products. These include free and enterprise versions which

offer the same general suite of capabilities but vary in the number of supported team members and in

terms of security features. This reference design leveraged GitHub.com and recommends this option

wherever possible given its free nature and versatility. A team can be up and running on GitHub.com

with a free account within minutes. Start at https://github.com/team.

For more information on GitHub’s other offerings, see the GitHub Offerings in the Additional Azure-Native

DevSecOps Offerings appendix.

The bulk of this chapter is focused on specifically using GitHub as the CI/CD Orchestrator in a Software

Factory. GitHub, additionally, provides capabilities that span many phases of the DevSecOps lifecycle,
as defined in the DevSecOps Fundamentals Guidebook6 . A mapping of these capabilities to DevSecOps
lifecycle phases is presented in the Appendix.

When using any GitHub product as the CI/CD Orchestrator in a DevSecOps Software Factory, the following

are best practice recommendations. Each recommendation will be explained in greater detail in the

subsequent sub-sections.

• Use Organizations, Teams, and Private Repositories to create a collaborative, secure and flexible

structure that enhances developer productivity and secures access to artifacts.
• Use GitHub Actions to orchestrate secure CI/CD pipelines.
• Leverage GitHub-hosted runners, which are hosted in Azure Commercial7 for workloads up to IL5.
• Optionally, deploy Self-hosted Runners inside your Azure environment to securely perform CI/CD

actions for workloads up to IL5.

6https://dodcio.defense.gov/Portals/0/Documents/Library/DevSecOps%20Fundamentals%20Guidebook-DevSecOps%20Tool
s%20and%20Activities_DoD-CIO_20211019.pdf

7https://docs.github.com/en/actions/using-github-hosted-runners/about-github-hosted-runners#cloud-hosts-for-github-
hosted-runners

Pre-decisional - DRAFT UNCLASSIFIED 23

https://github.com/team
https://dodcio.defense.gov/Portals/0/Documents/Library/DevSecOps%20Fundamentals%20Guidebook-DevSecOps%20Tools%20and%20Activities_DoD-CIO_20211019.pdf
https://dodcio.defense.gov/Portals/0/Documents/Library/DevSecOps%20Fundamentals%20Guidebook-DevSecOps%20Tools%20and%20Activities_DoD-CIO_20211019.pdf
https://docs.github.com/en/actions/using-github-hosted-runners/about-github-hosted-runners#cloud-hosts-for-github-hosted-runners
https://docs.github.com/en/actions/using-github-hosted-runners/about-github-hosted-runners#cloud-hosts-for-github-hosted-runners
https://GitHub.com
https://GitHub.com
https://GitHub.com

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

• Use OpenID Connect (OIDC) in Azure8 to access Azure resources securely and limit the scope of
access via Azure Active Directory RBAC.

Note: All traffic between Azure Commercial and Azure Government stays entirely on the Microsoft back-
bone; Azure Government directly peers to the commercial Microsoft Azure network9. This is a significant
security feature for Azure and GitHub customers.

5.2 Organizations, Teams, and Private Repositories

Use Organizations, Teams, and Private Repositories to create a collaborative, secure and flexible

structure that enhances developer productivity and secures access to artifacts.

GitHub provides users the ability to create Organizations10 that allows groups of users to collaborate

across one or more projects (repos). You can invite people to become members of an organization and

assemble them into Teams that reflect the organization’s structure with cascading access permissions.
Members in an organization can be granted Roles such as Owners, Members, Billing Managers and Security

Managers, that each have specific capabilities.

GitHub Private Repositories11 allow organizations to set the visibility of a repository to Public or Private.
Public repositories are accessible to everyone on the internet; Private repositories are only accessible

to you, people you explicitly share access with, and, for organization repositories, certain organization

members.

The relationship between GitHub Organizations, Teams, and Repositories is shown in Figure 7.

8https://docs.github.com/en/actions/deployment/security-hardening-your-deployments/configuring-openid-connect-in-
azure

9https://docs.microsoft.com/en-us/azure/azure-government/documentation-government-plan-security#environment-
isolation

10https://docs.github.com/en/organizations
11https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/managing-repository-

settings/setting-repository-visibility

Pre-decisional - DRAFT UNCLASSIFIED 24

https://docs.github.com/en/actions/deployment/security-hardening-your-deployments/configuring-openid-connect-in-azure
https://docs.github.com/en/actions/deployment/security-hardening-your-deployments/configuring-openid-connect-in-azure
https://docs.microsoft.com/en-us/azure/azure-government/documentation-government-plan-security#environment-isolation
https://docs.microsoft.com/en-us/azure/azure-government/documentation-government-plan-security#environment-isolation
https://docs.github.com/en/organizations
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/managing-repository-settings/setting-repository-visibility
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/managing-repository-settings/setting-repository-visibility

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

Figure 7: GitHub Organizations, Teams, and Repositories

5.2.1 How to use GitHub Organizations, Teams, and Repositories

Create or join a GitHub Organization if you are going to be servicing multiple Teams. Create Teams to help

manage permissions and access to individual repositories. Create a repository for any product, service, or
capability being developed by your Teams. All these organizational entities can be configured to Public or
Private based on your individual needs.

5.2.2 Guidance for GitHub Organizations, Teams, and Repositories

• Organizations should use Private Repositories for custom or configured software systems in IL4 and

higher environments.
• Organizations may choose to make some repositories Public and Open-Source, following any appli-
cable organization policies.

5.3 GitHub Actions

Use GitHub Actions to orchestrate secure CI/CD pipelines.

Pre-decisional - DRAFT UNCLASSIFIED 25

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

The software factory should use GitHub Actions to automate the CI/CD pipeline processes defined in the

DevSecOps lifecycle plan phase which are Plan, Develop, Build, Test, Release & Deliver, Deploy, Operate,
and Monitor. While there is no “one size fits all” for CI/CD processes, it is important that each software

team embrace the DevSecOps culture and define processes that suit its software system architectural
choices. The CI/CD process is illustrated in Figure 8.

Figure 8: CI/CD Overview

GitHub Actions12 allow you to continuously build and test code to verify that commits do not introduce

errors. More frequent commits reduce the total volume of code change that developers must debug

between commits. This is a key DevSecOps practice.

5.3.1 Implementing GitHub Action workflows

To construct a workflow, teams can pull in Actions from a rich marketplace. Table 1 maps the CI/CD

process from Figure 8 to important pipeline activities and the GitHub Actions that this Reference Design

recommends to implement them.

Table 1: Recommended GitHub Actions for implementing key CI/CD pipeline activities

Phase Activity and Purpose Action Name

Build

Build

Compile and/or link

Dependency vulnerability

checking; scans your pull
requests for dependency

changes and will raise an error
if any new dependencies have

existing vulnerabilities.

Framework specific (e.g.,
Java13, .NET14, Python15)

Dependency Review16

12https://docs.github.com/en/actions

Pre-decisional - DRAFT UNCLASSIFIED 26

https://docs.github.com/en/actions

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

Phase Activity and Purpose Action Name

Test Code Quality; generate and

analyze Code Coverage reports
with CodeCov.

CodeCov17

Test Software Bill of Materials;
generate an SBOM using Syft18

by scanning the workspace

directory and uploading an

artifact SBOM in SPDX format.

