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Bi-Topological Dynamics for Certifiable AI

Abstract

DeepMind’s AlphaFold and AlphaGo address problems featuring mixed continuous-
discrete dynamics—optimization/energy descent coupled with hierarchical decisions. The
L’Var Spring is a single dynamical engine that runs on two compatible, inequivalent topologies
over the same state space: a smooth (Archimedean) topology (τ∞) for continuous evolution
and an ultrametric (p-adic) topology (τp) for discrete, hierarchical collapse. The core iteration
map L is a strict contraction in both metrics, guaranteeing dual-certified convergence to a
unique, verifiable fixed point. We propose integrating this framework to replace conventional
optimizers and search heuristics. For AlphaFold, this yields a physically-certified folding
dynamic, mapping diffusive drift to τ∞ and decisive conformational ”snaps” to τp. For
AlphaGo, this provides a globally convergent, curvature-aware policy optimizer (τ∞) coupled
with a provably decisive branch-commit mechanism (τp), eliminating oscillation. The Spring’s
categorical structure ensures compositional safety: stability and convergence are preserved
when certified subsystems are coupled via algebraic pullbacks. This integration elevates these
systems from powerful heuristics to provably convergent, geometry-aware architectures.

Keywords: Bi-topological Dynamics, Riemannian Newton Law, Categorical Dynamics, Ultra-
metric Analysis, AlphaFold, AlphaGo, Certified Safety.
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Bi-Topological Dynamics for Certifiable AI

1 Executive Summary
The L’Var Spring framework offers a strategic upgrade for complex AI systems like AlphaFold
and AlphaGo by replacing heuristic stability measures with mathematically rigorous con-
vergence guarantees. It is the first unified dynamical system designed to handle the mixed
continuous–discrete problems inherent in scientific modeling and strategic planning.

Core Mechanism: Dual-Certified Convergence

he L’Var Spring is a single dynamical engine that runs on two compatible, inequivalent
topologies over the same state space:

• τ∞ (Smooth/Archimedean): Supports continuous evolution and energy descent via
an elastic Riemannian metric G(x). The continuous limit of the dynamics is the
damped Riemannian Newton Law (G(x) ẍ+ Γ♭G(x)[ẋ, ẋ] + ζ(t)G(x) ẋ = −∇E(x)).

• τp (Ultrametric/p-adic): Captures discrete, hierarchical ”snap” moves via strict
contraction in an ultrametric distance dp.

The core iteration map L is a strict contraction in both d∞ and dp, meaning every step
simultaneously decreases a Lyapunov energy and tightens the solution hierarchy. This
property establishes the Spring as a globally convergent, geometrically preconditioned
optimizer with built-in convergence guarantees.

1.1 AlphaFold: Certified Folding Dynamics

Protein folding is mixed-kinetics: gradual, diffusive adjustments plus sudden, topological ”snaps.”
The Spring maps these directly:

• τ∞ handles smooth energy descent and structure refinement via curvature-aware (Route-B)
updates.

• τp enforces ultrametric contraction, modeling decisive conformational transitions (”pere-
stroikas”) that lock stable secondary/tertiary motifs.

The folded native state is the Spring’s fixed point (x⋆). Dual certification (energy minimum in
d∞ + hierarchical stability in dp) guarantees terminal convergence without oscillation or failure
modes, providing a mathematical certificate of confidence for the predicted structure.

1.2 AlphaGo: Hybrid Optimization That Actually Converges

Strategic game play requires continuous parameter learning (policy/value) and discrete branching
(moves). The Spring natively unifies this mixed regime:

• τ∞ provides globally convergent, curvature-aware policy/value updates (Route-B),
guiding training along loss surface geodesics.

• τp provides strict ultrametric branch-commit, pruning to robust subtrees and preventing
policy thrash near critical states.

A dual-certified stopping rule (calm τ∞ gradient + fixed ultrametric address) provides a
unique terminal strategy, guaranteeing no continuous runaway or discrete dithering.

