AIPMT 2009

- 1. For the reaction, $N_2 + 3H_2 \rightarrow 2NH_3$, if $\frac{d[NH_3]}{dt} = 2 \times 10^{-4} \text{ mol } L^{-1}s^{-1}, \text{ the value of }$ $\frac{-d[H_2]}{dt} \text{ would be :-}$
 - dt (1) $1 \times 10^{-4} \text{ mol } L^{-1} \text{ s}^{-1}$
- (2) $3 \times 10^{-4} \text{ mol L}^{-1} \text{ s}^{-1}$
- (3) $4 \times 10^{-4} \text{ mol L}^{-1} \text{ s}^{-1}$
- (4) $6 \times 10^{-4} \text{ mol L}^{-1} \text{ s}^{-1}$
- **2.** For the reaction $A + B \longrightarrow products$, it is observed that :-
 - (a) on doubling the initial concentration of A only, the rate of reaction is also doubled and
 - (b) on doubling the initial concentrations of both A and B, there is a change by a factor of 8 in the rate of the reaction.

The rate of this reaction is given by :-

- (1) rate = k[A][B]
- (2) rate = $k[A]^2[B]$
- (3) rate = $k[A][B]^2$
- (4) rate = $k[A]^2[B]^2$
- **3.** In the reaction

$$BrO_{3}^{-}(aq) + 5Br^{-}(aq) + 6H^{+} \rightarrow 3Br_{2}(\ell) + 3H_{2}O(l)$$

The rate of appearance of bromine (Br₂) is related to rate of disappearance of bromide ions as following:-

- (1) $\frac{d[Br_2]}{dt} = \frac{3}{5} \frac{d[Br^-]}{dt}$
- (2) $\frac{d[Br_2]}{dt} = -\frac{3}{5} \frac{d[Br^-]}{dt}$
- (3) $\frac{d[Br_2]}{dt} = -\frac{5}{3} \frac{d[Br^-]}{dt}$
- (4) $\frac{d[Br_2]}{dt} = \frac{5}{3} \frac{d[Br^-]}{dt}$
- **4.** Half life period of a first-order reaction is 1386 s. The specific rate constant of the reaction is:-
 - (1) $5.0 \times 10^{-2} \text{ s}^{-1}$
- (2) $5.0 \times 10^{-3} \text{ s}^{-1}$
- (3) $0.5 \times 10^{-2} \, \text{s}^{-1}$
- (4) $0.5 \times 10^{-3} \text{ s}^{-1}$

AIPMT 2010

5. The rate of the reaction

2NO + $\operatorname{Cl_2} \to \operatorname{2NOCl}$ is given by the rate equation

$$rate = k[NO]^2[Cl_2]$$

the value of rate constant can be increased by :

- (1) Increasing the concentration of NO
- (2) Increasing the concentration of the Cl₂
- (3) Increasing the temperature
- (4) all of these
- 6. For the reaction $N_2O_5(g) \longrightarrow 2NO_2(g) + \frac{1}{2}O_2(g)$ the value of rate of disappearance of N_2O_5 is given as 6.25×10^{-3} mol $L^{-1}s^{-1}$. The rate of

given as 6.25×10^{-3} mol L⁻¹s⁻¹. The rate of formation of NO₂ and O₂ is given respectively as:-

- (1) $1.25 \times 10^{-2} \text{ mol } L^{-1} \text{s}^{-1}$ and $6.25 \times 10^{-3} \text{ mol } L^{-1} \text{s}^{-1}$
- (2) $6.25 \times 10^{-3} \text{ mol L}^{-1} \text{s}^{-1}$ and $6.25 \times 10^{-3} \text{ mol L}^{-1} \text{s}^{-1}$
- (3) $1.25 \times 10^{-2} \text{ mol L}^{-1} \text{s}^{-1}$ and $3.125 \times 10^{-3} \text{ mol L}^{-1} \text{s}^{-1}$
- (4) $6.25 \times 10^{-3} \text{ mol } L^{-1} \text{s}^{-1} \text{ and}$ $3.125 \times 10^{-3} \text{ mol } L^{-1} \text{s}^{-1}$
- 7. During the kinetic study of the reaction, $2A + B \rightarrow C + D$, following results were obtained:-

