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L’VAR SPRING

Abstract

On a state space carrying inequivalent yet compatible smooth and ultrametric topologies,
a proper Lyapunov energy drives every Spring trajectory into a compact basin and collapses
onto the fixed-point set, with convergence certified in both regimes. Independently, a discrete
variational integrator and an accelerated mirror/prox scheme converge, as the step vanishes,
to the same (damped) Riemannian Newton equation—elastic metric as mass, Levi-Civita
connection as inertial curvature—giving dual validation via smooth energy descent and
ultrametric contraction. The potential supplies conservative forces; acceleration schedules
induce damping. We conclude with categorical and adelic outlooks.

Keywords: Bi-topological dynamics; Riemannian Newton law; categorical dynamics; ultrametric
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1 Introduction

Problem. Many systems exhibit both smooth evolution and discrete collapse. Classical analysis
handles the former; ultrametric analysis canonically handles the latter. The two frameworks are
topologically incompatible (connected vs. totally disconnected), so gluing them post hoc forces
one regime to mimic the other and loses guarantees.

Object. The L’Var Spring is a unary dynamical object on a common state set carrying
two complete, inequivalent but compatible topologies: a smooth (Archimedean) topology that
supports calculus via an elastic metric G and an ultrametric (p-adic) topology that supports
exact hierarchical discretization. A single recursion L is continuous in both, and a single proper
energy E strictly decreases along orbits away from fixed points, with precompact sublevels in
both topologies.

Consequences in one breath. Compatibility (not equivalence) lets one map L drive the
same trajectory to a unique terminal state while being certified in two logically independent
ways: smooth energy descent and ultrametric contraction. The elastic metric plays the role of
a mass matrix; its Levi—Civita connection supplies inertial curvature; acceleration schedules
in proximal discretizations induce damping. In the flat case G = ml, the continuous limit is
precisely m & = —VV (x) (with optional viscous or vanishing friction).

Why inequivalence is essential. Requiring a homeomorphism between the smooth
and ultrametric topologies would either collapse calculus (no paths, no geodesics) or collapse
quantization (no clopen hierarchies). The weaker requirement of compatibility preserves both the
differential and the hierarchical toolsets and yields two independent compactness/convergence
filters that agree on the same fixed point.

Contributions. We provide a consequence-first, math-native treatment:

i. A Spring structure (S, G, E, L) with a bi-topological Energy/Lyapunov principle: every
orbit is trapped in a compact basin and collapses to the fixed-point set as witnessed by
both topologies.

ii. A bi-topological fixed-point/uniqueness theorem (Banach-in-both): if L is contractive in
each metric, the fixed point is unique and orbits converge to it in both metrics, with
independent rates.

ili. Route A (variational). A discrete variational integrator converges to the Riemannian
Newton law G(z)i + I'4(z)[#, 4] = —VV (z). In the flat case this is F = ma.

iv. Route B (prozimal/accelerated). An accelerated mirror/prox scheme in the elastic metric
converges to the damped Riemannian Newton law G(z)# + Iy (7)[i, 4] + ((t)G(z)3 =
—VV(z), with ((t) = v or o/t depending on the schedule.

v. Interfaces to examples (constant and nontrivial elastic metrics), categorical structure (the
category Spring with energy- and dynamics-respecting morphisms), and an adelic outlook
(Fourier /Poisson under elastic coupling).

L.E. L’Var — L’Var Institute of Coherence Dynamics (LICD) 2/15



L’VAR SPRING

(1) Bi-topological terminality. Under the Energy/Lyapunov principle (Assumption 3.2), every
orbit enters a compact bi-topological basin, the energy sequence is strictly decreasing and convergent,
and all accumulation points lie in Fix(L) (Prop. 3.3). If L is a contraction in both metrics, the fixed
point is unique and (x,,) converges to it in both topologies (Thm. 4.1).

(2) Newtonian limit from two independent routes. Both a discrete variational integrator
(Route A) and an accelerated mirror/prox scheme (Route B) converge to the same Riemannian

Newton law
G(x) i+ y(x)[, 2] = —=VV(z) (see Thms. 5.1, 6.1),

and, with acceleration schedules, to the damped form.

(3) Dual validation: continuous & hierarchical. Compatibility (not equivalence) of the smooth
and ultrametric topologies yields two independent convergence filters: smooth energy descent and
ultrametric contraction. Sublevel precompactness in both topologies rules out topology-specific
failure modes and certifies rounding-robust discretization.

(4) Concrete predictions. For V(z) = £||z||? with G = mI one recovers the harmonic oscillator;
with G(z) = m(1+¢l||z||?)I the theory predicts a first-order reduction in radial frequency proportional
to € (see §7.2), with 1D motion admitting closed-form quadrature.

(5) Compositional calculus (Section 9). The category Spring has finite limits and (under mild
regularity) finite colimits; pullbacks model constraint-coupled systems; free/forgetful adjunctions
formalize adding/removing dynamics.