Anchore SBOM19

Test OWASP ZAP; runs the ZAP OWASP ZAP Full Scan20

spider against the specified

target (by default with no time

limit) followed by an optional
ajax spider scan and then a full
active scan before reporting

the results. The alerts will be

maintained as a GitHub issue in

the corresponding repository.

Test Automated Tests; runs
automated tests included in

your code using

framework-specific tools like

pytest, dotnet test, etc.

Framework specific (e.g., Java,
.NET, Python)

Pre-decisional - DRAFT UNCLASSIFIED 27

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

Phase Activity and Purpose Action Name

Test Vulnerability Scanning; runs GitHub CodeQL21

GitHub’s industry-leading

semantic code analysis engine,
CodeQL, against a repository’s
source code to find security

vulnerabilities. It then

automatically uploads the

results to GitHub so they can be

displayed in the repository’s
security tab. CodeQL runs an

extensible set of queries, which

have been developed by the

community and the GitHub

Security Lab to find common

vulnerabilities in your code.

Deploy Deployment; verified Azure Official Azure Deployment
actions to deploy on a variety Actions22

of PaaS resources

Continuous Package and dependency GitHub Dependabot23

check; monitor vulnerabilities
in dependencies used in your
project and keep your
dependencies up-to-date.

GitHub Actions workflows are written as YAML files and stored in the repository under the

.github/worklfows/ directory. If creating a new workflow file, you can either start from scratch or

13https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-java-with-maven
14https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-net
15https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-python
16https://github.com/marketplace/actions/dependency-review
17https://github.com/marketplace/actions/codecov
18https://github.com/anchore/syft
19https://github.com/marketplace/actions/anchore-sbom-action
20https://github.com/marketplace/actions/owasp-zap-full-scan
21https://github.com/github/codeql-action
22https://aka.ms/azure-gh-actions
23https://docs.github.com/en/code-security/dependabot

Pre-decisional - DRAFT UNCLASSIFIED 28

https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-java-with-maven
https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-net
https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-python
https://github.com/marketplace/actions/dependency-review
https://github.com/marketplace/actions/codecov
https://github.com/anchore/syft
https://github.com/marketplace/actions/anchore-sbom-action
https://github.com/marketplace/actions/owasp-zap-full-scan
https://github.com/github/codeql-action
https://aka.ms/azure-gh-actions
https://docs.github.com/en/code-security/dependabot

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

start from one of the available templates. This is shown in Figure 9.

Figure 9: Creating a new workflow to set up GitHub Actions

5.3.2 Guidance for using GitHub Actions

• Organizations should have an automated periodic build (weekly or daily) to ensure that code quality,
vulnerabilities, and dependencies are scanned on a regular basis.

• Organizations should leverage GitHub’s marketplace for GitHub Actions, including Microsoft-
developed Actions to deploy to Azure resources.

Pre-decisional - DRAFT UNCLASSIFIED 29

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

• Organizations should use GitHub’s best practices in using Actions, that include Security Hardening24

best practices.
• Teams should include CI steps in their GitHub Action workflows for, at a minimum, linters (style and

formatting), security checks, code coverage, and functional checks.
• Teams should include DevSecOps stages in their GitHub Action workflows for, at a minimum, Build

(if applicable), Release & Deliver, Deploy and (Smoke Tests?).
• Teams should enable Security and Analysis settings, including Dependency Graph and Dependabot
alerts. Security alerts from CodeQL display in the Security scanning alerts section under the Security

tab25 .

Figure 10: Security scanning alerts

5.4 Action Runners - GitHub-hosted and Self-hosted

Deploy self-hosted runners inside your Azure environment to securely perform CI/CD actions.

GitHub Actions are executed by software called “runners.” Runners are available in the following two

options:

GitHub-hosted runners26 . Execution is handled entirely by GitHub without any administration needed

on behalf of the user. GitHub-hosted runners are provisioned by GitHub in Azure’s Commercial Regions.
Traffic between Azure Commercial and Government regions traverses Microsoft’s Azure backbone, and

never over the open internet.

Self-hosted runners27 . Installed, configured, administered by the user, but can run virtually anywhere.
24https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions
25https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/enabling-features-for-your-

repository/managing-security-and-analysis-settings-for-your-repository
26https://docs.github.com/en/actions/using-github-hosted-runners
27https://docs.github.com/en/actions/hosting-your-own-runners

Pre-decisional - DRAFT UNCLASSIFIED 30

https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/enabling-features-for-your-repository/managing-security-and-analysis-settings-for-your-repository
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/enabling-features-for-your-repository/managing-security-and-analysis-settings-for-your-repository
https://docs.github.com/en/actions/using-github-hosted-runners
https://docs.github.com/en/actions/hosting-your-own-runners

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

Runner updates occur automatically either when a new job is assigned to them or within a week of release.
An organization may choose to deploy self-hosted runners inside their cloud environment to provide an

added layer of security and an added layer of control.

5.4.1 Action Runners in architectural context

Organizations can use GitHub-hosted, self-hosted runners, or a combination of both. Figure 10 shows an

architecture with both GitHub-hosted runners (running in Azure Commercial) and self-hosted runners
(running inside Azure Government).

Figure 11: Architecture - GitHub Action Runners in Context

The three top-level components to this architecture include the CI/CD orchestrator (GitHub, lower left),
GitHub-hosted runners (Azure Commercial, upper left), and the application hosting environment (Azure

Government, right).

1. Teams work in a managed GitHub private repository. This repository is hosted in a CONUS GitHub

Datacenter. All runners communicate with GitHub over HTTPS, runner-initiated connections.
2. GitHub-hosted runners are managed entirely by GitHub and execute inside Azure Commercial

Virtual Machines. These runners perform CI/CD automation actions to build, test, scan, and deploy

software to the DoD Cloud IaC hosting environment in Azure Government across the Microsoft

Backbone. This ensures no communications travel across the open internet.

Pre-decisional - DRAFT UNCLASSIFIED 31

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

3. Self-hosted runners execute inside the secured Azure Government environment that was provi-
sioned by DoD Cloud IaC. Self-hosted runners can be provisioned across an array of Azure compute

options, from Virtual Machines to serverless Azure Functions. Runners communicate with GitHub

via OAuth authenticated HTTPS long poll connections. This one-way poll watches for queued jobs
and pulls code into your environment for action. Artifacts created by the self-hosted runners are

deployed to their intended destination (e.g., Azure App Service) without ever leaving the secured

Azure Government environment.

GitHub-hosted runner implementation. GitHub-hosted runners are provided without additional config-
uration.

Self-hosted runner implementation. The instructions to create a self-hosted runner are provided when

you configure a runner in GitHub.com. Figure 12 shows the process for creating a self-hosted runner.
Additional configuration options can be found online in the linked GitHub self-hosted documentation.

Figure 12: Self-hosted runner instructions

Pre-decisional - DRAFT UNCLASSIFIED 32

https://GitHub.com

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

5.4.2 Guidance for using Action Runners

• Organizations workloads up to IL5 should use GitHub.com with GitHub-hosted runners. All com-
munication between the Runners and Azure Government is on the Microsoft backbone and not the

Open Internet.
• Organizations with IL5 workloads can optionally use self-hosted runners.

5.5 Using GitHub Codespaces (Dev Containers)

GitHub Codespaces28, or dev containers, are Docker containers that are specifically configured to provide

a full-featured development environment with Visual Studio Code29, running in a Chrome/Edge browser
window. Figure 13 shows that whenever you work in a Codespace, you are using a dev container on a

virtual machine running in an Azure region; the actual region is dependent on your geographic location.
Codepsaces allow developers to use the full capabilities of Visual Studio Code (VSCode) with its associated

Source Code Repository.