Ex. [A	J(mol L ⁻¹)	$[B]$ (mol L^{-1})	Initial rate of				
No.			formation of				
			D(mol L ⁻¹ min ⁻¹)				
I	0.1	0.1	6.0×10^{-3}				
II	0.3	0.2	7.2×10^{-2}				
III	0.3	0.4	2.88×10^{-1}				
IV	0.4	0.1	2.40×10^{-2}				

Based on the above data which one of the following is correct?

- (1) $rate = k[A][B]^2$
- (2) rate = $k[A]^2[B]$
- (3) rate = k[A][B]
- (4) rate = $k[A]^2[B]^2$
- 8. For an endothermic reaction, energy of activation is E_a and enthalpy of reaction is ΔH (both of these in kJ/mol). Minimum value of E_a will be :-
 - (1) Equal to zero
- (2) Less than ΔH
- (3) Equal to ΔH
- (4) More than ΔH

AIPMT Pre. 2011

- 9. Which one of the following statements for the order of a reaction is incorrect?
 - (1) Order can be determined only experimentally
 - (2) Order is not influenced by stoichiometric coefficient of the reactants
 - (3) Order of reaction is sum of power to the concentration terms of reactants to express the rate of reaction
 - (4) Order of reaction is always whole number

AIPMT Mains 2011

- 10. The unit of rate constant for a zero order reaction is :-
 - $(1) s^{-1}$

- (2) mol L^{-1} s⁻¹
- (3) L $mol^{-1} s^{-1}$
- (4) $L^2 \text{ mol}^{-2} \text{ s}^{-1}$
- The half life of a substance in a certain 11. enzyme-catalysed first order reaction is 138 s. The time required for the concentration of the substance to fall from 1.28 mg L⁻¹ to 0.04 mg L^{-1} :-
 - (1) 276 s
- (2) 414 s
- (3) 552 s
- (4) 690 s
- The rate of the reaction $2N_2O_5 \rightarrow 4NO_2 + O_2$ can be written in three ways

$$\frac{-d[N_2O_5]}{dt} = k[N_2O_5]$$

$$\frac{d[NO_2]}{dt} = k' [N_2O_5]$$

$$\frac{d[O_2]}{dt} = k'' [N_2 O_5]$$

The relationship between k and k' and between k and k" are :-

- (1) k' = k : k'' = k
- (2) k' = 2k ; k'' = k
- (3) k' = 2k : k'' = k/2 (4) k' = 2k : k'' = 2k

AIPMT Pre. 2012

- 13. In a zero-order reaction for every 10° rise of temperature, the rate is doubled. If the temperature is increased from 10°C to 100°C, the rate of the reaction will become:
 - (1) 64 times
- (2) 128 times
- (3) 256 times
- (4) 512 times

- In a reaction $A + B \rightarrow Product$, rate is doubled when the concentration of B is doubled and rate increased by a factor of 8 when the concentrations of both the reactants (A and B) are doubled, rate law for the reaction can be written as:
 - (1) Rate = k[A][B]
- (2) Rate = $k[A]^2[B]$
- (3) Rate = $k[A][B]^2$
- (4) Rate = $k[A]^2[B]^2$

AIPMT Mains 2012

Activation energy (E₂) and rate constants (k₁ and 15. ka) of a chemical reaction at two different temperatures $(T_1 \text{ and } T_2)$ are related by :

(1)
$$ln \frac{k_2}{k_1} = -\frac{E_a}{R} \left(\frac{1}{T_2} + \frac{1}{T_1} \right)$$

(2)
$$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

(3)
$$\ln \frac{k_2}{k_1} = -\frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