(6) Minimal assumptions; extensible rates. We require G € C? (uniformly elliptic) and V' € C?;
KL-type regularity yields rates; damping profiles come from acceleration schedules.

2 Preliminaries and Notation

Let S be a common state set endowed with two Hausdorff, complete metrics: ds (smooth/Archimedean)
and d, (ultrametric). We denote their topologies by 7o, and 7,. A symmetric positive-definite ma-

trix field G : S — R4 induces the inner product (u,v)5 = u' G(2)v and norm ||u||év = (u,u) g

We write I' for the Levi-Civita connection of G and T’;(z)[u,v] := G(z) Ta(z)[u,v] for its
index-lowered form.

Definition 2.1. [Compatibility] A map L : S — S is compatible if it is continuous with respect
to both 7o, and 7. An energy E : S — Rx is bi-proper if sublevel sets {E < ¢} are precompact
in both topologies.

The definition of compatibility assumes that maps and energies satisfying these dual re-
quirements exist. The following lemma provides a constructive proof that such objects are not
merely notional but can be engineered from a smooth space via hierarchical symbolic coding,
thus closing this foundational logical gap.

Lemma 2.2. [Existence of Compatible Maps via Symbolic Coding] Let (S,ds) be a compact
metric space and let m: S — XN be a continuous surjective coding map onto sequences over a
finite alphabet 3. Define an ultrametric on S by

dp(x,y) == N\ LCP(r(@)m () A> 1,

where LCP denotes the length of the longest common prefiz of the codes w(x) and w(y). Suppose
L:S — S satisfies:

(a) L is a-Lipschitz in doo for some a < 1;

(b) There exists v > 1 such that for all z,y € S,

LCP(w(Lx),n(Ly)) > max{LCP(n(x),n(y)) — r,0}.
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Then L is continuous with respect to both do and d,. Moreover, if r > 0, it is a strict contraction
in dp with modulus A™".

Proof sketch. Condition (a) implies continuity in d., immediately. For the ultrametric dp, fix
e = A7k Take § = A=+ If dy(x,y) < &, then LCP(r(z), 7(y)) > k + r. By condition (b),
LCP(n(Lx),m(Ly)) > k, hence

d,(La, Ly) = A~MOPL)m(Ly) <\~ — .

Thus L is dy-continuous. If r > 0, the inequality is strict, giving a contraction with ratio
A~". The construction therefore produces explicit maps that are simultaneously continuous (or
contractive) in both the smooth and ultrametric topologies. O

3 The L’Var Spring

Definition 3.1. [Spring] A Spring is a quadruple (S, G, E, L) where: (i) (S,dx) and (S, d,)
are complete; (i) G is a positive-definite metric field inducing deo; (iii) E is bi-proper and lower
semicontinuous in both topologies; (iv) L is compatible and a strict contraction in both metrics.
Assumption 3.2. [Energy/Lyapunov Principle] There exists E : S — R>¢ such that: (a) £ >0
and {F < c¢} is precompact in both topologies for every finite ¢; (b) F(Lz) < E(z) for all
x ¢ Fix(L); (¢) x € Fix(L) iff 0 € 0E(x).

3.1 Immediate Consequences

Proposition 3.3. [Terminal Behavior] Under Assumption 3.2, every orbit x,+1 = Lz, enters

a compact sublevel set and all accumulation points lie in Fix(L). Consequently, divergence and
neutral cycles are excluded.

Definition 3.4. [Bi-topological w-limit set] For an orbit (z,,), define
Woo (o) 1= {x : Ing, T 00, zp, — 2 in (S, 7)}, wp(xo) = {x : Ing T oo, @y, — v in (S,7p)}

Lemma 3.5. [Compactness, nonemptiness, invariance] Under Assumption 3.2, both weo(Zo)
and wy,(xg) are nonempty, compact, and L-invariant. Moreover,

Woo (o) Uwp(zo) C Fix(L).

Proof sketch. Energy descent traps (z,) in the common sublevel {E < E(zg)}, which is pre-
compact in both topologies; sequential compactness yields nonemptiness and compactness of
Woo, wp. Invariance follows from continuity of L in both topologies. The inclusion in Fix(L) is
Proposition 3.3. O

Theorem 8.6. [Bi-topological terminality] Under Assumption 5.2, every orbit (x,) admits
(possibly different) accumulation sets in the smooth and ultrametric topologies, each nonempty,
compact, L-invariant, and contained in Fix(L). If, in addition, either

(a) L is a contraction in ds (Tesp. dy,), or

(b) Fix(L) is discrete in Too (TeSp. Tp),
then (zy,) converges in that topology to a fized point * € Fix(L). If (a) holds in both metrics
with moduli < 1, the limit is unique and convergence occurs in both topologies to the same x*.
Proof sketch. The first statement is Lemma 3.5. For (a), apply Banach—Caccioppoli in the

respective metric; for (b), compactness + strict energy descent preclude nontrivial w-cycles in a
discrete set, forcing stabilization at one point. O

Corollary 3.7. [Finite fized-point set implies convergence] If Fix(L) is finite, then every orbit
(z5,) converges in both topologies to some x* € Fix(L). If L is a contraction in either topology,
the limit is unique.