Figure 13: Codespace hosting

28https://github.com/features/codespaces
29https://code.visualstudio.com/

Pre-decisional - DRAFT UNCLASSIFIED 33

https://github.com/features/codespaces
https://code.visualstudio.com/
https://GitHub.com

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

5.5.1 Standardized dev environments

Codespaces allows teams to provision standardized development environments that are built on cus-
tomized Docker containers and versioned configuration files, preventing environment drift. Teams can

ramp up rapidly using any device that has Chrome or Edge, although users may also can also choose use

run Codespaces inside VSCode. Users will continue to author code and use Git version control as they

would from any other device, except that it is now available via a browser.

5.5.2 Guidance for using Codespaces

Although using Codespaces is not mandatory, Organizations can use Codespaces to rapidly become

productive on controlled environments available on any device that supports Chrome or Edge. Using

Codespaces incurs a fee30.

5.6 Secure Access to Azure

Use OpenID Connect (OIDC) in Azure to access Azure resources securely and limit the scope of access
via Azure Active Directory RBAC.

The Azure Login Action31 supports two different methods for authentication with Azure.

OpenID Connect (OIDC) with an Azure service principal using a Federated Identity Credential32 is

the recommended method. It enables developers to secure their deployments to Azure through OpenID

Connect’s integration between Azure AD and GitHub Actions. This alleviates the need for managing long-
lived cloud credentials in the GitHub Actions secret store—meaning that teams will not have to manage

credentials in both Azure and GitHub. These capabilities also minimize the chances of service downtime

due to expired credentials.

Service principal with secrets33 uses an Azure Active Directory Service Principal. The resulting JSON is
stored as a Secret in GitHub and used in an Azure Login Action.

5.6.1 Establishing the secure connection from Action Runner to Azure

See the referenced link in Microsoft’s documentation for detailed implementation steps for OIDC. The

high-level steps are as follows:
30https://docs.github.com/en/billing/managing-billing-for-github-codespaces/about-billing-for-codespaces
31https://github.com/marketplace/actions/azure-login
32https://docs.github.com/en/actions/deployment/security-hardening-your-deployments/configuring-openid-connect-in-

azure
33https://docs.microsoft.com/en-us/azure/developer/github/connect-from-azure?tabs=azure-portal%2Clinux#use-the-azure-

login-action-with-a-service-principal-secret

Pre-decisional - DRAFT UNCLASSIFIED 34

https://docs.github.com/en/billing/managing-billing-for-github-codespaces/about-billing-for-codespaces
https://github.com/marketplace/actions/azure-login
https://docs.github.com/en/actions/deployment/security-hardening-your-deployments/configuring-openid-connect-in-azure
https://docs.github.com/en/actions/deployment/security-hardening-your-deployments/configuring-openid-connect-in-azure
https://docs.microsoft.com/en-us/azure/developer/github/connect-from-azure?tabs=azure-portal%2Clinux#use-the-azure-login-action-with-a-service-principal-secret
https://docs.microsoft.com/en-us/azure/developer/github/connect-from-azure?tabs=azure-portal%2Clinux#use-the-azure-login-action-with-a-service-principal-secret

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

1. Create an Azure Active Directory (AAD) application and service principal.
2. Add GitHub’s Federated Credentials.
3. Create secrets inside GitHub to support the login action.
4. Add the Azure Login action (azure/login) to the GitHub Action workflow and configure accordingly.
5. Verify that the Action can run successfully and login to Azure.

5.6.2 Guidance for connections to Azure

• Organizations should use OIDC within workflows to deploy to Azure whenever possible.

Pre-decisional - DRAFT UNCLASSIFIED 35

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

6 Logging and Continuous Monitoring

“Inspect and log all traffic before acting” is a key principle in the NSA’s zero trust security model. In the

cloud it is possible to enable comprehensive logging to support this principle. By using DoD Cloud IaC

per design pattern 2–Use Infrastructure as Code to create the cloud infrastructure for the DevSecOps
environment–the essential logging and monitoring services are enabled by default.

These services are:

• Azure Monitor
• Azure Application Insights
• Azure Network Watcher
• Microsoft Defender for Cloud

• Azure Policies
• Microsoft Sentinel

Those deploying applications in Azure should use each of them. Their purpose along with configuration

guidance is provided below.

6.1 Azure Monitor

Monitor is the native logging system in Azure. Azure Active Directory (AD), Azure cloud services, and

applications can send logs to it. Azure AD and Azure cloud services come pre-integrated with Monitor;
logging need only be enabled. Applications can be configured to send logs to Monitor avoiding the need

for external logging frameworks and providing a central place for all logs. Infrastructure-as-a-Service

(IaaS) components such as virtual machines and containers can also send logs to Monitor, however, this
guidance is focused on platform-as-a-service (PaaS) based deployments.

Pre-decisional - DRAFT UNCLASSIFIED 36

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

Figure 14: Monitor Screenshot

6.1.1 Implementing Azure Monitor

Azure Monitor is available by default in all Azure environments. It has a built-in dashboard that allows you

to audit your cloud resources (Figure 14). To achieve comprehensive logging with Monitor you must deploy

the cloud services that will hold the logs: a Log Analytics Workspace and one or more Storage Accounts.
The Log Analytics Workspace is primary because it provides the ability to search the logs via Azure’s
SQL-like query language. The Storage Accounts are used for long-term log storage and for non-repudiation

(logs can be locked to prevent deletion for specified periods of time). Cloud services send their logs to the

Log Analytics Workspace and the Storage Account in parallel via the service Diagnostics feature. This is
depicted in Figure 15.

Pre-decisional - DRAFT UNCLASSIFIED 37

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

Figure 15: Centralized Logging Design

6.1.2 Guidance for Azure Monitor

• Create a single Log Analytics Workspace for the Azure tenant. Configure the services’ diagnostics to

send logs to it. This provides centralized logging.
• Diagnostic should be enabled for all cloud services in the tenant and for Azure Active Directory.
• In the service diagnostics enable all logging categories by default. Metrics can be stored as well if
needed, however, storing metrics can increase the cost of logging significantly.

• Place this Log Analytics Workspace in a Resource Group and Subscription where permissions can

be limited to tenant administrators. Developers and others will be able to see logs for their cloud

resources but not for others. It is recommended that this workspace be stored in your primary

region.
• One log archive Storage Account is required per region because, unlike Log Analytics Workspaces,
the cloud services can only archive logs in a Storage Account located in the same region as they are.

• In custom application code, make use of Azure Monitor libraries so the code can send custom logs
to Monitor. This avoids the need for external logging frameworks and puts all the logs in one place.

• To prevent the logs in the Storage Account from tampering, enable the “legal hold” feature on all the

blob containers holding the logs. This sets a period, for example, 1 year, where the logs being stored

cannot be deleted or changed. Keep in mind that once you set a legal hold on a Storage Account

Pre-decisional - DRAFT UNCLASSIFIED 38

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

container you will not be able to remove it for the specified period no matter what your permissions
are.

6.2 Azure Application Insights

Application Insights provides detailed telemetry for the cloud services that host or support applications,
for example Azure Functions and Azure App Service. It shows end-to-end call tracing across cloud services,
performance metrics, failures, and other detailed metrics (See Figure 16). Application Insights is a critical
tool for monitoring applications in operation.

