The vectors
$$\vec{A}$$
 and \vec{B} are such that $|\vec{A} + \vec{B}| = |\vec{A} - \vec{B}|$. The angle between vectors \vec{A}

 $|\vec{A} + \vec{B}| = |\vec{A} - \vec{B}|$. The angle between vectors \vec{A}

AIPMT 2006

$$|\dot{A}+B|=|\dot{A}-B|$$
 . The angle between vectors \vec{A} and \vec{B} is -

and
$$\vec{B}$$
 is - (2) 60° (3) 75° (4) 45°

If $|\vec{A} \times \vec{B}| = \sqrt{3} |\vec{A} \cdot \vec{B}|$, then the value of $|\vec{A} + \vec{B}|$

is:
$$\left(\begin{array}{cc} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

1.

3.

Que.

1

(1)
$$\left(A^2 + B^2 + \frac{AB}{\sqrt{3}}\right)^{1/2}$$
 (2) $A + B$
(3) $(A^2 + B^2 + \sqrt{3} AB)^{1/2}$ (4) $(A^2 + B^2 + AB)^{1/2}$

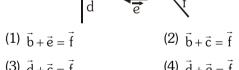
AIPMT 2010
Six vectors,
$$\vec{a}$$
 through \vec{f} have the magnitudes and

2

3

4

4


4

5

2

6

3

(3)
$$\vec{d} + \vec{c} = \vec{f}$$
 (4) $\vec{d} + \vec{e} = \vec{f}$

are functions of time, then the value of t at

$$\vec{A} = \cos \omega t \hat{i} + \sin \omega t \hat{j}$$
 and $\vec{B} = \cos \frac{\omega t}{2} \hat{i} + \sin \frac{\omega t}{2} \hat{j}$

(1) t = 0

(3) $t = \frac{\pi}{2\omega}$

 $(1) 0^{\circ}$

 $(3) 45^{\circ}$

(1) increase (2) decrease

(3) remain constant

5.

6.

Re-AIPMT 2015

which they are orthogonal to each other is:

NEET-I 2016

NEET(UG) 2019

A particle moving with velocity \overrightarrow{V} is acted by three

forces shown by the vector triangle PQR. The

(4) change according to the smallest force QR

angle between these vectors is :-

velocity of the particle will:

If the magnitude of sum of two vectors is equal to

the magnitude of difference of the two vectors, the

 $(2) 90^{\circ}$

 $(4) 180^{\circ}$

(2) $t = \frac{\pi}{4\omega}$

(4) $t = \frac{\pi}{6}$

If vectors