Proof sketch. Finite sets are discrete in both topologies; apply Theorem 3.6(b). Uniqueness
follows from Theorem 4.1. O
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4 Bi-Topological Fixed Point and Uniqueness

Theorem 4.1. [Bi-Topological Banach] If L is an a-contraction in ds and a B-contraction in
dp with 0 < o, B < 1, then L admits a unique fized point z*. For any x¢, the iterates £n1 = Lxy,
converge to x* in both ds and dy.

Proof sketch. Banach’s theorem applies independently in (S, d) and (S, dp). Energy descent
and bi-properness provide compactness, ruling out pathological w-limits; uniqueness follows from
strict contraction. O

5 Route A: Discrete Variational Integrator — Riemannian New-
ton
Consider the discrete action

YEDEDE

k

Th+1—Tk
h

— V(J,k)> h. (1)

G(wk)

Stationarity yields the discrete Euler-Lagrange equation

Tyl — 22 + Tg—1
12

G(xy) + (VG(xk) x’rlfk’l)m’“*}f’“* = —VV(xg). (2)
Theorem 5.1. [Discrete-to-Continuous Limit: Riemannian Newton Law] Let G,V € C?(S)
on a smooth manifold (S,G), and let (z1) satisfy the discrete Euler—Lagrange equation (2)
with step size h > 0. Assume the discrete trajectory admits a C* interpolation z(t) such that
sup, || Z'(t)]| < oo and G is uniformly elliptic and Lipschitz in x. Then as h — 0,

Tyl — 2T + Tp1
2

— B0, (Vo)) Bt — Te@li,dl,

and the discrete equation (2) converges to

G(x) &+ Tgla)[d, 4] = —VV(2), (3)
the Riemannian Newton law. If G = ml, this reduces to the classical mi = —VV (x).
Proof sketch. Taylor-expand xg41 = x(t) £ ht + }12—233 + O(h®). Substitute into (2); use symmetry
of G and the definition of the Levi—Civita connection Ffj = %le(@-Gﬂ + 0;Gy — 0,Gyj) to
reorganize terms. The difference quotient of G(vx) produces the I’;(i,4) term. Uniform

ellipticity and bounded derivatives ensure O(h) remainder. |

Remark 5.2. [Energy consistency| The discrete action .A;, is a first-order consistent discretiza-
tion of the continuous action Afz] = [(3#]|% —V (z)) dt, and Theorem 5.1 establishes variational
convergence Ap — A in the I-sense. Hence the limit dynamics preserve the energy structure of
the discrete scheme.

Cross-reference. The continuous law identified in Theorem 5.1 is exactly Eq. (3); in the flat
specialization G = ml it reduces to mi = —VV.

6 Route B: Accelerated Mirror/Prox — Damped Riemannian
Newton

From variational to proximal dynamics. The variational integrator of Route A exposes the
Spring as a discrete mechanical system: momentum arises from metric curvature, and force from
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the gradient of the potential. Yet the same geometry also underlies modern accelerated optimiza-
tion. If, instead of discretizing the action, one discretizes the energy descent itself—combining
extrapolation and implicit proximal correction—one obtains a second family of schemes that
generate the same continuous limit. This complementary construction, Route B, views the
Spring not as a time-stepping rule for a Lagrangian but as a fixed-point iteration for the energy,
where acceleration manifests as damping in the continuous limit.

With step nx = h and momentum [, perform

yr = ok + Br(or — Tp—1), (4)
G(yr)(@rr1 — yr) = = VV (yr).- (5)

Theorem 6.1. [Accelerated Prox/Mirror = Damped Riemannian Newton] Let G,V € C%(S)
with G uniformly elliptic and Lipschitz on bounded sets. Consider the accelerated prozx/mirror
update with step ny = h > 0:

Yk = Tk + Br(Tre — 21-1), G(yk) (Tre1 — ye) = — e VV (yi),

and define the C? interpolation x(kh) = x), with sup, || #'(t)|| < co. Suppose the momentum
schedule satisfies either

(a) Constant friction: 5, =1 — vh with v > 0 fized, or

b) Vanishing friction (Nesterov type): i, =1 — 22 with a > 0 and tj, = kh.
ti

Then, as h — 0, the interpolated trajectory converges (on compact time intervals) to a solution
of the damped Riemannian Newton equation

G(z) & + (x|, 2] + C(t) G(z) & = — VV (z), (6)

where ((t) =~ in case (a) and ((t) = a/t in case (b). In the flat case G = ml, this reduces to
mi+m((t)z =-VV(x).