Figure 16: Application Insights Screenshot

6.2.1 Implementing Azure Application Insights

Associate an Application Insights resource with every cloud service that supports it. This is depicted in

Figure 17.

Pre-decisional - DRAFT UNCLASSIFIED 39

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

Figure 17: Application Insights Design

6.2.2 Guidance for Azure Application Insights

• Dedicate one Application Insights resource per cloud service. If for example, you have two Azure

Function services then create two Application Insights resources, one for each.

6.3 Azure Network Watcher

Network Watcher provides low-level network monitoring. In the PaaS and SaaS contexts, Network Watcher
helps monitor TCP/IP traffic from Network Security Groups (NSGs). Its network traffic analytics feature

gives administrators an overview of traffic going in and out of the environment at the packet level. The

packet logs can be found in Azure Monitor in the AzureNetworkAnalytics_CL table as shown in Figure

18. With Network Watcher enabled the operational team can monitor traffic passing through your NSGs.

Pre-decisional - DRAFT UNCLASSIFIED 40

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

Figure 18: Network Watcher Packet Logs

6.3.1 Implementing Azure Network Watcher

Create a Resource Group called “NetworkWatcherRG” in each Subscription that has or could have an NSG.
Create a Network Watcher resource in each of these Resource Groups. One Network Watcher is needed for
each region. This is depicted in Figure 19.

Pre-decisional - DRAFT UNCLASSIFIED 41

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

Figure 19: Network Watcher Design

6.3.2 Guidance for Azure Network Watcher

• Enable “Flow Logs” for every NSG. Associate the NSG Flow Log with the appropriate Network Watcher
resource based on its region and Subscription. The flow logs should send their data to the centralized

logging capability described above.

6.4 Microsoft Defender for Cloud

Microsoft Defender for Cloud (formerly “Azure Security Center”) is a built-in feature of Azure that provides
continuous security monitoring of the cloud services. It comes with a large set of default rules to catch

service misconfigurations. The operations team can view its finding using the Microsoft Defender for Cloud

dashboard.

6.4.1 Implementing Microsoft Defender for Cloud

As depicted in Figure 20, Microsoft Defender for Cloud monitors all cloud services. By default, Microsoft

Defender for Cloud is enabled, therefore no action is required to take advantage of this Microsoft capabil-
ity.

Pre-decisional - DRAFT UNCLASSIFIED 42

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

Figure 20: Microsoft Defender for Cloud Design

6.4.2 Guidance for Microsoft Defender for Cloud

• For comprehensive threat detection, “Enable all Microsoft Defender for Cloud plans” should be

turned on for each Subscription. There is a small additional cost for the extended coverage.

6.5 Azure Policies

Policies allow you to create custom configuration checking rules. These rules run continuously therefore

preventing or detecting cloud service configurations that expose your environment to attack. For example,
Policies can check if a Storage Account has public access instead of private. Policies have a built-in

dashboard that shows the status of each rule. This is depicted in Figure 21.

Pre-decisional - DRAFT UNCLASSIFIED 43

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

Figure 21: DoD Cloud IaC Custom Policies

6.5.1 Implementing Azure Policies

Policies support security in operations since they automate what would otherwise be a manually intensive

effort of verifying the secure configuration of hundreds of cloud services and resources. They should be

written to fully cover the security-sensitive configurations of every cloud service in your environment. The

Policy rules require custom development as part of your automated security scanning and monitoring

approach. Figure 22 shows a snippet of custom Policy code as an example.

Pre-decisional - DRAFT UNCLASSIFIED 44

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

Figure 22: Azure Policy Code

6.5.2 Guidance for Azure Policies

• Create custom Policies to monitor security-critical configurations of every service in your tenant.
• Favor deny Policies over detection and remediation Policies. It is better to prevent a vulnerability

than to correct one. For example, prevent a Storage Account from being created with public access.
• Deploy Policies at the highest level possible, usually the Management Group level. The higher
the level, depending on your Subscription and Management structure, the more services you can

protect.
• All environments (development, test, production, etc.) must be covered by Policies in addition

to your production environment. Data is often exfiltrated from a misconfigured development
environment.

Pre-decisional - DRAFT UNCLASSIFIED 45

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

• In the Azure Policy dashboard, Policies are listed by the names. To assist with auditing establish a

naming convention. DoD Cloud IaC, for instance, puts the NIST-800-53 control ID at the start of the

Policy name.

6.6 Microsoft Sentinel

Sentinel is a cloud native incident management and Security Information and Event Management (SIEM)
service. It can identify potentially malicious actions in your tenant automatically and generate incidents
and alerts. It can be used for threat hunting and automated incident response. Sentinel gets its data

from a Log Analytics Workspace. Having a single Workspace, per the guidance above, facilitates Sentinel’s
ability to detect threats and simplifies the manual threat hunting process because all the logs are in one

place.

6.6.1 Implementing Microsoft Sentinel

Sentinel is a built-in capability of Azure but must be enabled. Figure 23 shows how Sentinel fits into the

overall design.

Pre-decisional - DRAFT UNCLASSIFIED 46

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

Figure 23: Sentinel Design

6.6.2 Guidance for Microsoft Sentinel

• Enable Sentinel on the centralized Log Analytics Workspace.
• Create tailored and customized Sentinel Workbooks to standardize and simplify incident detection.
• Advanced users should create automated responses to expected threats. Compromise can take

place in minutes so using automation to react is the most effective way to mitigate it.
• Enable SMS and email notifications for Sentinel alerts.

Pre-decisional - DRAFT UNCLASSIFIED 47

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

6.7 Logging and Continuous Monitoring in DoD Cloud IaC

The design described above is supported by DoD Cloud IaC out-of-the-box. After DoD Cloud IaC is deployed

in a new Azure Government environment the following will be enabled:

• A centralized logging capability is created in an operations Subscription.
• All cloud services have Diagnostic enabled and send their logs to centralized logging.
• Azure Sentinel is enabled for the centralized logging workspace.
• Azure Active Directory logs are sent to centralized logging.
• Microsoft Defender for Cloud–full-service coverage–is enabled for all Subscriptions.
• A large set of Azure Policies mapped to NIST 800-53 is deployed.
• Network Watcher is enabled for each Region used.

Starting with this baseline, developers can connect their applications to the logging and monitoring

architecture by using the Azure ARM Templates that are also provided as part of DoD Cloud IaC. These

Templates provide secure configurations of about 50 Azure services. Connecting applications to the

logging architecture would involve:

• Enabling Network Security Group Flow Logs and linking them with Network Watcher.
• Point application-level cloud service Diagnostics to central logging.
• Create an Application Insights Resource for each application-level service (e.g., Functions).

Pre-decisional - DRAFT UNCLASSIFIED 48

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

7 Application Development with Azure-Managed Services

This section provides recommendations for implementing design pattern 3–Develop applications using

CSP native services and policies to secure the services. Specifically, it focuses on maximizing the use of CSP

native services through a serverless approach. Developing applications using the serverless model allows
you to take full advantage of the security, scalability, and resiliency features of the Azure cloud. Serverless
applications are built by wiring together various cloud services, each of which provides a needed function.
To do this you have to know what features the Azure services provide and what use case for which it is
most suitable.