(4)
$$\ln \frac{k_2}{k_1} = -\frac{E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$

NEET-UG 2013

- **16.** A reaction having equal energies of activation for forward and reverse reactions has :-
 - (1) $\Delta H = \Delta G = \Delta S = 0$
- $(2) \Delta S = 0$
- (3) $\Delta G = 0$
- (4) $\Delta H = 0$
- **17**. What is the activation energy of a reaction if its rate doubles when the temperature is raised from 20° C to 35° C? (R = 8.314 J mol⁻¹ K⁻¹)
 - (1) 15.1 kJ mol⁻¹
- (2) 342 kJ mol⁻¹
- (3) 269 kJ mol⁻¹
- (4) 34.7 kJ mol⁻¹

AIPMT 2015

- The activation energy of a reaction can be **18**. determined from the slope of which of the following graphs?

 - (1) $\frac{\ln k}{T} v / s.T$ (2) $\ln k v/s. \frac{1}{T}$
 - (3) $\frac{T}{\ln k} v / s. \frac{1}{T}$ (4) In k v/s. T
- 19. When initial concentration of a reactant is doubled in a reaction, its half-life period is not affected. The order of the reaction is :-
 - (1) First
 - (2) Second
 - (3) More than zero but less than first
 - (4) Zero

Re-AIPMT 2015

- **20.** The rate constant of the reaction $A \rightarrow B$ is 0.6×10^{-3} M sec⁻¹. If the concentration of A is 5 M, then concentration of B after 20 min is :-
 - (1) 0.36 M

(2) 0.72 M

(3) 1.08 M

(4) 3.60 M

NEET-I 2016

- 21. of a first-order reaction The rate $0.04 \text{ mol } L^{-1}s^{-1}$ at 10 s and $0.03 \text{ mol } L^{-1}s^{-1}$ at 20s after initiation of the reaction. The half-life period of the reaction is:
 - (1) 24.1 s

(2) 34.1 s

(3) 44.1 s

(4) 54.1 s

- The addition of a catalyst during a chemical reaction alters which of the following quantities?
 - (1) Entropy

(2) Internal energy

(3) Enthalpy

(4) Activation energy

NEET-II 2016

- The decomposition of phosphine (PH₃) on tungsten at low pressure is a first-order reaction. It is because the
 - (1) rate is independent of the surface coverage
 - (2) rate of decomposition is very slow
 - (3) rate is proportional to the surface coverage
 - (4) rate is inversely proportional to the surface coverage

NEET(UG) 2017

- Mechanism of a hypothetical reaction $X_2 + Y_2 \rightarrow 2XY$ is given below:
 - (i) $X_2 \rightleftharpoons X + X(fast)$
 - (ii) $X + Y_2 \rightarrow XY + Y$ (slow)
 - (iii) $X + Y \rightarrow XY$ (fast)

The overall order of the reaction will be:

(1) 2

(2) 0

(3) 1.5

(4) 1

- **25.** A first order reaction has a specific reaction rate of 10^{-2} s⁻¹. How much time will it take for 20 g of the reactant to reduce to 5 g?
 - (1) 138.6 s

(2) 346.5 s

(3) 693.0 s

(4) 238.6 s

NEET(UG) 2018

- 26. The correct difference between first- and second-order reaction is that
 - (1) the rate of a first-order reaction does not depend on reactant concentration; the rate of a second-order reaction does depend on reactant concentrations.
 - (2) the half-life of a first-order reaction does not depend on [A]0; the half-life of a secondorder reaction does depend on [A]₀

- (3) a first-order reaction can be catalyzed; a second-order reaction cannot be catalyzed.
- (4) the rate of a first-order reaction does depend on reactant concentrations; the rate of a second-order reaction does not depend on reactant concentrations
- **27**. When initial concentration of the reactant is doubled, the half-life period of a zero order reaction
 - (1) is halved