LTh4+1— Tk

Proof sketch. Rewrite the optimality condition as G (yx) =4 = =V V (yx) + B G(yk)”_—;f’“’l
Subtract and add G(zy,) where needed; use Ty, = xih:t—i—%i—l—O(h?’) and vy = (zp—zk_1)/h =
&+ O(h). (i) The central second difference yields G(z)%& + O(h). (ii) The metric variation
[G(y) — G(zk)]vk gives (VG(z) &)&+O(h), which reorganizes into I%(&, ). (iii) The momentum
term (Bx — 1)G(yg) vy yields —y G(x) & + O(h) in case (a) and —(a/t) G(x) & + O(h) in case (b).
Collect terms and pass h — 0. O

Corollary 6.2. [Mechanical energy dissipation] Let Emeen(z, %) = 3 &' G(2)i + V(z). Along
solutions to Theorem 6.1,

d . T .
&Emech(xvx) = - C(t) x G(m)x <0
with ((t) = v (constant) or ((t) = a/t (vanishing). In particular, energy decays monotonically
and fooo C) [|a)||Z dt < .

Proof sketch. Differentiate Feqn and substitute the equation of motion; the Levi—Civita term
cancels by metric-compatibility, leaving the friction term. O

Remark 6.3. [Schedule design and rates| Constant v > 0 yields exponential decay in strongly
convex basins. The ¢~! schedule reproduces Nesterov-type sublinear decay. In both cases, local
KL exponents of V near Fix(L) transfer to rates for Epech.

Cross-reference. The limit in Theorem 6.1 is Eq. (6) (with ((t) = v or «/t), recovering
Eq. (3) in the undamped case ¢ = 0.
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Synthesis: dual validation of the Newtonian limit

Theorem 6.4. [Dual discretization equivalence] Under the assumptions of Theorems 5.1 and
6.1, the vanishing-step limits of (i) the discrete variational integrator (Route A) and (ii) the
accelerated mirror/proz scheme (Route B) coincide with the same continuous law:

Eq. (3) when ¢ =0, Eq. (6) when ¢ £0.

In particular, the elastic metric G is identified as the mass matriz, the Levi—Civita connection I’
as inertial curvature, and ((t) as friction, independently of the discretization route.

Proof sketch. Route A yields Eq. (3) by Theorem 5.1. Route B yields Eq. (6) by Theorem 6.1,
reducing to Eq. (3) when ¢ = 0. Hence both routes converge to the same Newtonian law
(with/without damping) on the same geometric data (G,T,V). d

7 Examples

From principle to practice. The two routes—variational and proximal—mow converge on
the same geometric law: the Riemannian Newton equation and its damped extension. The
Spring’s abstract mechanics are therefore no longer speculative; they prescribe concrete, testable
motion once a metric and potential are specified. To make the geometry tangible, we turn next
to examples where the elastic metric G acquires physical meaning. In these cases, curvature
behaves as an effective mass modulation and damping as controlled energy loss, allowing direct
comparison with classical oscillators and their deformations.

The purpose of this section is to make the abstract geometry of the Spring explicit through
concrete dynamics. Once the metric G and potential V' are specified, the Riemannian Newton
law

G(z) @+ Dg(a)[i, ] + C(t) Gz) & = — VV (z)

governs motion in both the smooth and ultrametric perspectives. Each example below isolates
a single geometric feature—flatness, curvature, or damping—and shows how it manifests as a
physically interpretable behavior: harmonic motion, frequency shift, or dissipative collapse.
7.1 Quadratic Potential with Constant Metric

This baseline reproduces the classical harmonic oscillator and serves as a consistency check.
Setting G = mlI and V(z) = %H’EHQ reduces the law to

mx+ kx =0,

whose solutions x(t) = Acos(wt) + Bsin(wt) have frequency w = /k/m. Adding constant
damping ((t) = v gives the familiar viscous oscillator mi + m~vyz + kx = 0, with exponential
decay rate v/2. This case verifies that the Spring reproduces ordinary Newtonian mechanics
when curvature and hierarchy vanish.

7.2 Nontrivial Elastic Metric
—k

We study the quadratic potential V(z) = £ ||z||* under an isotropic, position-dependent elastic
metric
G(z) = p(|=|) I, p(r) =m1+er?), m>0,¢>0.

This model already exhibits curvature-like inertial forces despite Euclidean coordinates.