This chapter will illustrate the serverless application design process though a common use case: a web

application backed by an independently accessible REST API. As shown in Figure 24, the REST API is used

by external clients and by the web application. The guidance for this use case can be re-used and adapted

to different needs. A heavy emphasis will be placed on security, scalability, and resiliency. The security

guidance follows the Azure Security Benchmark34.

Figure 24: Example Application Overview

7.1 Automated Cloud Service Deployment

Automating the deployment and configuration of the Azure services is done through Azure Resource

Manager (ARM) Templates with Azure PowerShell scripting as orchestration code. Deployment is done

using pipeline runners (See Section 5.5.1 for related information.) The basic process is:

1. Create ARM templates and associated parameter files.
2. Create a PowerShell (or Azure CLI) script to deploy them.
3. Add these to your version control system.
4. Call the orchestration script within your CI/CD pipeline using the runners.

34https://docs.microsoft.com/en-us/security/benchmark/azure/

Pre-decisional - DRAFT UNCLASSIFIED 49

https://docs.microsoft.com/en-us/security/benchmark/azure/

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

7.1.1 Implementing Cloud Service Automation

All cloud service configuration and deployment should be automated.

Manual deployment of cloud services is highly discouraged because such deployments are not repeatable

and are prone to errors. One exception is exploratory manual deployments. When working with an

unfamiliar Azure service, for example, it is helpful to manually deploy it and explore its configuration

options. That configuration can be exported as an ARM Template and serve as a baseline for subsequent
automation.

7.1.2 Guidance for Cloud Service Automation

• Create small, single-purpose ARM templates rather than large, multi-purpose ones.
• Focus each template on one service and its supporting services. For example, one for Application

Gateway that includes a KeyVault that it needs to store certificates.
• Create a template parameter file for each deployment environment, for example, one for develop-
ment and one for production.

• Orchestrate the deployment of each template using a script (e.g., PowerShell or the Azure CLI).

7.2 Resource Groups

The first design decision in Azure is identifying how many Resource Groups an application will need and

what services will go in them. For this use case two Resource Groups are recommended: one for the

web application and one for the API. Capabilities that are distinct, even if related, are better placed in

their own Resource group and managed separately. This allows them to be developed and maintained

separately and, per the zero-trust model, to be secured separately. Each capability is accessed via its
public interface.

The Resource Group division is independent of the Azure Subscription. If, for example, you have develop-
ment, test, and production Subscriptions then each will have the same two Resource Groups. Figure 25

shows a simplified overview of the Resource Group pattern. The Subscriptions are shown to emphasize

the point that development and test environments should mirror production.

Pre-decisional - DRAFT UNCLASSIFIED 50

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

Figure 25: Basic Resource Group Design

7.2.1 Implementing Application Resource Groups

Segregate applications by Resource Group.

The reasons for segregating applications by Resource Groups are that a) they provide an access-control
boundary, and b) this re-enforces the micro-segmentation pattern. The access-control boundary means
that only those who are working on the application will have access to it, i.e. least-privilege. In the cloud

one of the ways micro-segmentation is implemented is by creating dedicated services and resources
rather than sharing them. For example, creating a Storage Account for each Azure Function rather than

one Storage Account that is shared by multiple Functions. When applications are deployed into separate

Resource Groups, sharing services that should not be shared is discouraged.

7.2.2 Guidance for Application Resource Groups

• Create one Resource Group for the web application and one for the API per Subscription environ-
ment.

• For each Resource Group add a lock (Microsoft.Authorization/locks) with the level CanNotDelete.

Pre-decisional - DRAFT UNCLASSIFIED 51

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

7.3 Common Services

APIs and user-facing web applications have common design patterns and require nearly identical support-
ing cloud services. The three most important common design patterns are:

1. Virtual network design

2. Load-Balancing and application defense

3. Regional fail-over and content caching

7.3.1 Virtual Network Design

Few Azure PaaS services require a virtual network (VNet) to function. However, using Private Endpoints
as recommended by the Azure Security Benchmark require VNets, so they play a prominent role in this
guidance.

7.3.1.1 Virtual Network Implementation

Every service that supports Private Endpoint should have them enabled.

Private Endpoints improve security in several ways. To explain, we must first understand endpoints in

Azure. Azure endpoints are completely different from physical endpoints in on-premises networking. Azure

services, in general, have multiple endpoints. We can categorize these endpoints as: inbound versus
outbound, public (i.e., Internet facing) versus private, and data plane versus management plane. By

default, for example with a Storage Account, a service will have: an endpoint that is public, inbound and

data plane, 2) multiple public, outbound, data planes endpoints.

The goal of Private Endpoints is to restrict inbound, data plane traffic. A Private Endpoint creates an

inbound, data plane endpoint within a VNet. When the public inbound endpoint is blocked, then all
inbound data traffic can be limited to known sources. We want to limit inbound traffic like this for two

reasons: 1) in most cases the inbound traffic to a cloud service is intra-service traffic only (for example, an

Azure Function communicating with Cosmos DB), and 2) this supports hybrid models where the service

user resides in an on-premises network.

Outbound, data plane endpoints are more challenging to restrict since we have little control over them.
To restrict them we must add an additional construct: a hub VNet with Azure Firewall Premium. Azure

Firewall Premium can filter outbound traffic by IP address and by domain name. We can force traffic from

the application (spoke) VNet to the hub VNet by peering them and then adding a RouteTable resource

that sets Azure Firewall Premium as the default gateway. With this construct in place, then you can add

Firewall rules to restrict outbound traffic as appropriate.

Pre-decisional - DRAFT UNCLASSIFIED 52

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

Management plane traffic is likewise difficult to fully restrict. For this type of endpoint, we rely on Azure’s
built-in management back-plane and access control features, especially RBAC.

Private Endpoints reside in a subnet. Subnets that hold Private Endpoints have special constraints, for
example, they do not allow NSGs. Therefore, it is recommended that you create a subnet specifically for
Private Endpoints. Usually, one subnet dedicated to Private Endpoints is sufficient to provide the security

benefits. You can, of course, create more than one but the marginal security gains are quickly outweighed

by increased complexity and administrative overhead.

When adding Private Endpoints, it is highly recommended that you also create matching Private DNS

Zones. When you add the Private Endpoint to a Private DNS Zone it creates an alias for the service FQDN

in local (i.e., in your tenant) DNS that overrides the public IP with the private one.

Pre-decisional - DRAFT UNCLASSIFIED 53

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

Figure 26: Virtual Network Design

Figure 26 shows an overview of the VNet design. The API and web application are abstracted and will
be replaced with Azure services in the next few sections. Each VNet has a subnet dedicated to Private

Endpoints. A RouteTable resource enables Azure Firewall Premium as the default gateway. Azure Firewall
is a shared service so both the API and the web application use it. Network traffic is routed to Azure Firewall
through VNet Peering. Azure Firewall can filter inbound and outbound traffic depending on your use case.
In this example it filters outbound traffic. Inbound traffic will be handled by other services.

Private Endpoints should be registered in tenant level DNS. This is a strictly local DNS that maps the private

IP to the cloud service’s hostname. Azure Private DNS Zones provide this functionality. These private

zones should be centralized in the Resource Group called “Outer Boundary” by DoD Cloud IaC. One zone

Pre-decisional - DRAFT UNCLASSIFIED 54

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

is needed for each type of service. Storage Accounts need a zone for each child service as well.