1.3 Strategic Value: Compositional Safety

The category L′VarSpring supplies algebraic pullbacks and related limits. This means systems
can be assembled from certified components (networks, search algorithms, controllers) while pre-
serving the global stability and convergence proofs. Stability is achieved by architectural
design, shifting verification from fragile tuning to formal composition.
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Key Performance Indicators and Proposed Research Trajectory

1. AlphaFold Performance Metrics: A successful integration should yield statistically
significant improvements in key accuracy scores (GDT/lDDT), alongside measurable
gains in stability, such as a near-zero reflow rate and strictly monotonic energy decay
during refinement.

2. AlphaGo Performance Metrics: Validation will be based on improved search decisive-
ness (quantified by faster Principal Variation stabilization and near-zero branch-flipping
events) and superior strategic strength (higher Elo rating at matched computational
budgets).

3. Formal Certification: The primary deliverable is the formal exclusion of mixed-mode
failure states (continuous runaway and discrete oscillation), with certified terminal
convergence to a unique fixed point, as guaranteed by the Spring’s core theorems.

Proposed Research Trajectory: The immediate research priority is the implementation
of a prototype Route-B Spring refinement loop and an ultrametric commit trigger
suite within the existing AlphaFold and AlphaGo architectures. This will serve as the
initial validation of the framework’s practical applicability and performance benefits.

2 Formal Embedding: Protein Folding as a L’Var Spring

2.1 State, Metric, Ultrametric, and Energy

State space. Let x = (ϕ, ψ,C) collect backbone torsions, side-chain rotamers, and Cartesian
coords; let Π be a hierarchical contact/correspondence code (e.g., multi-scale contact map or
domain tree). Define

S := Mgeom︸ ︷︷ ︸
smooth

× Thier︸︷︷︸
ultrametric

.

Smooth metric (G). On Mgeom, set

G(x) =Wgeom(x) + λchemWchem(x) + λlearnWNN(x),

where Wgeom captures kinematic couplings (torsion/Cartesian Jacobians), Wchem penalizes
bond/angle/steric violations, and WNN is a learned Fisher-like preconditioner from the model’s
score network. Assume G ∈ C2 and uniformly elliptic on level sets of E.

Ultrametric (dp). Let π : Mgeom → ΣN encode a hierarchical contact signature (e.g., do-
main→subdomain→motif). Define

dp
(
(x,Π), (y,Π′)

)
= λ−LCP(π(x),π(y)) (λ > 1).

Energy (E). Combine learnable and physical terms:

E(x,Π) = αENN(x)︸ ︷︷ ︸
network score

+ βEphys(x)︸ ︷︷ ︸
bonds/angles/sterics/electrostatics

+ γEhier(x,Π)︸ ︷︷ ︸
hierarchical consistency

.

Here Ehier penalizes disagreement between x and its hierarchical code Π (e.g., missing contacts
or mis-ordered domain assembly).

2.2 Update Map and Continuous Limit

Route B (prox/accelerated) update on Mgeom:

yk = xk + βk(xk − xk−1),

G(yk)(xk+1 − yk) = −ηk∇xE
(
yk,Πk

)
.

L.E. L’Var — L’Var Institute of Coherence Dynamics (LICD) 3/7



Bi-Topological Dynamics for Certifiable AI

Ultrametric collapse on Thier: set Πk+1 to the argmin of Ehier(xk+1, ·) inside a radius-ρ
dp-ball around Πk (guarantees strict dp-contraction for small ρ).

Theorem 2.1 (Bi-topological convergence for folding). Assume G ∈ C2 uniformly elliptic,
E ∈ C2 with bi-proper sublevels. With βk = 1− γh or 1− αh/tk and small ρ, the coupled update
yields trajectories whose interpolation solves

G(x)ẍ+ Γ♭G(x)[ẋ, ẋ] + ζ(t)G(x)ẋ = −∇xE(x,Π)

while Π performs strict dp-contractions. Every trajectory converges to a fixed point (x⋆,Π⋆); if L
is strictly contractive in both metrics, the limit is unique.