Equation of motion. With (3) we have

w(r) i + Og(a)[2,&] = =VV (z) = —ka.
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Because G(z) = pu(r)I with p/(r) = 2mer, a direct computation of the lowered-index Christoffel
term gives
Uy(2)[@, 2] = me (2 (z - &) & — |&]°z),

so the dynamics are

m(l+er?) & +me(2(z- %) i — ||#]%x) + kx =0, r= ||z (7)
Radial-tangential decomposition. Write = ru with r = ||z|| and u € S¥~!. Let w := |||
denote angular speed. Using u -4 = 0 and u - ii = —w?, projection of (7) onto u (radial) yields

m(l—b—er)(f—rw?)—i-ms(rTQ—rw)—i—kr—O (8)

The angular equation follows from Noether symmetry of rotations: the generalized angular
momentum
Ji=pulr)r*w=m(+er?)rw (9)

is conserved (J = 0). Eliminating w via (9) gives the closed radial ODE

J? eJ?
L+er?)# 2+ kr — - =0. 1
m(l+er’)F+ mer® 4 kr m(l+er?)rd  m(l+er?)?r 0 (10)

Energy and effective potential. The mechanical energy
E = u(r) (i + r2w?) + Er? = L u(r)i? + Veg (r), (11)
with conserved J obeys

JQ
2 p(r)r?

k 2 k
+517 = S S (12)

Veir(r) = 2m(l+er?)r2 = 2

Turning points satisfy £ = Veg(r), and small oscillations about equilibria follow from V.

Equilibrium radius and robustness to first order in e. Equilibria solve V3 (r,) =0, i.c.

J? 1+ 2er?

kri="— x|
E (14er2)?

(13)

For ¢ = 0, 7o = (J?/(km))*/*. Expanding (13) at small ¢ shows a cancellation at first order:
7. = 10 + O(£?). Thus the equilibrium radius is insensitive at linear order to isotropic elastic
stiffening,.

Small radial oscillations (frequency shift). Linearizing (10) at r, gives the radial frequency
w? = V/i(r.)/u(ry). For e = 0, one finds w? = 4k/m. For small ¢, using r. = ry + O(c?) and
M(T*) =m(1+erg) + O(?),

w 2[(1—-57»0)—2[(1— (2 (km))2). (14)

Hence isotropic elastic mass reduces the radial frequency to first order by an amount proportional

2
to erg.
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One-dimensional closed form (quadrature). In d =1 the equation becomes
m(1+ ex?®) & + mexi® 4 kx = 0. (15)

Energy (11) reduces to E = im(1 + ez?)i? + 522, so

9 B — kg2 (1) 1+ os?
PR i HO:/ ”“;f)ds. (16)
m 1+ex - 2(E — §5?)

This integral is elementary for £ = 0 and becomes a mild elliptic deformation for £ > 0; the
small-¢ frequency shift matches (14).

Interpretation. The metric factor u(r) acts as a radius-dependent mass. Two geometric
effects arise: (i) the Christoffel term creates an inertial drift that couples radial speed to a
centripetal pull oc —||Z[|?x; (i) conservation of J modifies the centrifugal barrier by replacing m
with p(r) in J2/(2ur?). Net effect: orbits widen slightly (unchanged radius at O(g) but lower
radial frequency), which is precisely the signature of an elastic medium viewed through inertial
geometry.

Optional anisotropic variant. If G(z) = m(I+ecax"), then Iy (i, ) = me((v-@) &+ (3-3) )
and the same program leads to a direction-biased inertial correction. The effective potential
depends on the instantaneous orientation, producing amplitude-dependent precession even for the
quadratic V. We omit details here; the isotropic case already demonstrates the core mechanism
cleanly.

8 Energy Balance with Variable Metric and Boundary Reactions

We consider the Riemannian Lagrangian

L(z,i) =2 G(z)E — V(z),

on a smooth manifold S (possibly with boundary dS), with dynamics
G(z) i+ Tg(x)[d, i) + C(t) G(z) & = —VV (%) + fox(z,1), (17)

where ¢ > 0 is a damping profile and fex¢ collects all nonconservative forces, including constraint
reactions enforcing z(t) € ! C S. We write the mechanical energy

Emech<xa ‘/L‘) = %JZTG(Z‘).T + V(‘/L')
Proposition 8.1. [Exact energy balance] Along any C? solution of (17),

%Emcch(:c,jc) — DTG + 3 foalat).

In particular, if foxt =0 (closed system), energy decays monotonically at rate ((t) ||¢]|%; if ( =0
and fext = 0, energy is conserved exactly.

Proof. Differentiate F\nech:

%Emech —iTC)E + 1¢T(VE@E)d + VV(2) é.

Insert (17) to replace G, and use metric-compatibility of the Levi—Civita connection:
&' Tg(a)d, 3] = §&"(VG(2)[d]) &,

which cancels the geometric term. The remaining terms give %Emech = (i'Gi+i for. O
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Remark 8.2. [Boundary reactions as power flux] Suppose the motion is constrained to a
domain © C S by holonomic constraints h;(z) = 0 on (parts of) 0€, enforced by reaction forces
fbdy = Zj /\thj (1‘) Then

& foay = DA %hj(m(t)).