7.3.1.2 Virtual Network Guidance

• Include a VNet with your application.
• Use Private Endpoint for every service that supports them.
• Create a subnet dedicated to Private Endpoints.
• Use the service level firewalls to block the inbound, public endpoints.
• Peer the application VNet with the Azure Firewall VNet.
• Add a RouteTable to all the VNet subnets that sets Azure Firewall as the default gateway.
• Create outbound filtering rules in Azure Firewall Premium (both network and application).
• Use non-overlapping private IP space in your environment. Peering will not work if the private IP

space overlaps.
• Configure the VNet to proxy DNS requests through Azure Firewall.

7.3.2 Load-balancing and Application Defense

Applications should always be protected and never exposed directly to a client no matter where that client
resides–even if it is the same tenant. Azure Application Gateway is the cloud service intended to fill this
role. It provides load-balancing and a Web Application Firewall (WAF). The API and web application should

be protected by their own Application Gateway.

7.3.2.1 Application Gateway Implementation

Every application with a web-based public interface should be behind its own Application Gateway

with WAF enabled and with WAF rules specific to that application.

Pre-decisional - DRAFT UNCLASSIFIED 55

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

Figure 27: Application Gateway Design

In Figure 27, the API and web application have been protected by adding Application Gateway and WAF.
Each has its own Application Gateway. They do not share one. In the zero-trust model, a model that
assumes a breach, we isolate and segment as much as possible even at the extra cost of additional
Application Gateways. Application Gateways provide the public endpoint. All inbound traffic for the API
and web application goes through them. The network path is constrained by the other services such as
the NSGs to only allow traffic from Application Gateway. No other inbound path is allowed.

The inbound traffic destined for Application Gateway is filtered in two ways. First, an NSG (not shown in the

diagram) restricts it at the ports and protocols level by allowing only HTTPS (TCP/IP port 443) traffic. WAF

provides the second filter. WAF supports the Open Web Application Security Project (OWASP) Core Rule

Set natively. It need only be enabled. The OWASP rules block known attack signatures such as well-known

vulnerabilities. WAF also supports custom rules.

Every web application and API should be protected by custom rules. These are rules that are customized

specifically for the calls the web application or API expects. For example, if your API only supports a GET

Pre-decisional - DRAFT UNCLASSIFIED 56

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

request of the form /api/cars/1234 then the custom rules should only allow GET traffic matching that
signature–no POST or DELETE actions, or any other URI pattern. With APIs the OpenAPI specification can

be used as a guide to develop the custom rules. Web application custom rules should follow the same

approach but will often take some experimentation to fully identify them. Custom WAF rules implement a

zero-trust “default deny” design.

Figure 27 also shows a KeyVault in the private endpoint subnet. This illustrates placing a Private Endpoint
for the KeyVault in the subnet dedicated to this purpose and then having the Application Gateway com-
municate with it. Technically, only the Private Endpoint attached to the KeyVault resides in the subnet,
so this is a visual simplification. This pattern–an Azure service communicates with a supporting service

through its Private Endpoint–is common and will be repeated throughout this guide.

When the API and web application are separated as shown in the diagram, the web application can only

make calls to the API through the API’s Application Gateway. There is no back-channel that allows the web

application to by-pass the first layer of security. The API does not “trust” the web application (per the

zero-trust model) but treats it in the same way as it would any external client.

7.3.2.2 Application Gateway Guidance

• Create one Application Gateway per API (or related set of APIs) and per web application.
• Enable WAF on each Application Gateway.
• Enable the OWASP Core Rule Set in each WAF.
• Create custom rules specifically tailored for your API or web application to implement default deny

and whitelisting.
• Enable Private Endpoint for supporting services such as KeyVault.
• Associate an NSG with the application gateway subnet and configure it to only allow inbound

TCP/443 traffic.
• Restrict the inbound network path such that all traffic must go through Application Gateway to get
to your backend.

• Add outbound Azure Firewall rules to limit traffic to from the Application Gateway to known Azure

addresses.

7.3.3 Regional fail-over and content caching

Applications that require high availability must be tolerant of regional failures. If there is a regional outage,
the application must be able to continue. To support this use case Azure provides a global service called

Front Door. Front Door is unique because it does not reside in a single availability zone or region. Because

it is global it can route traffic between regions and can tolerate failure in one of them.

Pre-decisional - DRAFT UNCLASSIFIED 57

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

7.3.3.1 Azure Front Door Implementation

Mission critical applications should support regional fail-over using Azure Front Door.

Mission critical applications should be designed from the ground-up to be fault tolerant. The fault that
this section is focused on is a regional service outage. Applications have different requirements and

often complex workflows. Many of the Azure cloud services, such as Event Hubs and Cosmos DB, support
multi-region replication. No single pattern will fit all workflows. The general advice is simply to plan for a

service in each region going down and ensure that your design can handle this case.

The one pattern that is common, however, is to have a fault-tolerant public endpoint for your APIs and

web applications. Azure Front Door will do this. It also aids performance by providing a global content
delivery network (CDN). The CDN caches and serves content as close to the use as possible to reduce

response times.

Figure 28: Front Door Design

Figure 28 shows a simple overview of the Front Door design pattern. It routes traffic from a single public

endpoint to multiple regions. It sits in front of the Application Gateway which is still needed. Front
Door plus Application Gateway provides fault-tolerance from the regional to the availability zone level. A

separate Front Door resource is required for the API and the web application.

7.3.3.2 Azure Front Door Guidance

• Place Front Door in front of Application Gateway to provide regional fail-over.
• Design your API and web application to make effective use of CDN via the appropriate HTTP headers.

Pre-decisional - DRAFT UNCLASSIFIED 58

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

7.4 Data Storage

Most applications require a datastore. The most used PaaS datastores are: CosmosDB, Azure SQL Database,
and Azure Cache for Redis. Redis is an in-memory cache that is used by API Management (APIM) and will
be discussed in more detail in the APIM section.

7.4.1 Data Storage Implementation

Data stores should be protected via a combination of network and access security.

As with the Azure cloud services previously discussed, the data services should be protected using Private

Endpoints and have their Internet accessible, public endpoints blocked. Figure 29 shows an example

with Cosmos DB. The services that will store data in Cosmos DB or query it, connect to it via the Private

Endpoint. Cosmos DB is show residing in the private endpoint subnet to illustrate the concept.

Access control should be done with Azure AD RBAC instead of keys or passwords. This enables fine-grained

access control for data objects below the services level. For example, an Azure Function can have a

Managed Identity with read-only permission to a Cosmos DB Container using RBAC.

Pre-decisional - DRAFT UNCLASSIFIED 59

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

Figure 29: Data Store Design

7.4.2 Data Storage Guidance

• Add a Private Endpoint for each data service.
• Use RBAC to access the data services. Grant the RBAC role the fewest privileges it needs to perform

its work, for example do not grant write access if it is not needed.
• Avoid using shared keys and passwords.
• For intra-service communication create Managed Identities that will assume the RBAC role.
• Enable Advanced Threat Protection on the data services.

7.5 API Management

This section applies to the API. API Management (APIM) should be used to wrap one or more API according

to the facade pattern. It provides API clients with a single, managed interface even when there are multiple

Pre-decisional - DRAFT UNCLASSIFIED 60

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

API implementations in the backend. APIs can be bundled in and offered to clients as separate Products.
This gives the API developer control over which APIs are exposed and to what clients.