Proof sketch. Standard Spring limit for x (Route B) + ultrametric contraction for Π; bi-
properness traps the orbit; Banach in each metric gives uniqueness.

2.3 Falsifiable Predictions for L’Var Spring Folding Dynamics

P1: Barrier crossing as discrete steps. The number of ultrametric collapses equals the
number of major domain-assembly events. Measurable via sudden drops in Ehier and large
dp-jumps; correlates with formation of native core.

P2: No chattering near near-native states. Because L is contractive in dp, the hierarchy
stabilizes (finite number of code changes) before geometric fine-tuning finishes—observable
plateau in Π while x still relaxes.

P3: Reliability bump. On decoys with similar continuous energies but different hierarchies,
the Spring picks the hierarchy with minimal Ehier and cannot oscillate between them. Metric:
lower variance across independent runs.

2.4 Algorithm: The L’Var Spring Folding Engine

Algorithm: Spring Folding Engine

Input: initial (x0, Pi0), step h,

momentum schedule beta_k,

ultrametric radius rho

for k = 1..K:

y_k = x_k + beta_k * (x_k - x_{k-1})

x_{k+1} solves: G(y_k)(x - y_k) = -h * grad_x E(y_k, Pi_k)

Pi_{k+1} = argmin_{Pi’ in B_p(Pi_k, rho)} E_hier(x_{k+1}, Pi’)

if ||x_{k+1} - x_k||_G + d_p(Pi_{k+1}, Pi_k) < epsilon:

break

return (x_K, Pi_K)

3 Formal Embedding: Strategic AI as a L’Var Spring

3.1 State Factorization and Interfaces

Let θ ∈ Θ be network parameters (policy+value), s a game state, and T a search tree rooted at
s. Define

S := Θ︸︷︷︸
smooth

× T (s)︸︷︷︸
hierarchical tree

,

with product topology (τ∞, τp).
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Metric on Θ. Use G(θ) = λ1I + λ2F̂ (θ), with F̂ a Fisher-like or curvature proxy (learned or
accumulated).

Ultrametric on T . Codes are paths from root; dp from longest common prefix (as with
contact hierarchies).

Energy E(θ, T ).

E(θ, T ) = E(s,a)[ℓtrain(θ; s, a)]︸ ︷︷ ︸
supervised/RL loss

+ µℓconsist(θ, T )︸ ︷︷ ︸
policy/value–tree consistency

+ νWinCert(T )︸ ︷︷ ︸
formalized proof mass

.

Here ℓconsist penalizes disagreement between network posteriors and tree statistics (visit counts,
backed-up values). WinCert is a monotone functional increasing when the tree contains certified
winning subtrees (e.g., proof-like terminals).

3.2 The Coupled Update: Learning and Planning

Continuous step (Route B on Θ):

θk+1 = argmin
θ

1
2 |θ − θ̃k|2G(θ̃k)

+ h∂θE(θ̃k, Tk) · (θ − θ̃k), θ̃k = θk + βk(θk − θk−1).

Discrete tree step (strict dp-contraction):

Tk+1 := LocalExpandAndPrune(Tk; θk+1; ρ),

which (i) expands ε-greedy or UCT-like children within a depth/width budget bounded by ρ, (ii)
removes branches dominated under θk+1 (and/or keeps a bandit-certified top subset). Properly
tuned, this map reduces the set of admissible frontiers in an ultrametric ball and is contractive
in dp.

Theorem 3.1 (Bi-topological convergence for learning+planning). Under the same regularity
on G and bi-properness of E, the coupled map L : (θ, T ) 7→ (θ′, T ′) is a strict contraction in dp
on T and a descent map in d∞ on Θ. Trajectories converge to a fixed point (θ⋆, T ⋆). If both
metrics are strictly contractive (e.g., η within a trust region; ρ small enough), the limit is unique.