J

If constraints are ideal (no-slip, perfectly elastic) so that %hj(w(t)) = 0 along solutions, boundary
reactions do no work: the boundary power vanishes and cannot change FE... Non-ideal
interfaces (e.g. moving/active boundaries) appear as nonzero boundary power and are absorbed
into & " foxt.

8.1 Noether-type momentum with boundary flux

Let Y be a smooth vector field generating a one-parameter group of diffeomorphisms &, on §. If
Y is a Killing field for G (i.e. LyG = 0) and V is Y-invariant (LyV = 0), define the momentum

Jy(z,2) = (Y(x),i)g = Y(z) G(z) .

Theorem 8.3. [Momentum balance with damping and boundary forces] Along (17),

S (@) = ~C) (V@) dhg + ¥(@) fo(et)

Hence in the closed, undamped case (( =0, fext =0) the Y-momentum is conserved. Boundary
reactions contribute only through Y7 fody; if Y is tangent to the constrained boundary, this fluz
vanishes.

Proof sketch. Differentiate Jy and use VG = 0 in the Levi-Civita sense (metric-compatibility),
the Killing condition Ly G = 0, and Ly'V = 0. Substitute (17) and simplify as in Prop. 8.1. O

9 Category of Spring-Structures

Reviewer’s Map for Section 9

This section establishes that Spring is a well-behaved category for composing dynamical
systems. We prove it has finite limits (Prop. 9.5, 9.6), finite colimits under mild regularity
(Prop. 9.8, 9.9), and canonical adjunctions to classical categories (Thm. 9.11, 9.13). A
counterexample (Remark 9.7) clarifies why we do not claim arbitrary small limits.

The geometric and dynamical analyses above reveal that every Spring is more than an
isolated system: it is a morphism-bearing object whose boundary behavior determines how it
can couple to others, making it amenable to a rich categorical description. The flux-continuity
conditions and conserved quantities derived in the previous section already behave like algebraic
composition laws, ensuring that energy and information are preserved as they pass from one
subsystem to another through a shared interface. This observation is not merely an analogy;
it is the physical manifestation of a deeper structural truth. To make this compositional logic
explicit and to provide a formal language for constructing, comparing, and reasoning about
coupled Spring systems, we now formalize the Category of Springs, denoted Spring. This
framework elevates the discussion from the analysis of single systems to a calculus of interacting,
energy-preserving dynamical structures.

Motivation. Each Spring (S,G, E, L) is a composite object carrying both a geometric and a
dynamical identity. The elastic metric G defines the smooth manifold structure and its associated
calculus of geodesics and curvature, providing the stage for continuous motion. The energy
functional E supplies the thermodynamic imperative, defining a landscape whose gradients guide
the system toward equilibrium. Finally, the recursion L acts as the engine of collapse, executing
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the discrete steps that drive the system down this energy landscape. A morphism between
Springs, to be meaningful, must therefore respect all three of these structures simultaneously. It
must be a continuous map that not only preserves the underlying topological spaces but also
transmits the geometric and dynamical constraints without loss. This means mapping structure
to structure in a way that is energy-nonincreasing, ensuring no new energy is created at the
interface, and intertwining the dynamics so that updates commute across the morphism. This
is the categorical expression of physical conservation: information, structure, and energy may
flow through the diagram, but total coherence is maintained or decreased, never spontaneously
generated.

From physics to algebra. This categorical perspective recasts physical interactions in
a powerful algebraic syntax. Just as forces and fluxes must balance at physical interfaces,
morphisms in Spring balance coherence and energy between coupled systems. The standard
constructions of category theory acquire direct and intuitive physical interpretations. Products
describe independent, non-interacting subsystems evolving side by side, forming a composite
system whose total energy is the sum of its parts. Pullbacks, or fiber products, provide the
canonical tool for rigorously modeling coupled systems that are forced to agree on a common
interface, shared boundary condition, or a synchronized observation. This allows for the formal
analysis of complex, interconnected networks of Springs. Finally, the concept of adjunctions with
classical categories, such as the category of Riemannian manifolds (Riem) or ultrametric spaces
(Ultra), allows us to build formal, canonical bridges between our bi-topological framework and
the established worlds of classical analysis. These adjunctions encode the most principled ways
to endow a given geometric space with the full structure of Spring dynamics or, conversely, to
systematically ”forget” the dynamics and recover the underlying geometry. Under this holistic
interpretation, the categorical formalism is not just an abstraction layered on top of the physics;
it is a fundamental and deep-seated description of the physics of composition itself, meticulously
written in a universally applicable language.

