AIPMT 2006

1. 300 J of work is done in sliding a 2 kg block up an inclined plane of height 10m. The work done against friction is :-

 $(take q = 10 m/s^2)$

(1) zero

(2) 100 J (3) 200 J

- (4) 300 J
- A body of mass 3 kg is under a constant force which 2. causes a displacement s in metres in it, given by the relation $s = \frac{1}{3}t^2$, where t is in seconds. Work done by the force in 2 seconds is :-

(1) $\frac{5}{19}$ J

(2) $\frac{3}{8}$ J

(3) $\frac{8}{3}$ J

(4) $\frac{19}{5}$ J

AIPMT 2009

3. A block of mass M is attached to the lower end of a vertical spring. The spring is hung from a ceiling and has force constant value k. The mass is released from rest with the spring initially unstretched. the maximum extension produced in the length of the spring will be :-

(1) Mg/2k

(2) Mg/k

(3) 2 Mg/k

- (4) 4 Mg/k
- An engine pumps water continuously through a 4. hose. Water leaves the hose with a velocity v and m is the mass per unit length of the water jet. What is the rate at which kinetic energy is imparted to water :-

(1) $\frac{1}{2}$ m²v²

(2) $\frac{1}{2}$ mv³

(3) mv³

- (4) $\frac{1}{2}$ mv²
- 5. A body of mass 1 kg is thrown upwards with a velocity 20 m/s. It momentarily comes to rest after attaining a height of 18 m. How much energy is lost due to air friction? $(g = 10 \text{ m/s}^2)$:

(1) 10 J

(2) 20 J

(3) 30 J

(4) 40 J

AIPMT 2010

An engine pumps water through a hose pipe. Water 6. passes through the pipe and leaves it with a velocity of 2 m/s. The mass per unit length of water in the pipe is 100 kg/m. What is the power of the engine?

(1) 800 W

(2) 400 W

(3) 200 W

(4) 100 W

AIPMT 2011

- The potential energy of a system increases if work is done :-
 - (1) Upon the system by a nonconservative force
 - (2) By the system against a conservative force
 - (3) By the system against a nonconservative force
 - (4) Upon the system by a conservative force
- A body projected vertically from the earth reaches 8. a height equal to earth's radius before returning to the earth. The power exerted by the gravitational force is greatest :-
 - (1) At the highest position of the body
 - (2) At the instant just before the body hits the earth
 - (3) It remains constant all through
 - (4) At the instant just after the body is projected
- Force F on a particle moving in a straight line 9. varies with distance d as shown in the figure. The work done on the particle during its displacement of 12 m is:

- (1) 18 J
- (2) 21 J
- (3) 26 J
- (4) 13 J

AIPMT (Pre) 2012

10. The potential energy of a particle in a force field

is:
$$U = \frac{A}{r^2} - \frac{B}{r}$$

where A and B are positive constants and r is the distance of particle from the centre of the field. For stable equilibrium, the distance of the particle is:

- (1) A/B
- (2) B/A
- (3) B/2A
- (4) 2A/B

AIPMT (Mains) 2012

- **11.** A car of mass m starts from rest and accelerates so that the instantaneous power delivered to the car has a constant magnitude P_0 . The instantaneous velocity of this car is proportional to :-
 - (1) $t^{-1/2}$
- (2) t/\sqrt{m}
- (3) t^2P_0
- (4) $t^{1/2}$

NEET (UG) 2013

- **12.** A uniform force of $(3\hat{i} + \hat{j})$ newton acts on a particle of mass 2kg. Hence the particle is displaced from position $(2\hat{i} + \hat{k})$ meter to position $(4\hat{i} + 3\hat{j} \hat{k})$ meter. The work done by the force on the particle is :-
 - (1) 15 J
- (2) 9 J
- (3) 6 J
- (4) 13 J

AIPMT 2015

- 13. A block of mass $10 \, \text{kg}$, moving in x direction with a constant speed of $10 \, \text{m/s}$, is subjected to a retarding force $F = 0.1 x \, \text{J/m}$ during its travel from $x = 20 \, \text{m}$ to $30 \, \text{m}$. Its final KE will be :
 - (1) 450 J
 - (2) 275 J
 - (3) 250 J
 - (4) 475 J

- **14.** A particle of mass m is driven by a machine that delivers a constant power k watts. If the particle starts from rest the force on the particle at time t is :-
 - (1) $\sqrt{mk} t^{-\frac{1}{2}}$
- (2) $\sqrt{2mk} t^{-\frac{1}{2}}$
- (3) $\frac{1}{2}\sqrt{mk} t^{-\frac{1}{2}}$
- (4) $\sqrt{\frac{mk}{2}} t^{-1/2}$

NEET-I 2016

- **15.** A body of mass 1 kg begins to move under the action of a time dependent force $\vec{F} = (2t\,\hat{i} + 3t^2\hat{j})N$, where \hat{i} and \hat{j} are unit vectors along x and y axis. What power will be developed by the force at the time t?
 - (1) $(2t^2 + 3t^3)W$
- $(2) (2t^2 + 4t^4)W$
- $(3) (2t^3 + 3t^4)W$
- $(4) (2t^3 + 3t^5)W$

NEET-II 2016

- **16.** A particle moves from a point $(-2\hat{i}+5\hat{j})$ to $(4\hat{j}+3\hat{k})$ when a force of $(4\hat{i}+3\hat{j})$ N is applied. How much work has been done by the force?
 - (1) 5 J
- (2) 2 J
- (3) 8 J
- (4) 11 J

NEET(UG) 2017

- 17. Consider a drop of rain water having mass 1 g falling from a height of 1 km. It hits the ground with a speed of 50 m/s. Take 'g' constant with a value 10 m/s². The work done by the (i) gravitational force and the (ii) resistive force of air is:-
 - (1) (i) 1.25 J (ii) -8.25 J
 - (2) (i) 100 J (ii) 8.75 J
 - (3) (i) 10 J (ii) 8.75 J
 - (4) (i) -10 J (ii) -8.25 J

NEET(UG) 2019

- **18.** A force F = 20 + 10y acts on a particle in y-direction where F is in newton and y in meter. Work done by this force to move the particle from y = 0 to y = 1 m is :
 - (1) 30 J
- (2) 5 J
- (3) 25 J
- (4) 20 J

NEET(UG) 2019 (Odisha)

19. An object of mass 500g, initially at rest acted upon by a variable force, whose X component varies with x in the manner shown. The velocities of the object at point X=8 m and X=12 m, would be the respective values of (nearly)

- (1) 18 m/s and 24.4 m/s
- (2) 23 m/s and 24.4 m/s
- (3) 23 m/s and 20.6 m/s
- (4) 18 m/s and 20.6 m/s

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	2	3	3	2	2	1	2	2	4	4	4	2	4	4	4
Que.	16	17	18	19											
Ans.	1	3	3	3											