APIM supports API versioning to maintain backwards compatibility. For example, you might start with API
V1 and then add breaking changes to API V2 while keeping version 1 as-is.

APIM has built-in support for API call caching. A GET request, for instance, can be cached for a designated

time to improve performance. Cached data calls are usually several times faster than calls to the backend.
We recommend using Azure Cache for Redis for this purpose rather than APIM’s native caching. Redis
provides more flexibility and can cache more data.

APIM provides advanced capabilities through custom logic described in the form of APIM Policies. These

Policies, not to be confused with Azure Policies, are written a template language as an XML document.
They are needed to implement caching, API throttling, and various security checks. They can also be used

to rewrite HTTP headers and the API call itself.

7.5.1 APIM Implementation

APIs should always be placed behind APIM. This gives the API developer full control over what APIs are

exposed and to whom. It separates client from the backend implementation, helps perfromance, and

adds many security controls.

As shown in Figure 30, APIM should be deployed into its own subnet. APIM is one of the services that can

be deployed in VNet integration mode where it occupies its own subnet. When deployed into its own

subnet it does not use a Private Endpoint, the VNet integration gives APIM a private IP address by default.
Redis, however, should be deployed with a Private Endpoint. Note that Azure Firewall is omitted from this
diagram for simplicity but is still part of the design.

The inbound traffic first goes to Application Gateway, then to APIM, and then to the backend. Not shown

but also possible, the traffic can go through Azure Firewall before Application Gateway or go through

Azure Firewall in between Application Gateway and APIM. It is highly recommended that Azure Firewall be

in the inbound path and always in the outbound path.

Pre-decisional - DRAFT UNCLASSIFIED 61

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

Figure 30: APIM Design

7.5.2 APIM Guidance

• Always use APIM in front of APIs.
• Deploy APIM in “Internal” mode in its own subnet.
• Deploy an NSG for the APIM subnet that restricts inbound traffic.
• Use Azure Cache for Redis for API caching.
• Deploy Redis with a Private Endpoint.
• Configure the Redis firewall to only allow traffic from the APIM subnet.
• Use APIM versioning to manage the evolution of your APIs.
• Bundle your APIs into Products according to the needs of your user base.
• Enable API throttling via APIM Policies.
• Consider also using APIM Policies to validate API calls.
• Use OpenAPI specifications to define your REST APIs. APIM can ingest these natively.
• Create an Application Insights resource specifically for APIM.

7.6 Application Hosting

Azure provides a variety of PaaS services to host application code. The ones you will most often use are:

Pre-decisional - DRAFT UNCLASSIFIED 62

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

• Azure App Service: Hosts web applications. Removes the need to deploy, configure, secure, and

maintain a web server. This is the recommended service for hosting dynamic web applications.
• Azure Functions: Azure’s “serverless” service. This is the recommended services for hosting stateless
APIs. Functions are also recommended for building complex, highly parallel workflows. Many Azure

cloud services can be wired together using Functions because, in addition to being triggered by

HTTP requests, they can be triggered by messages, database change, or on a timer.
• Azure Logic Apps: Provide a low-code/no-code serverless platform with hundreds of pre-built
components. Logic Apps are a potential host of simple APIs. The considerable number of pre-
built components makes them a strong choice for integration with external applications and SaaS

capabilities.
• Azure Service Fabric: Provides a low-level serverless hosting environment. It requires more configu-
ration but is a good option if you have code that communicates to a system over a protocol other
than HTTP.

This list is not exhaustive but should be considered as the primary options for building applications that
are purely PaaS-based and avoid the need for VMs and containers.

7.6.1 Application Hosting Implementation

In this example uses case the web application will be hosted in Azure App Service and the API in Azure

Functions. Figure 31 shows the abstract icons replaced by the actual Azure cloud services. Functions and

App Service are deployed in VNet Integration mode (i.e., in their own subnet) and are also associated

with a Private Endpoint. The purpose of this design choice is to keep the traffic with the VNet and to filter
inbound and outbound traffic. The Private Endpoint is for inbound network traffic, the VNet Integration is
for outbound traffic.

As covered in the section on Application Insights above, the Function and App Service should each have

its own Application Insights instance. In addition to application monitoring Application Insights can also

capture custom application logs.

The Functions service can host many distinct APIs with different implementations, each with different
signatures. APIM can route the request to the appropriate Function code. For example, one function might
implement /car/{id} and another implement /garage/{id}. APIM can present a single API to clients
that supports both cars and garages. Or an API for one client with only car lookups and an API for another
client with both.

Deployment of code to Functions and App Service should always be done using “slots”. Slots represent
deployed code and are identified by a number. A slot is activated so that that deployment becomes live.
To illustrate, assume the initial version of the code is deployed into slot 1. When the code is updated, it is

Pre-decisional - DRAFT UNCLASSIFIED 63

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

deployed into slot 2, and then slot 2 is made the live slot. If there is a problem with the code, the original
slot 1 can be re-activated with minimal down time. Slots, therefore, provide a quick roll-back feature.

Pre-decisional - DRAFT UNCLASSIFIED 64

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

Figure 31: Application Hosting Design

Pre-decisional - DRAFT UNCLASSIFIED 65

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

7.6.2 Application Guidance

• Use Azure Functions as the primary host for REST APIs.
• Deploy more than one function in the Functions service.
• Use App Service as the primary host for dynamic web applications.
• Deploy Functions and App Service in VNet Integration mode.
• Create Private Endpoints for the Functions and App Services.
• Restrict all inbound and outbound network traffic to known paths.
• Create an Application Insights resource for each Functions and App Service.
• Use APIM to present API client with a facade. Clients should not access Functions directly nor have

credentials for it.
• Always deploy to Functions or App Service slots.

Pre-decisional - DRAFT UNCLASSIFIED 66

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

8 APPENDIX: DevSecOps Lifecycle Tables

The following tables align elements of this reference design with the Lifecycle phases defined in the

DevSecOps Fundamentals Guidebook: DevSecOps Tools & Activities. Please note that additional table-
mappings will be provided in a separate file.

Table 2: Additional (non-CI/CD) GitHub capabilities aligned to DevSecOps lifecycle phases

Phase Tool Baseline Capability

Plan Issue tracking system REQUIRED GitHub

Issues

Plan Project management system REQUIRED GitHub

Projects

Plan Configuration Management Tool REQUIRED GitHub

Repos

Develop Integrated development environment (IDE) REQUIRED GitHub

Codespaces

Develop Source code repository REQUIRED GitHub

Repos

Develop Source code repository security plugin PREFERRED GitHub

Advanced

Security,
GitHub

Dependabot

Build Artifact repository REQUIRED GitHub

Packages

Build Static Application Security Test (SAST) tool REQUIRED GitHub

Advanced

Security

Build Dependency checking / Bill of Materials checking PREFFERED GitHub

tool Dependabot

Table 3 shows the features, benefits, and inputs and outputs of the CI/CD orchestrator aligned with using

GitHub Actions. GitHub Actions provide the ability to deploy code to Azure, and indeed to any platform

and cloud.

Pre-decisional - DRAFT UNCLASSIFIED 67

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

Table 3: CI/CD Orchestrator features, benefits, inputs, and outputs, aligned with GitHub Actions.

