AIPMT Pre.-2011

- Two gases A and B having the same volume diffuse through a porous partition in 20 and 10 seconds respectively. The molecular mass of A is 49u. Molecular mass of B will be:-
 - (1) 50.00 u
- (2) 12.25 u
- (3) 6.50 u
- (4) 25.00 u

AIPMT Pre. - 2012

- 2. 50 mL each of gas A and of gas B takes 150 and 200 seconds respectively for effusing through a pin hole under the similar condition. If molecular mass of gas B is 36, the molecular mass of gas A will be:
 - (1) 20.25
- (2)64
- (3)96
- (4) 128

AIPMT Main - 2012

- **3.** A certain gas takes three times as long to effuse out as helium. Its molecular mass will be:
 - (1) 64 u
- (2) 9 u
- (3) 27 u
- (4) 36 u

NEET-UG 2013

- **4.** Maximum deviation from ideal gas is expected from :
 - (1) $NH_{3}(g)$
- (2) $H_2(g)$
- (3) $N_{o}(g)$
- (4) CH₄(q)

NEET(UG) 2018

- **5.** Given van der Waal's constant for NH_3 , H_2 , O_2 and CO_2 are 4.17, 0.244, 1.36 and 3.59, L^2 atm mol⁻² respectively which one of the following gases is most easily liquefied?
 - (1) NH_{3}
- (2) H_{2}
- (3) O_2
- (4) CO₂
- **6.** The correction factor 'a' to the ideal gas equation corresponds to
 - (1) density of the gas molecules
 - (2) volume of the gas molecules
 - (3) electric field present between the gas molecules
 - (4) forces of attraction between the gas molecules

NEET(UG) 2019

- 7. A gas at 350 K and 15 bar has molar volume 20 percent smaller than that for an ideal gas under the same conditions. The **correct** option about the gas and its compressibility factor (Z) is:
 - (1) Z > 1 and attractive forces are dominant
 - (2) Z > 1 and repulsive forces are dominant
 - (3) Z < 1 and attractive forces are dominant
 - (4) Z < 1 and repulsive forces are dominant

NEET(UG) (Odisha) 2019

8. The volume occupied by 1.8~g of water vapour at $374~^{\circ}C$ and 1 bar pressure will be :-

[Use $R = 0.083 \text{ bar } L \text{ K}^{-1} \text{mol}^{-1}$]

- (1) 96.66 L
- (2) 55.87 L
- (3) 3.10 L
- (4) 5.37 L
- 9. In water saturated air, the mole fraction of water vapour is 0.02. If the total pressure of the saturated air is 1.2 atm, the partial pressure of dry air is:-
 - (1) 1.18 atm
- (2) 1.76 atm
- (3) 1.176 atm
- (4) 0.98 atm

NEET (UG) 2020

10. A mixture of N_2 and Ar gases in a cylinder contains 7g of N_2 and 8g of Ar. If the total pressure of the mixture of gases in the cylinder is 27 bar, the partial pressure of N_2 is:

[Use atomic masses (in g mol^{-1}) : N=14, Ar=40]

- (1) 18 bar
- (2) 9 bar
- (3) 12 bar
- (4) 15 bar

NEET (UG) 2020 (Covid-19)

- 11. The minimum pressure required to compress 600 dm³ of a gas at 1 bar to 150 dm³ at 40°C is
 - (1) 4.0 bar
- (2) 0.2 bar
- (3) 1.0 bar
- (4) 2.5 bar

NEET (UG) 2021

12. Choose the correct option for graphical representation of Boyle's law, which shows a graph of pressure vs. volume of a gas at different temperatures:

(dm³)

- **13**. Choose the correct option for the total pressure (in atm.) in a mixture of 4 g O_2 and 2 g H_2 confined in a total volume of one litre at 0° C is: [Given R = 0.082 L atm $mol^{-1}K^{-1}$, T=273K] (1) 2.518 (2) 2.602
- (3)25.18
- (4) 26.02

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13
Ans.	2	1	4	1	1	4	3	4	3	4	1	4	3