AIPMT 2009

- 1. 10 g of hydrogen and 64 g of oxygen were filled in a steel vessel and exploded. Amount of water produced in this reaction will be:-
 - (1) 1 mol
- (2) 2 mol
- (3) 3 mol
- (4) 4 mol

AIPMT 2010

- **2.** The number of atoms in 0.1 mol of a triatomic gas is :- $(N_A = 6.02 \times 10^{23} \text{ mol}^{-1})$
 - (1) 1.800×10^{22}
- (2) 6.026×10^{22}
- (3) 1.806×10^{23}
- (4) 3.600×10^{23}

AIPMT Mains 2011

- **3.** Which has the maximum number of molecules among the following?
 - (1) 64 g SO_2
- (2) 44 g CO₂
- (3) $48 g O_3$
- $(4) 8 g H_2$

NEET UG 2013

- **4.** An excess of $AgNO_3$ is added to 100 mL of a 0.01 M solution of dichlorotetraaquachromium(III) chloride. The number of moles of AgCl precipitated would be:-
 - (1) 0.01
- (2) 0.001
- (3) 0.002
- (4) 0.003

AIPMT 2014

- **5.** Equal masses of H_2 , O_2 and methane have been taken in a container of volume V at temeprature 27°C at identical conditions. The ratio of the volumes of gases H_2 : O_2 : CH_4 would be:
 - (1) 8:16:1
- (2) 16 : 8 : 1
- (3) 16:1:2
- (4) 8 : 1 : 2
- **6.** When 22.4 L of $H_2(g)$ is mixed with 11.2 L of $Cl_2(g)$ at S.T.P., the moles of HCl(g) formed is equal to:-
 - (1) 1 mol of HCl (g)
- (2) 2 mol of HCl (g)
- (3) 0.5 mol of HCl (g)
- (4) 1.5 mol of HCl (g)

- 7. 1.0 g of magnesium is burnt with 0.56 g O_2 in a closed vessel. Which reactant is left in excess and by how much?
 - (At. wt. Mg = 24; O = 16)
 - (1) Mg, 0.16 g
- $(2) O_2, 0.16 g$
- (3) Mg, 0.44 g
- $(4) O_2, 0.28 g$

AIPMT 2015

- **8.** A mixture of gases contains H_2 and O_2 gases in the ratio of 1 : 4 (w/w). What is the molar ratio of the two gases in the mixture?
 - (1) 4:1
- (2) 16:1
 - : 1 (3) 2 : 1
- $(4)\ 1:4$

Re-AIPMT 2015

- **9.** The number of water molecules is maximum in :-
 - (1) 18 g of water
 - (2) 18 mol of water
 - (3) 18 molecules of water
 - (4) 1.8 g of water
- **10.** If avogadro number $N_{_A}$, is changed from $6.022\times 10^{^{23}}~\text{mol}^{^{-1}}$ to $6.022\times 10^{^{20}}~\text{mol}^{^{-1}},$ this would change :
 - (1) the ratio of chemical species to each other in a balanced equation
 - (2) the ratio of elements to each other in a compound
 - (3) the definition of mass in units of grams
 - (4) the mass of one mole of carbon
- 11. 20.0 g of a magnesium carbonate sample decomposes on heating to give carbon dioxide and 8.0 g magnesium oxide. What will be the percentage purity of magnesium carbonate in the sample?

(Atomic weight of Mg = 24)

- (1)60
- (2)84
- (3)75
- (4)96

NEET-II 2016

- **12.** Suppose the elements X and Y combine to form two compounds XY_2 and X_3Y_2 . When 0.1 mole of XY_2 weighs 10 g and 0.05 mole of X_3Y_2 weighs 9 g, the atomic weights of X and Y are
 - (1) 20, 30
- (2) 30, 20
- (3) 40, 30
- (4)60,40

NEET(UG) 2018

13. A mixture of 2.3~g formic acid and 4.5~g oxalic acid is treated with conc. H_2SO_4 . The evolved gaseous mixture is passed through KOH pellets. Weight (in g) of the remaining product at STP will be

 $HCOOH(\ell) \xrightarrow{H_2SO_4} H_2O(\ell) + CO(g)$

 $H_2C_2O_4(\ell) \xrightarrow{H_2SO_4} H_2O(\ell) + CO(g) + CO_2(g)$

(1) 1.4

(2) 3.0

(3) 2.8

(4) 4.4

- **14.** In which case is the number of molecules of water maximum?
 - (1) 18 mL of water
 - (2) 0.18 g of water
 - (3) 0.00224 L of water vapours at 1 atm and $273\ \mathrm{K}$
 - (4) 10^{-3} mol of water

NEET (UG) 2019

15. The number of moles of hydrogen molecules required to produce 20 moles of ammonia through Haber's process is :-

 $(1)\ 10$

(2) 20

- $(3)\ 30$
- (4) 40

NEET (UG) (Odisha) 2019

- **16.** The volume occupied by 1.8 g of water vapour at 374 °C and 1 bar pressure will be :- [Use R = 0.083 bar $L K^{-1}mol^{-1}$]
 - (1) 96.66 L

(2) 55.87 L

(3) 3.10 L

(4) 5.37 L

NEET (UG) 2020

- **17.** Which one of the following has maximum number of atoms?
 - (1) 1g of Li(s) [Atomic mass of Li = 7]
 - (2) 1g of Ag(s) [Atomic mass of Ag = 108]
 - (3) 1g of Mg(s) [Atomic mass of Mg = 24]
 - (4) 1g of $O_2(g)$ [Atomic mass of O = 16]

NEET (UG) 2020 (COVID-19)

18. One mole of carbon atom weighs 12 g, the number of atoms in it is equal to,

(Mass of carbon – 12 is 1.9926×10^{-23} g)

(1) 1.2×10^{23}

(2) 6.022×10^{22}

(3) 12×10^{22}

 $(4) 6.022 \times 10^{23}$

NEET (UG) 2021

19. An organic comopound contains 78% (by wt.) carbon and remaining percentage of hydrogen. The right option for the empirical formula of this compound is [Atomic wt. of C is 12, H is 1]

(1) CH

(2) CH₂

(3) CH₃

(4) CH₄

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	4	3	4	2	3	1	1	1	2	4	2	3	3	1	3
Que.	16	17	18	19											
Ans.	4	1	4	3											