Features Benefits Inputs Outputs Baseline GitHub

Create

pipeline

workflow

Customizable

pipeline

solution

Human

input
about: a

set of

Pipeline

workflow

configura-
tion

REQUIRED GitHub Actions

stages; a

set of
event
triggers;
each stage

entrance

and exit
control
gates;
activities
in each

stage

Orchestrate

pipeline

workflow

execution by

coordinating

other plugin

tools or

Automate the

CI/CD tasks;
Auditable

trail of
activities

Event
triggers
(such as
code

commit,
test
results,

Pipeline

workflow

execution

results
(such as
control gate

validation,

REQUIRED GitHub Actions

scripts. human

input,
etc.);
Artifacts

stage

transition,
activity

execution,
from the

artifact
repository

etc.); Event
and activity

audit logs

Pre-decisional - DRAFT UNCLASSIFIED 68

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

9 APPENDIX: Additional Azure-Native DevSecOps Offerings

9.1 GitHub Offerings

Use the simplest GitHub product that will meet your needs.

Figure 32 illustrates the spectrum of GitHub options available with native Azure integration. For simplicity,
it is shown as three broad categories, but know that it truly is a spectrum that will need to be considered

given your specific requirements. Each offering is described in more detail below.

Figure 32: Using guidance in this reference design, GitHub.com can be used for deployments up to and

including DoD Security Requirements Guide (SRG) Impact Level 5

GitHub.com. Offers a generous free tier that will suit many teams. Hosted in the cloud, it is ideal for
situations where work items and code are not sensitive in nature, although the CI/CD actions can be

done in a customer-owned virtual network to achieve up to DoD SRG Impact Level 5. This reference

design leveraged GitHub.com and recommends this option wherever possible given its free nature

and versatility. A team can be up and running on GitHub.com with a free account within minutes. Start at
https://github.com/team.

GitHub Enterprise Cloud (GHEC). For larger teams or enterprises, this managed offering provides many

of the same capabilities as GitHub.com, with added support, scale, and security options (e.g., SSO). GHEC

is also simple to start using, starting with a trial license. Sign up for a trial license at https://github.com/e

nterprise and contact sales (as the site says) in parallel. An enterprise license will need to be purchased to

continue using beyond the trial window.

GitHub Enterprise Server (GHES) – self-hosted option. For cases where customer-hosted tooling is re-
quired or where cloud-hosted solutions are not available. GHES is functionally identical to the GHEC

Pre-decisional - DRAFT UNCLASSIFIED 69

https://github.com/team
https://github.com/enterprise
https://github.com/enterprise
https://GitHub.com
https://GitHub.com
https://GitHub.com
https://GitHub.com
https://GitHub.com

Pre-decisional - DRAFT UNCLASSIFIED DOD DevSecOps Ref Des - Azure

managed offering and provides native integration with the Azure platform. However, GHES requires
administration from the factory team. Like GHEC, start with GHES by obtaining a trial license at https:
//github.com/enterprise. To deploy GHES, search for GitHub Enterprise Server in the Azure Portal. It is
deployed as a pre-configured virtual machine image.

9.1.1 GitHub Offering Selection Guidance

• Organizations workloads up to IL5 should use GitHub.com with GitHub-hosted runners.
• Organizations with IL5 workloads can optionally use self-hosted runners.
• Organizations with workloads in AirGap clouds (IL6 and higher), should use GitHub Enterprise Server
(GHES).

9.2 Azure DevOps

Organizations that have already made investments in Azure DevOps can leverage the continued ability

of the tool, while planning for a migration to GitHub in the mid-term as that is the long-tem successor
to Azure DevOps. GitHub Actions and Azure Pipelines have similar syntax and conceptual archtiecture,
which can make migrating to GitHub Actions straightforward. GitHub provides a Migration Guide35 for
organizations embarking on this transition.

Azure DevOps supports both Azure-hosted and Self-hosted Agents36 (runners) that can run within an

Organization’s VNet in Azure. Like GitHub, the communication is always initiated by the Agent, which

queries Azure DevOps to determine the jobs that are required to be run and to report logs and status.

Azure DevOps uses a Service Connection to allow Pipelines to communicate with Azure. Service Con-
nections utilize an Azure service principal to communicate with Azure, which can be scoped with the

appropriate permissions to resources. The Azure DevOps guide for deploying to Azure Government37

details the steps to create a service principal and configure a Pipeline to use it.

9.2.1 Guidance on when to use Azure DevOps

• Organizations with investments in Azure DevOps may continue to use it, although investments from

Microsoft will continue to favor the long-term strategic direction of using GitHub.
• Organizations with few or no investments in DevOps are encouraged to start with GitHub.

35https://docs.github.com/en/actions/migrating-to-github-actions/migrating-from-azure-pipelines-to-github-actions
36https://docs.microsoft.com/en-us/azure/devops/pipelines/agents/agents
37https://docs.microsoft.com/en-us/azure/azure-government/connect-with-azure-pipelines

Pre-decisional - DRAFT UNCLASSIFIED 70

https://github.com/enterprise
https://github.com/enterprise
https://docs.github.com/en/actions/migrating-to-github-actions/migrating-from-azure-pipelines-to-github-actions
https://docs.microsoft.com/en-us/azure/devops/pipelines/agents/agents
https://docs.microsoft.com/en-us/azure/azure-government/connect-with-azure-pipelines
https://GitHub.com

	Introduction
	Development Pattern and Design Elements
	Scope
	Target Audience
	Reference Documents
	Document Overview

	Software Factory Components and Interconnects
	Digital Platform Reference Design Interconnects
	Applications

	Prerequisites
	Azure Active Directory Tenant and Administrator Roles
	Azure Enterprise Agreement and Subscriptions
	DoD Cloud IaC Deployment Virtual Machine

	DoD Cloud Infrastructure as Code (DoD Cloud IaC)
	DoD Cloud IaC Overview
	Environment
	DoD Cloud IaC Templates
	Cloud-Native Access Point (CNAP)
	Baseline Updates
	Accessing the DoD Cloud IaC Baselines & Supporting Documentation

	Azure Software Factory Reference Design
	GitHub
	Organizations, Teams, and Private Repositories
	GitHub Actions
	Action Runners - GitHub-hosted and Self-hosted
	Using GitHub Codespaces (Dev Containers)
	Secure Access to Azure

	Logging and Continuous Monitoring
	Azure Monitor
	Azure Application Insights
	Azure Network Watcher
	Microsoft Defender for Cloud
	Azure Policies
	Microsoft Sentinel
	Logging and Continuous Monitoring in DoD Cloud IaC

	Application Development with Azure-Managed Services
	Automated Cloud Service Deployment
	Resource Groups
	Common Services
	Data Storage
	API Management
	Application Hosting

	APPENDIX: DevSecOps Lifecycle Tables
	APPENDIX: Additional Azure-Native DevSecOps Offerings
	GitHub Offerings
	Azure DevOps

Accessibility Report

		Filename:

		azure-native-devsecops-385.pdf

		Report created by:

		Marilyn Anderson, Section 508 Analyst, marilyn.l.anderson14.ctr@mail.mil

		Organization:

		DoD CIO

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 2

		Passed: 28

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Skipped		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

	George W Lamb:
	Jonathan M Williams:
		2022-10-03T16:12:45-0400
	LAMB.GEORGE.WILLIE.IV.1506724321

		2022-10-04T15:45:54-0400
	WILLIAMS.JONATHAN.MICHAEL.1273151423

