AIPMT 2008

- 1. The ground state energy of hydrogen atom is -13.6eV. When its electron is in the first excited state, its excitation energy is:-
 - (1) 10.2 eV
- (3) 3.4 eV
- (4) 6.8 eV

AIPMT 2009

- 2. The ionization energy of the electron in the hydrogen atom in its ground state is 13.6 eV. The atoms are excited to higher energy levels to emit radiations of 6 wavelengths. Maximum wavelength of emitted radiation corresponds to the transition between :-
 - (1) n = 4 to n = 3 states
 - (2) n = 3 to n = 2 states
 - (3) n = 3 to n = 1 states
 - (4) n = 2 to n = 1 states
- In a Rutherford scattering experiment when a 3. projectile of charge z₁ and mass M₁ approaches a target nucleus of charge z_2 and mass M_2 , the distance
 - of closest approach is r_o. The energy of the projectile is :-
 - (1) directly proportional to mass M₁
 - (2) directly proportional to M_1M_2
 - (3) directly proportional to $z_1 z_2$
 - (4) inversely proportional to z_1

AIPMT 2010

- 4. The energy of a hydrogen atom in the ground state is -13.6 eV. The energy of a He⁺ ion in the first excited state will be :-
 - (1) -6.8 eV
- (2) -13.6eV
- (3) -27.2 eV
- (4) -54.4 eV

AIPMT (Pre) 2011

- **5**. The wavelength of the first line of Lyman series for hydrogen atom is equal to that of the second line of Balmer series for a hydrogen like ion. The atomic number Z of hydrogen like ion is :-
 - (1) 3
- (2) 4
- (3) 1
- (4) 2

AIPMT (Mains) 2011

- Out of the following which one is not a possible energy for a photon to be emitted by hydrogen atom according to Bohr's atomic model?
 - (1) 0.65 eV
- (2) 1.9 eV
- (3) 11.1 eV
- (4) 13.6 eV

AIPMT (Mains) 2012

- 7. The transition from the state n = 3 to n = 1 in a hydrogen like atom results in ultraviolet radiation. Infrared radiation will be obtained in the transition from:
 - $(1) \ 4 \to 2$
- (2) $4 \to 3$
- $(3) 2 \to 1$
- $(4) \ 3 \to 2$

NEET-UG 2013

- Ratio of longest wavelengths corresponding to 8. Lyman and Balmer series in hydrogen spectrum is:-
 - (1) $\frac{9}{31}$ (2) $\frac{5}{27}$ (3) $\frac{3}{23}$ (4) $\frac{7}{29}$

AIPMT 2014

- Hydrogen atom is ground state is excited by a monochromatic radiation of $\lambda = 975 \,\text{Å}$. Number of spectral lines in the resulting spectrum emitted will be :-
 - (1) 3
- $(2)\ 2$
- (3)6
- $(4)\ 10$

AIPMT 2015

- Consider 3rd orbit of He⁺ (Helium), using 10. non-relativistic approach, the speed of electron in this orbit will be [given $K = 9 \times 10^9$ constant, Z = 2 and h (Planck's Constant) = 6.6×10^{-34} J s]
 - (1) 1.46×10^6 m/s
- (2) 0.73×10^6 m/s
- (3) 3.0×10^8 m/s
- $(4) 2.92 \times 10^6 \text{ m/s}$

RE-AIPMT 2015

- In the spectrum of hydrogen, the ratio of the longest 11. wavelength in the Lyman series to the longest wavelength in the Balmer series is:
 - (1) $\frac{5}{27}$ (2) $\frac{4}{9}$ (3) $\frac{9}{4}$ (4) $\frac{27}{5}$

NEET-I 2016

- **12**. When an α -particle of mass 'm' moving with velocity 'v' bombards on a heavy nucleus of charge 'Ze', its distance of closest approach from the nucleus depends on m as:

 - (1) $\frac{1}{m}$ (2) $\frac{1}{\sqrt{m}}$ (3) $\frac{1}{m^2}$
- (4) m
- Given the value of Rydberg constant is 10⁷m⁻¹, the **13**. wave number of the last line of the Balmer series in hydrogen spectrum will be :-
 - (1) $0.025 \times 10^4 \text{ m}^{-1}$
- (2) $0.5 \times 10^7 \text{ m}^{-1}$
- (3) $0.25 \times 10^7 \text{ m}^{-1}$
- (4) $2.5 \times 10^7 \,\mathrm{m}^{-1}$

NEET-II 2016

- 14. Electrons of mass m with de-Broglie wavelength λ fall on the target in an X-ray tube. The cutoff wavelength (λ_0) of the emitted X-ray is :-
 - (1) $\lambda_0 = \frac{2m^2c^2\lambda^3}{h^2}$ (2) $\lambda_0 = \lambda$
 - (3) $\lambda_0 = \frac{2\text{mc}\lambda^2}{h}$ (4) $\lambda_0 = \frac{2h}{mc}$
- If an electron in a hydrogen atom jumps from the 3rd orbit to the 2nd orbit, it emits a photon of wavelength λ . When it jumps from the 4th orbit to the 3rd orbit, the corresponding wavelength of the photon will be :-
 - (1) $\frac{20}{7}\lambda$ (2) $\frac{20}{13}\lambda$ (3) $\frac{16}{25}\lambda$ (4) $\frac{9}{16}\lambda$

NEET(UG) 2017

- The ratio of wavelengths of the last line of Balmer **16**. series and the last line of Lyman series is :-
 - (1) 1
- (2) 4
- (3) 0.5
- (4) 2

NEET(UG) 2018

- **17**. The ratio of kinetic energy to the total energy of an electron in a Bohr orbit of the hydrogen atom, is :-
 - (1) 1 : 1
- (2) 1 : -1
- (3) 2 : -1
- (4) 1 : -2

NEET(UG) 2019

- **18**. The total energy of an electron in an atom in an orbit is -3.4 eV. Its kinetic and potential energies are, respectively:
 - (1) -3.4 eV, -3.4 eV
 - (2) -3.4 eV, -6.8 eV
 - (3) 3.4 eV. -6.8 eV
 - (4) 3.4 eV, 3.4 eV

NEET(UG) 2019 (Odisha)

- **19**. The radius of the first permitted Bohr orbit for the electron, in a hydrogen atom equals 0.51 Å and its ground state energy equals –13.6 eV. If the electron in the hyrogen atom is replaced by muon (μ^{-}) [charge same as electron and mass 207 m_e], the first Bohr radius and ground state energy will be:
 - (1) 0.53×10^{-13} m. -3.6 eV
 - (2) 25.6×10^{-13} m, -2.8 eV
 - (3) 2.56×10^{-13} m, -2.8 keV
 - (4) 2.56×10^{-13} m. -13.6 eV

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	1	1	3	2	4	3	2	2	3	1	1	1	3	3	1
Que.	16	17	18	19											
Ans.	2	2	3	3											