We now embark on the final, and most crucial, step of formalizing these concepts. The
forthcoming subsections will provide a comprehensive and rigorous treatment, beginning with
the formal definitions of the objects and morphisms that constitute Spring. From there, we
will systematically prove that this category is structurally robust and possesses the necessary
properties for a powerful compositional calculus. We will demonstrate that it possesses finite
limits—including products and pullbacks, which are essential for composing and constraining
systems in a principled way. We will also show that it has finite colimits under well-defined,
mild regularity conditions, which allows for the construction of larger, more complex systems by
gluing together components or by quotienting by symmetries. This comprehensive analysis will
be complemented by the construction of the canonical adjunctions that formally and rigorously
connect the world of Springs to the classical domains of Riemannian geometry and ultrametric
analysis, thereby completing the full picture of the Spring as a fundamental and uniquely
powerful compositional object.

9.1 Objects and morphisms
Definition 9.1. [Spring] An object of Spring is a quadruple (S, G, E, L) obeying the structural
axioms established in Sections 3-5. A morphism @ : (S,G,FE,L) — (S',G',E', L) is a map
required:
(i) to be continuous for both topologies;

(ii) to be energy-nonincreasing, £’ o ® < E pointwise;

(ili) to intertwine the dynamics, ® o L = L' o .
These morphisms ensure that energy and motion commute across interfaces, giving Spring its
physical meaning as a calculus of composable dynamical systems.

Remark 9.2. [Contraction moduli] It is often useful to annotate a morphism by a pair of
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Lipschitz moduli (Lip,.. Lip,) € [0,1]? in the smooth and ultrametric metrics. Composition
multiplies these moduli, giving a quantitative preorder that supports stability budgeting.

9.2 Limits and colimits

Lemma 9.3. [Bi-properness under products and subspaces] If E and F are bi-proper on S and
T, then E®F is bi-proper on S x T (product bi-topologies). If A C S is closed in both topologies,
then E|4 is bi-proper on A (subspace bi-topologies).

Proof sketch. {E @ F < ¢} = U, p<{F < a} x {F < b} is a finite union of products of
precompact sets, hence precompact in the product bi-topologies. For subspaces, {E|4 < ¢} =
AN{E < ¢} is precompact in the subspace topologies. O

Proposition 9.4. [Terminal object] The one-point Spring 1 = ({*},0,0,1d) is terminal. For
any Spring A there exists a unique morphism A — 1.

Proposition 9.5. [Finite products; cartesian monoidal] Given Springs A = (S,G, E, L) and
B=(T,H,F, M), their product

AxB:=(SxT,G&H, E®F, LxM)

with product bi-topologies, block-diagonal metric G ® H, summed energy, and componentwise
update is again a Spring. The projections are morphisms and satisfy the universal property.
Hence Spring is cartesian monoidal with unit 1.

Proof sketch. Completeness is preserved by products; E & F has precompact sublevels as a
product of precompact sets (Lemma 9.3); if L and M are contractions with moduli o, 8 < 1,
then L x M is a contraction with modulus max{a, 8} under max/sum product norms. 0

Proposition 9.6. [Equalizers and completeness] For parallel morphisms ®,¥ : A — B, the
equalizer Eq(®, V) = {z € §: ®(x) = ¥(x)} with subspace bi-topologies and restricted (G, E, L)
s a Spring; the inclusion is a monomorphism. Consequently, together with the terminal object
and binary products, Spring has finite limits (in particular, pullbacks).

Proof sketch. Closedness from continuity; restricting a contraction to a closed invariant subset
preserves contraction; energy descent and precompactness are inherited by subspaces (Lemma 9.3).

O

Remark 9.7. [No arbitrary small limits] The category Spring does not have all small lim-
its because countable products do not preserve the strict contraction property. Let S; =
(R,1,22/2,(1 — 1/i)x). Each L;(z) = (1 — 1/i)x is a contraction with modulus a; =1 —1/i < 1.
The product map L =[], L; on the ¢*° product space has modulus sup; a; = 1, so it is not a
strict contraction.

Proposition 9.8. [Coproducts] The disjoint union AU B with piecewise structures (disjoint-
union bi-topologies, metric, energy, and update acting in each summand) is a coproduct in
Spring.

Proof sketch. Bi-properness holds because a sublevel is a finite disjoint union of precompact
sublevels in each summand. Contraction modulus is the maximum of the component moduli,
which is less than 1. The universal property is satisfied by defining mediating morphisms
piecewise. O

Proposition 9.9. [Coequalizers under mild regularity] Let &,V : A = B (for B= (T, H,F,M)).
Suppose T is compactly generated (or Polish), the M -saturated equivalence relation R generated
by ®(a) ~ U(a) is closed in T x T, and each equivalence class [x] is compact. Then the Ty
quotient Spring B/~ with pushforward bi-topologies, energy F([z]) = infycpy) F(y), and update
M([z]) = [M(x)] is a coequalizer.
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Proof sketch. The map M is well-defined because R is M-saturated. Bi-properness of F' follows
because m({F < c}) is the compact image of a compact set. Contraction of M is inherited from
M on the quotient (semi)metrics. The universal property is satisfied because any dynamics-
respecting, energy-nonincreasing map that coequalizes ® and ¥ must descend to the quotient. [

Proposition 9.10. [Pullbacks / fiber products] Given ® : A — C and ¥ : B — C, the fiber
product
AxcB={(a,b) e SxT: ®(a)=V(b)}

with subspace bi-topologies, restricted G & H, restricted E & F, and update (L x M)|axcB is a
Spring and satisfies the universal property.

