AIPMT 2009

- **1.** From the following bond energies :-
 - H H bond energy: 431.37 kJ mol⁻¹
 - C = C bond energy: 606.10 kJ mol⁻¹
 - C C bond energy: 336.49 kJ mol⁻¹
 - C H bond energy: 410.50 kJ mol⁻¹
 - Enthalpy for the reaction,

- will be :-
- (1) 553.0 kJ mol⁻¹
- (2) 1523.6 kJ mol⁻¹
- $(3) -243.6 \text{ kJ mol}^{-1}$
- (4) -120.0 kJ mol⁻¹
- **2.** The values of ΔH and ΔS for the reaction,

 $C_{\mbox{\tiny (graphite)}}+CO_{\mbox{\tiny 2(g)}}\to 2CO_{\mbox{\tiny (g)}}$ are $170~\mbox{kJ}$ and $170~\mbox{JK}^{-1},$ respectively. This reaction will be spontaneous at :-

- (1) 510 K
- (2) 710 K
- (3) 910 K
- (4) 1110 K

AIPMT 2010

- 3. For vaporization of water at 1 atmospheric pressure, the values of ΔH and ΔS are 40.63 kJ mol⁻¹ and 108.8 JK⁻¹mol⁻¹, respectively. The temperature when Gibbs energy change (ΔG) for this transformation will be zero, is :-
 - (1) 393.4 K
- (2) 373.4 K
- (3) 293.4 K
- (4) 273.4 K
- 4. Three moles of an ideal gas expanded spontaneously into vacuum. The work done will be:-
 - (1) 3 Joule
- (2) 9 Joule
- (3) Zero
- (4) Infinite
- **5.** The following two reactions are known:

$$Fe_{g}O_{g}(s) + 3CO(g) \rightarrow 2Fe(s) + 3CO_{g}(g)$$
;

$$\Delta H = -26.8 \text{ kJ}$$

$$FeO(s) + CO(g) \rightarrow Fe(s) + CO_{o}(g)$$
;

$$\Delta H = -16.5 \text{ kJ}$$

Correct target equation is

$$Fe_2O_3(s) + CO(g) \rightarrow 2FeO(s) + CO_2(g), \Delta H = ?$$

- (1) 43.3 kJ
- (2) -10.3 kJ
- (3) + 6.2 kJ
- (4) + 10.3 kJ

6. Standard entropies of X₂, Y₂ and XY₃ are 60, 40 and 50 JK⁻¹ mol⁻¹ respectively. For the reaction

$$\frac{1}{2}X_2 + \frac{3}{2}Y_2 \Longrightarrow XY_3$$
, $\Delta H = -30$ kJ to be at

equilibrium, the temperature should be :-

- (1) 500 K
- (2) 750 K
- (3) 1000 K
- (4) 1250 K

AIPMT Pre. 2011

- 7. If the enthalpy change for the transition of liquid water to steam is 30 kJ mol⁻¹ at 27°C, the entropy changes for the process would be:
 - (1) 10 J mol⁻¹ K⁻¹
- (2) 1.0 J mol⁻¹ K⁻¹
- (3) $0.1 \text{ J mol}^{-1} \text{ K}^{-1}$
- (4) 100 J mol⁻¹ K⁻¹
- **8.** Enthalpy change for the reaction,

$$4H_{(q)} \rightarrow 2H_{2(q)}$$
 is -869.6 kJ

The dissociation energy of H-H bond is:

- (1) -434.8 kJ
- (2) 869.6 kJ
- (3) +434.8 kJ
- (4) + 217.4 kJ
- **9.** Which of the following correct option for free expansion of an ideal gas under adiabatic condition?
 - (1) q = 0, $\Delta T \neq 0$, w = 0
 - (2) $q \neq 0$, $\Delta T = 0$, w = 0
 - (3) q = 0, $\Delta T = 0$, w = 0
 - (4) $q = 0, \Delta T < 0, w \neq 0$

AIPMT Msins 2011

10. Consider the following processes :-

 $\Delta H(kJ \text{ mol}^{-1})$

$$\frac{1}{2} A \rightarrow B$$

+150

$$3B \rightarrow 2C + D$$

-125

$$E + A \rightarrow 2D$$

For B + D
$$\rightarrow$$
 E + 2C,

+350

(2) 525 kJ mol⁻¹

 ΔH will be :