Interpretation. T ⋆ stabilizes (no flipping between top branches); θ⋆ is a stationary point for
the preconditioned training objective consistent with the stabilized tree.

3.3 Measurable Payoffs for L’Var Spring Planning

G1: Anti-thrash guarantee. On tactical puzzles with two near-equal lines, standard MCTS
may oscillate; the Springized planner must monotonically shrink the frontier (ultrametric
contraction), yielding strictly fewer policy reversals per move.

G2: Better sample efficiency. With G(θ) as curvature proxy, match or exceed Elo with fewer
gradient steps. Metric: steps-to-plateau vs baseline optimizers.

G3: Certified terminality. With WinCert included, the planner cannot loop: a formal stop-
ping certificate is reached; measure failure rate of “no-move indecision” vs baseline.

4 Safety and Certification: Dual Guarantees as Proofs

4.1 Operational Certificates of Convergence

Energy certificate. E
(
(θk, Tk)

)
is strictly decreasing off Fix(L) and bounded below ⇒ con-

vergent energy. Empirically log Ek and verify monotone decay.

Discrete stabilization certificate. The number of ultrametric code changes is finite (bounded
by the initial code radius divided by the contraction modulus). Log “hierarchy switches”
until zero.
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Unique limit certificate. If Lipschitz moduli < 1 in both metrics, the fixed point is unique.
Bound Lip∞ from curvature and step; bound Lipp from ρ.

4.2 Theorem: Exclusion of Mixed-Mode Failure

Theorem 4.1 (No Mixed-Mode Failure). No trajectory can (i) diverge in τ∞ or (ii) chatter
in τp. Thus, neither continuous runaway nor discrete oscillation is possible; termination is
guaranteed.

Proof sketch. Bi-proper sublevels are precompact in both topologies; the energy descent excludes
cycles in τ∞; strict dp-contraction excludes discrete oscillations.

5 Experimental and Falsification Plan

5.1 Protocol 1: AlphaFold Integration

Datasets: CASP decoys; small proteins with known domain hierarchies.

Arms: (i) baseline refinement (Adam/L-BFGS), (ii) Springized refinement (Route B + ultra-
metric collapse).

Metrics: RMSD@k, TM-score, number of hierarchy switches, monotonicity of Ehier, run-to-run
variance.

Predictions: Spring reduces hierarchy switches to a finite early burst; fewer failures to reach
the native basin; improved stability across seeds.

5.2 Protocol 2: AlphaGo Integration

Tasks: Fixed-budget puzzles; mid-game scenarios with competing tactical lines.

Arms: standard MCTS + SGD vs Springized (prox-Riemann + ultrametric prune).

Metrics: branch flip count per move, frontier size over time, steps-to-Elo plateau, certified
stops rate.

Predictions: Fewer flip events, smaller stabilized frontier, same/w better Elo at reduced
gradient budget.

6 Implementation Notes

Choosing G: Start with block-diagonal G = diag(Gtorsion, Gcartesian) or G = λI +λF F̂ . Ensure
condition number bounds on G along the run (clip eigenvalues).

Ultrametric radius (ρ): Small enough to guarantee contraction but large enough to allow
genuine topology changes early; anneal ρ ↓.

Schedules: Constant γ for exponential damping in strongly convex basins; t−1 for Nesterov-like
phases.

Stopping: Use the joint criterion ∥∆x∥G+dp(Πk+1,Πk) < ε (folding) or ∥∆θ∥G+dp(Tk+1, Tk) <
ε (planning).

7 Strategic Value and Scientific Impact
• A geodesically preconditioned optimizer that provably cannot “go weird.”

• A hierarchy-aware collapse operator that turns indecision into convergence.

• Compositionality: you can couple modules (networks, planners, constraints) via pullbacks and
know stability survives the coupling.
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