AIPMT 2006

- 1. A parallel plate air capacitor is charged to a potential difference of V volts. After disconnecting the charging battery the distance between the plates of the capacitor is increased using an insulating handle. As a result the potential difference between the plates :-
 - (1) decreases
- (2) does not change
- (3) becomes zero
- (4) increases

AIPMT 2007

2. Two condensers, one of capacity C and the other of capacity $\frac{C}{2}$, are connected to a V-volt battery, as shown.

The work done by battery in charging fully both the condensers is :-

- (1) $\frac{1}{2}$ CV²
- (3) $\frac{1}{4}$ CV²
- (4) $\frac{3}{2}$ CV²

AIPMT 2008

- 3. The energy required to charge a parallel plate condenser of plate separation d and plate area of cross-section A such that the uniform electric field between the plates is E, is :-
 - $(1) \in_0 E^2 Ad$
- (2) $\frac{1}{2} \in_0 E^2 Ad$
- (3) $\frac{1}{2} \in_0 E^2 / A.d$ (4) $\in_0 E^2 / Ad$

AIPMT 2009

4. Three capacitors each of capacitance C and of breakdown voltage V are joined in series. The capacitance and breakdown voltage of the combination will be :-

- (1) 3C, 3V
- (2) $\frac{C}{3}$, $\frac{V}{3}$
- (3) 3C, $\frac{V}{3}$
- (4) $\frac{C}{3}$, 3V

AIPMT (Pre) 2010

- 5. A series combination of n₁ capacitors, each of value C_1 , is charged by a source of potential difference 4V. When another parallel combination of n₂ capacitors, each of value C2, is charged by a source of potential difference V, it has the same (total) energy stored in it, as the first combination has. The value of C_2 , in terms of C_1 , is then :-
 - (1) $\frac{16C_1}{n_1n_2}$
- (2) $\frac{2C_1}{n_1n_2}$
- (3) $16 \frac{n_2}{n_1} C_1$
- (4) $2\frac{n_2}{n_1}C_1$

AIPMT (Mains) 2010

- 6. Two parallel metal plates having charges + Q and - Q face each other with a certain separation between them. If the plates are now dipped in kerosene oil tank, the electric field between the plates will:
 - (1) increase
- (2) decrease
- (3) remain same
- (4) become zero

AIPMT(Pre) 2011 & AIPMT (Mains) 2012

- **7**. A parallel plate condenser has a uniform electric field E (V/m) in the space between the plates. If the distance between the plates is d (m) and area of each plate is A (m²) the energy (joules) stored in the condenser is :-
 - $(1) E^2 Ad \in$
 - (2) $\frac{1}{2} \in_0 E^2$
 - $(3) \in EAd$
 - (4) $\frac{1}{2} \in_0 E^2 Ad$

AIPMT 2014

8. Two thin dielectric slabs of dielectric constants K_1 and K_2 ($K_1 < K_2$) are inserted between the plates of a parallel plate capacitor, as shown in the figure. The variation of electric field 'E' between the plates with distance 'd' as measured from plate P is correctly shown by :-

AIPMT 2015

- **9.** A parallel plate air capacitor of capacitance C is connected to a cell of emf V and then disconnected from it. A dielectric slab of dielectric constant K, which can just fill the air gap of the capacitor, is now inserted in it. Which of the following is **incorrect**?
 - (1) The energy stored in the capacitor decreases K times.
 - (2) The change in energy stored is $\frac{1}{2}CV^2\left(\frac{1}{K}-1\right)$.
 - (3) The charge on the capacitor is not conserved.
 - (4) The potential difference between the plates decreases K times.

Re-AIPMT 2015

10. A parallel plate air capacitor has capacity 'C' and separation between the plates is 'd'. A potential

difference 'V' is applied between the plates. Force of attraction between the plates of the parallel plate air capacitor is :-

(1)
$$\frac{C^2V^2}{2d^2}$$

(2)
$$\frac{C^2V^2}{2d}$$

(3)
$$\frac{\text{CV}^2}{2d}$$

(4)
$$\frac{CV^2}{d}$$

11. V 2μF 8μF

A capacitor of $2\mu F$ is charged as shown in the diagram. When the switch S is turned to position 2, the percentage of its stored energy dissipated is:

NEET-II 2016

12. A parallel-plate capacitor of area A, plate separation d and capacitance C is filled with four dielectric materials having dielectric constants k₁, k₂, k₃ and k₄ as shown in the figure below. If a single dielectric material is to be used to have the same capacitance C in this capacitor, then its dielectric constant k is given by:-

(1)
$$\frac{2}{k} = \frac{3}{k_1 + k_2 + k_3} + \frac{1}{k_4}$$

(2)
$$\frac{1}{k} = \frac{1}{k_1} + \frac{1}{k_2} + \frac{1}{k_3} + \frac{3}{2k_4}$$

(3)
$$k = k_1 + k_2 + k_3 + 3k_4$$

(4)
$$k = \frac{2}{3} (k_1 + k_2 + k_3) + 2k_4$$

NEET(UG)-2017

- **13.** A capacitor is charged by a battery. The battery is removed and another identical uncharged capacitor is connected in parallel. The total electrostatic energy of resulting system:-
 - (1) Decreases by a factor of 2
 - (2) Remains the same
 - (3) Increases by a factor of 2
 - (4) Increases by a factor of 4

NEET(UG) 2018

- **14.** The electrostatic force between the metal plates of an isolated parallel plate capacitor C having a charge Q and area A, is:-
 - (1) independent of the distance between the plates.
 - (2) linearly proportional to the distance between the plates
 - (3) proportional to the square root of the distance between the plates.
 - (4) inversely proportional to the distance between the plates.

NEET(UG) 2019 (Odisha)

15. Two identical capacitors C₁ and C₂ of equal capacitance are connected as shown in the circuit. Terminals a and b of the key k are connected to charge capacitor C₁ using battery of emf V volt. Now disconnecting a and b the terminals b and c are connected. Due to this, what will be the percentage loss of energy?

16. Two metal spheres, one of radius R and the other of radius 2R respectively have the same surface charge density σ . They are brought in contact and separated. What will be the new surface charge densities on them?

(1)
$$\sigma_1 = \frac{5}{6}\sigma$$
, $\sigma_2 = \frac{5}{2}\sigma$

(2)
$$\sigma_1 = \frac{5}{2}\sigma, \quad \sigma_2 = \frac{5}{6}\sigma$$

(3)
$$\sigma_1 = \frac{5}{2}\sigma, \ \sigma_2 = \frac{5}{3}\sigma$$

(4)
$$\sigma_1 = \frac{5}{3}\sigma$$
, $\sigma_2 = \frac{5}{6}\sigma$

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	4	4	1	4	1	2	4	3	3	3	4	1	1	1	3
Que.	16														
Ans.	4														