(4) -325 kJ mol⁻¹

AIPMT Pre. 2012

- **11.** In which of the following reactions, standard reaction entropy change (ΔS°) is positive and standard Gibb's energy change (ΔG°) decreases sharply with increasing temperature?
 - (1) Mg(s) + $\frac{1}{2}$ O₂(g) \rightarrow MgO(s)
 - (2) $\frac{1}{2}$ C (graphite) + $\frac{1}{2}$ $O_2(g) \rightarrow \frac{1}{2}$ $CO_2(g)$
 - (3) C (graphite) + $\frac{1}{2}$ O₂ (g) \rightarrow CO (g)
 - (4) $CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$
- **12.** Standard enthalpy of vapourisation $\Delta_{\text{vap}}H^{\Theta}$ for water at 100°C is 40.66 kJmol^{-1} . The internal energy of vaporisation of water at 100°C (in kJmol $^{-1}$) is
 - (1) + 43.76 (2) + 40.66 (3) + 37.56 (4) 43.76
- **13.** The enthalpy of fusion of water is 1.435 kCal mol⁻¹.

The molar entropy change for the melting of ice at 0°C is:

- (1) 5.260 Cal mol⁻¹ K⁻¹
- (2) 0.526 Cal mol⁻¹ K⁻¹
- (3) 10.52 Cal mol⁻¹ K⁻¹
- (4) $21.04 \text{ Cal mol}^{-1} \text{ K}^{-1}$

AIPMT 2014

14. For the reaction : $X_2O_4(\ell) \longrightarrow 2XO_2(g)$

 $\Delta U = 2.1 \text{ kCal}$, $\Delta S = 20 \text{ cal } \text{K}^{-1} \text{ at } 300 \text{ K}$ Hence ΔG is :-

- (1) 2.7 kCal
- (2) 2.7 kCal
- (3) 9.3 kCal
- (4) 9.3 kCal

AIPMT 2015

- **15.** Which of the following statements is **correct** for a reversible process in a state of equilibrium?
 - (1) $\Delta G = 2.30 \text{ RT log K}$
 - (2) $\Delta G^{\circ} = -2.30 \text{ RT log K}$
 - (3) $\Delta G^{\circ} = 2.30 \text{ RT log K}$
 - (4) $\Delta G = -2.30 \text{ RT log K}$

Re-AIPMT 2015

- **16.** The heat of combustion of carbon to CO₂ is -393.5 kJ mol⁻¹. The heat exchange in the formation of 35.2 g of CO₂ from carbon and oxygen gas is:
 - (1) -630 kJ
- (2) -3.15 kJ
- (3) -315 kJ
- (4) + 315 kJ

NEET-I 2016

- **17.** The correct thermodynamic conditions for the spontaneous reaction at all temperatures is
 - (1) $\Delta H > 0$ and $\Delta S > 0$ (2) $\Delta H > 0$ and $\Delta S < 0$
 - (3) $\Delta H < 0$ and $\Delta S > 0$ (4) $\Delta H < 0$ and $\Delta S < 0$

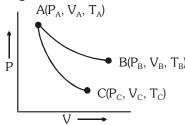
NEET-II 2016

- **18.** For a sample of perfect gas when its pressure is changed isothermally from p_i to p_f , the entropy change is given by
 - (1) $\Delta S = nRT \ln \left(\frac{p_f}{p_i}\right)$ (2) $\Delta S = RT \ln \left(\frac{p_i}{p_f}\right)$
 - (3) $\Delta S = nR \ln \left(\frac{p_f}{p_i} \right)$ (4) $\Delta S = nR \ln \left(\frac{p_i}{p_f} \right)$

NEET(UG) 2017

- **19.** For a given reaction, $\Delta H = 35.5 \text{ kJ mol}^{-1}$ and $\Delta S = 83.6 \text{ JK}^{-1}\text{mol}^{-1}$. The reaction is spontaneous at : (Assume that ΔH and ΔS do not vary with temperature)
 - (1) T > 425 K
- (2) All temperatures
- (3) T > 298 K
- (4) T < 425 K
- **20.** A gas is allowed to expand in a well insulated container against a constant external pressure of 2.5 atm from an initial volume of 2.50 L to a final volume of 4.50 L. The change in internal energy ΔU of the gas in joules will be:-
 - (1) -500 J
- (2) -505 J
- (3) + 505 J
- (4) 1136.25 J

NEET (UG) 2018


- **21.** The bond dissociation energies of X_2 , Y_2 and XY are in the ratio of 1:0.5:1. ΔH for the formation of XY is $-200~kJ~mol^{-1}$. The bond dissociation energy of X_2 will be
 - (1) 200 kJ mol⁻¹
- (2) 100 kJ mol⁻¹
- (3) 800 kJ mol⁻¹
- (4) 400 kJ mol⁻¹

NEET(UG) 2019

- **22.** Under isothermal condition, a gas at 300 K expands from 0.1L to 0.25L against a constant external pressure of 2 bar. The work done is :-[Given that 1L bar = 100 J]
 - (1) 30 J
- (2) 5kJ
- (3) 25 J
- (4) 30 J

NEET(UG) 2019 (Odisha)

- An ideal gas expands isothermally from 10⁻³ m³ **23**. to 10^{-2} m³ at 300 K against a constant pressure of 10⁵ Nm⁻². The work, in the process is :-
 - (1) + 270 kJ
- (2) -900 J
- (3) +900 kJ
- (4) 900 kJ
- Reversible expansion of an ideal gas under isothermal and adiabatic conditions are as shown in the figure.