Proof sketch. It is the equalizer of (® o 71, ¥ o) in A x B. Invariance under updates follows
from functoriality: ®oL =L o®, VoM = L' oV, d

9.3 Adjunctions with classical forgetful functors

Let Uy : Spring — Riem and U, : Spring — Ultra forget everything but the smooth metric
and ultrametric structures, respectively.

Theorem 9.11. [Free Spring over Riemannian data] Fix a Riemannian space (S,G) and a C?
energy E that is p-strongly convex with L-Lipschitz gradient in the G-geometry. For any step
n € (0,2/L) there exists a Spring

Free’.(S,G,E) = (S, G, E, Lg), Lp(z) == exp$ (- nG 'VE(z)),

which is a contraction in the smooth metric. This defines a functor Freel  : Riemg — Spring
left adjoint to Uys.

Proof sketch. Strong convexity/Lipschitzness imply Lip(Lg) < max{|l — nul|,|1 — nL|} < 1.
Units/counits are the evident identities on (S, G); naturality is standard. O

Remark 9.12. []To meet the Spring axioms bi-topologically, equip & with any compatible
ultrametric (e.g., via a fixed hierarchical coding). Bi-properness of E ensures precompact
sublevels in both topologies. Choices are unique up to isomorphism in Spring. The existence of
the exponential map is guaranteed locally; for this construction to be globally well-defined, we
assume the step —G~1V E(x) remains within the injectivity radius of  for all x in the domain
of interest.

Theorem 9.13. [Free Spring over ultrametric data] Let (S,dy,) be an ultrametric space and
E:S - RU{+o0} be lower semicontinuous with compact sublevels. Fixz p > 0 and define, for
x eS8,

Fy(z) == Byle.p) N {E < B(@)}.
Assume each closed ball By(x,p) is compact (e.g. (S,d,) is proper), or simply assume F,(x) is
compact for all z (automatic if balls are compact). Define

Ly(z) := argmin E(y).
yEFp(z)

Then L, is well-defined, nonexpansive and, for sufficiently small p, a strict d,-contraction.
Equipping S with any tame baseline smooth metric Gy yields a Spring (S,GO,E,Lp). This
construction is left adjoint to U,.

Proof sketch. Lower semicontinuity + compact feasibility F,(x) yield existence of a minimizer.
Ultrametric geometry gives stability of minimizers under the center (for small p), implying
Lipschitz continuity and strict contraction. Bi-properness is inherited from E (Lemma 9.3). O
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9.4 Enrichment and quantitative composition

Proposition 9.1/. [Moduli-enriched structure] Endow each hom-set with the preorder given by
contraction moduli (Lip,,, Lipp), Composition is monotone and multiplicative in each coordinate;
identities carry modulus (1,1). This yields a quantale-enriched preorder supporting end-to-end
stability budgets.

9.5 Ind/Pro limits for refinement and coarsening

Remark 9.15. [Ind/Pro constructions] Hierarchical discretizations (refinements) are modeled
as Ind-objects built from injections that preserve (G, F, L); coarsenings/projective schemes
appear as Pro-objects with compatible surjections. Energy descent and contraction pass to these
limits under the usual compactness hypotheses.

9.6 Coalgebraic view

Remark 9.16. [Coalgebras and bisimulation] Each Spring is a coalgebra L : S — S decorated
by (G, E). Morphisms are coalgebra morphisms preserving energy; coequalizers coincide with
quotients by bisimulations closed under L.

10 Outlook: Adelic Analysis and Spectral Questions

We sketch an adelic deformation Sk over the adele ring, define Haar measure and Fourier analysis,
and pose spectral questions for a Spring-Laplacian. Conjectures include Poisson invariance under
elastic coupling and stability of automorphic spectra.

A Proof Sketches

A.1 From Discrete EL to Riemannian Newton

Standard Taylor expansions show that the central difference approximates acceleration with
order O(h?); metric-variation terms reorganize into the Levi-Civita Christoffel contribution; the
potential term passes pointwise.

A.2 Accelerated Mirror Limit

Under n, = h and the stated momentum scalings, the second-order difference converges to (6).
The metric-variation term converges to I*’G(:i:,:i:); the momentum scaling yields the damping
coefficient.

B Rates via KL

If F satisfies a Kurdyka—FLojasiewicz property near Fix(L), then discrete descent enjoys sublinear
or linear rates depending on curvature; continuous dynamics inherit analogous energy decay
rates.
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