(2) is doubled

(3) is tripled

(4) remains unchanged

NEET(UG) 2019

28. If the rate constant for a first order reaction is k, then the time (t) required for the completion of 99% of the reaction is given by :-

(1) t = 0.693/k

(2) t = 6.909/k

(3) t = 4.606/k

(4) t = 2.303/k

29. For the chemical reaction

 $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$

the **correct** option is:

(1)
$$-\frac{1}{3}\frac{d[H_2]}{dt} = -\frac{1}{2}\frac{d[NH_3]}{dt}$$

(2)
$$-\frac{d[N_2]}{dt} = 2 \frac{d[NH_3]}{dt}$$
(2)
$$d[N_2] \quad 1 \quad d[NH_3]$$

(3)
$$-\frac{d[N_2]}{dt} = \frac{1}{2} \frac{d[NH_3]}{dt}$$

$$(4) \ 3\frac{d[H_2]}{dt} = 2\frac{d[NH_3]}{dt}$$

NEET(UG) 2019 (Odisha)

30. A first order reaction has a rate constant of 2.303×10^{-3} s⁻¹. The time required for 40g of this reactant to reduce to 10 g will be-[Given that $log_{10} 2=0.3010$]

(1) 230.3 s

 $(2)\ 301\ s$

(3) 2000 s

(4) 602 s

For a reaction, activation energy $E_a=0$ and the rate constant at 200K is 1.6×10⁶s⁻¹. The rate constant at 400K will be-

[Given : gas constant $R=8.314~J~K^{-1}~mol^{-1}$]

(1) $3.2 \times 10^4 \text{ s}^{-1}$

(2) $1.6 \times 10^6 \text{ s}^{-1}$

(3) $1.6 \times 10^3 \,\mathrm{s}^{-1}$

(4) $3.2 \times 10^6 \text{ s}^{-1}$

NEET (UG) 2020

32. The rate constant for a first order reaction is $4.606 \times 10^{-3} \text{ s}^{-1}$. The time required to reduce 2.0 g of the reactant to 0.2 g is:

(1) 1000 s

(2) 100 s

(3) 200 s

(4) 500 s

- **33.** An increase in the concentration of the reactants of a reaction leads to change in:
 - (1) collision frequency
- (2) activation energy
- (3) heat of reaction
- (4) threshold energy

NEET (UG) 2020 (COVID-19)

- **34**. The half-life for a zero order reaction having 0.02 M initial concentration of reactant is 100 s. The rate constant (in mol L⁻¹ s⁻¹) for the reaction
 - (1) 1.0×10^{-4}
- (3) 2.0×10^{-3}
- (2) 2.0×10^{-4} (4) 1.0×10^{-2}
- In collision theory of chemical reaction, ZAB
 - (1) the fraction of molecules with energies greater than E_a
 - (2) the collision frequency of reactants, A and B
 - (3) steric factor
 - (4) the fraction of molecules with energies equal to E_a

NEET (UG) 2021

36. For a reaction $A \rightarrow B$, enthalpy of reaction is – $4.2~{\rm kJ~mol^{-1}}$ and enthalpy of activation is $9.6~{\rm kJ~mol^{-1}}$. The correct potential energy profile for the reaction is shown in option.

The slope of Arrhenius Plot $\left(\ln k \text{ v/s } \frac{1}{T}\right)$ of

first order reaction is -5×10^3 K. The value of E_a of the reaction is. Choose the correct option for your answer.

[Given $R=8.314 \text{ JK}^{-1} \text{ mol}^{-1}$]

- $(1) 41.5 \text{ kJ mol}^{-1}$
- (2) 83.0 kJ mol⁻¹
- (3) 166 kJ mol^{-1}
- $(4) 83 \text{ kJ mol}^{-1}$

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	2	3	2	4	3	3	1	4	4	2	4	3	4	2	2,4
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	4	4	2	1	2	1	4	3	3	1	2	2	3	3	4
Que.	31	32	33	34	35	36	37						·		
Ans.	2	4	1	1	2	2	1								