 $AB \rightarrow Isothermal expansion$

AC → Adiabatic expansion

Which of the following options is **not** correct?

- (1) $\Delta S_{isothermal} > \Delta S_{adiabatic}$
- (2) $T_{A} = T_{B}$
- (3) $W_{isothermal} > W_{adiabatic}$
- (4) $T_{a} > T_{A}$

NEET (UG) 2020

- **25**. The correct option for free expansion of an ideal gas under adiabatic condition is:
 - (1) q > 0, $\Delta T > 0$ and w > 0
 - (2) q = 0, $\Delta T = 0$ and w = 0
 - (3) q = 0, $\Delta T < 0$ and w > 0
 - (4) q < 0, $\Delta T = 0$ and w = 0

3

Ans.

Hydrolysis of sucrose is given by the following reaction.

Sucrose + $H_9O \rightleftharpoons Glucose + Fructose$

- If the equilibrium constant (K₂) is 2×10^{13} at 300K, the value of ΔG^{Θ} at the same temperature will be:
- (1) $-8.314 \text{ J mol}^{-1} \text{ K}^{-1} \times 300 \text{ K} \times \ln(4 \times 10^{13})$ (2) $-8.314 \text{ J mol}^{-1} \text{ K}^{-1} \times 300 \text{ K} \times \ln(2 \times 10^{13})$
- (3) $8.314 \text{ J mol}^{-1} \text{ K}^{-1} \times 300 \text{ K} \times \ln(2 \times 10^{13})$
- (4) $8.314 \text{ J mol}^{-1} \text{ K}^{-1} \times 300 \text{ K} \times \ln(3 \times 10^{13})$
- For the reaction $2Cl(g) \rightarrow Cl_2(g)$, the **correct 27**. option is:
 - (1) $\Delta_r H < 0$ and $\Delta_r S < 0$
 - (2) $\Delta_r H > 0$ and $\Delta_r S > 0$
 - (3) $\Delta H > 0$ and $\Delta S < 0$
 - (4) $\Delta H < 0$ and $\Delta S > 0$

NEET (UG) 2020 (COVID-19)

- 28. If for a certain reaction $\triangle H$ is 30 kJ mol⁻¹ at 450 K, the value of ΔS (in $JK^{-1} mol^{-1}$) for which the same reaction will be spontaneous at the same temperature is
 - (1)70
- (2) -33
- (3) 33
- (4) 70
- **29**. At standard conditions, if the change in the enthalpy for the following reaction is -109 kJ mol^{-1}

 $\begin{array}{c} H_{2\scriptscriptstyle (\!\varrho)} + Br_{2\scriptscriptstyle (\!\varrho)} \rightarrow 2HBr_{\scriptscriptstyle (\!\varrho)} \\ \text{Given that bond energy of } H_2 \text{ and } Br_2 \text{ is} \\ 435 \text{ kJ mol}^{-1} \text{ and } 192 \text{ kJ mol}^{-1}, \text{ respectively,} \end{array}$ what is the bond energy (in kJ mol⁻¹) of HBr?

- (1)368
 - (2)736
- (3)518
- (4) 259

NEET (UG) 2021

- Which one among the following is the correct option for right relationship between C_P and C_V for one mole of ideal gas?
 - (1) $C_P + C_V = R$
- (2) $C_P C_V = R$
- (3) $C_P = RC_V$
- (4) $C_V = RC_P$
- For irreversible expansion of an ideal gas under isothermal condition, the correct option is:
 - (1) $\Delta U = 0$, $\Delta S_{total} = 0$
- (2) $\Delta U \neq 0$, $\Delta S_{total} \neq 0$
- (3) $\Delta U = 0$, $\Delta S_{\text{total}} \neq 0$
- (4) $\Delta U \neq 0$, $\Delta S_{total} = 0$

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	4	4	2	3	3	2	4	3	3	3	3	3	1	2	2
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	3	3	4	1	2	3	4	2	4	2	2	1	1	1	2
Que.	31														