AIPMT-2006

- 1. The number of unpaired electrons in a paramagnetic diatomic molecule of an element with atomic number 16 is
 - $(1)\ 1$
- (2) 2
- (3) 3
- (4) 4
- 2. Which of the following species has a linear shape:
 - (1) O_3
- (2) NO_{2}^{-}
- (3) SO₂
- (4) NO₂⁺
- 3. Which of the following is not isostructural with
 - (1) NH_4^+
- (2) SCl₄
- (3) SO_4^{2-} (4) PO_4^{3-}
- 4. The electronegativity difference between N and F is greater than that between N and H yet the dipole mement of NH_3 (1.5 D) is larger than that of NF₃ (0.2 D). This is because
 - (1) in NH₃ the atomic dipole and bond dipole are in the opposite directions whereas in NF₃ these are in the same direction
 - (2) in NH₃ as well as in NF₃ the atomic dipole and bond dipole are in the same direction
 - (3) in NH₃ the atomic dipole and bond dipole are in the same direction whereas in NF_3 these are in opposite directions
 - (4) in NH₃ as well as NF₃ the atomic dipole and bond dipole are in opposite directions
- 5. In which of the following molecules are all the bonds not equal :-
 - (1) NF₃
- (2) ClF₃
- (3) BF₃
- (4) AlF₃

AIPMT-2007

- 6. The correct order of increasing thermal stability of K₂CO₃, MgCO₃ CaCO₃ and BeCO₃ is
 - (1) $BeCO_3 < MgCO_3 < CaCO_3 < K_2CO_3$
 - (2) $MgCO_3 < BeCO_3 < CaCO_3 < K_2CO_3$
 - (3) $K_2CO_3 < MgCO_3 < CaCO_3 < BeCO_3$
 - (4) $BeCO_3 < MgCO_3 < K_2CO_3 < CaCO_3$
- **7**. In which of the following pairs the two species are iso-structural
 - (1) SO_3^{-2} and NO_3^- (2) BF_3 and NF_3
 - (3) BrO_3^- and XeO_3^-
- (4) SF_4 and XeF_4

- 8. The correct order of C-O bond length among CO, CO_3^{-2}, CO_2 is
 - (1) $CO < CO_3^{-2} < CO_3$
 - (2) $CO_3^{-2} < CO_2 < CO$
 - (3) $CO < CO_2 < CO_3^{-2}$
 - (4) $CO_2 < CO < CO_3^{-2}$
- 9. In which of the following hydration energy is higher than lattice energy
 - (1) MgSO₄
- (2) CaSO₄ (4) SrSO₄
- (3) BaSO₄
- 10. Which one of the following orders correctly represents the increasing acid strengths of the given acids:
 - (1) HOClO₃ < HOClO₂ < HOClO < HOCl
 - (2) HOCl < HOClO < HOClO₂ < HOClO₃
 - (3) HOCIO < HOCI < HOCIO₃ < HOCIO₉
 - (4) HOClO₂ < HOClO₃ < HOClO < HOCl

AIPMT-2008

Four diatomic species are listed below in different 11. sequences. Which of these presents the correct order of their increasing bond order:

(1)
$$C_2^{2-} < He_2^+ < NO < O_2^-$$

(2)
$$He_2^+ < O_2^- < NO < C_2^{2-}$$

(3)
$$O_2^- < NO < C_2^{2-} < He_2^+$$

(4)
$$NO < C_2^{2-} < O_2^- < He_2^+$$

- **12**. The angular shape of ozone molecule (O₃) consists of
 - (1) 1 sigma and 1 pi bonds
 - (2) 2 sigma and 1 pi bonds
 - (3) 1 sigma and 2 pi bonds
 - (4) 2 sigma and 2 pi bonds
- **13**. The correct order of increasing bond angles in the following triatomic species is:-
 - (1) $NO_2^+ < NO_2^- < NO_2^-$ (2) $NO_2^+ < NO_2^- < NO_2^-$
- - (3) $NO_2^- < NO_2^+ < NO_2^-$ (4) $NO_2^- < NO_2^- < NO_2^+$

AIPMT-2009

- In which of the following molecules/ions BF₃, NO₂, NH₂ and H₂O, the central atom is sp² hybridized:
 - (1) BF_3 and NO_2

(2) NO_2^- and NH_2^-

(3) NH_2^- and H_2O

- (4) NO_2^- and H_2O
- According to MO theory which of the following lists ranks the nitrogen species in terms of increasing bond order:
 - (1) $N_2^- < N_2^{-2-} < N_2$ (3) $N_2^{-2-} < N_2^- < N_2$

- (2) $N_2^- < N_2^- < N_2^{2-}$ (4) $N_2^- < N_2^{2-} < N_2^-$
- 16. In the case of alkali metals, the covalent character decreases in the order:
 - (1) MI > MBr > MCl > MF
 - (2) MCl > MI > MBr > MF
 - (3) MF > MCl > MBr > MI
 - (4) MF > MCl > MI > MBr
- **17**. What is the dominant intermolecular force or bond that must be overcome in converting liquid CH₂OH to a gas:
 - (1) London or dispersion force
 - (2) Hydrogen bonding
 - (3) Dipole-dipole interaction
 - (4) Covalent bonds

AIPMT-2010

- Some of the properties of the two species, NO₃ and H_3O^+ are described below. Which one of them is correct :-
 - (1) Isostructural with same hybridization for the central atom.
 - (2) Isostructural with different hybridization for the central atom.
 - (3) Similar in hybridization for the central atom with different structures.
 - (4) Dissimilar in hybridization for the central atom with different structures.
- In which of the following molecules the central atom does not have sp³ hybridization:

 $(1) SF_{4}$

(2) BF_{4}

(3) NH_a⁺

- (4) CH₄
- Which one of the following species does not exist under normal conditions:
 - (1) Li₂

(2) Be₂[†]

(3) Be₂

 $(4) B_{2}$

In which of the following pairs of molecules/ions, the central atoms have sp² hybridization:

(1) BF₃ and NH₂

(2) NO_{\circ}^{-} and NH_{\circ}

(3) BF_3 and NO_2

- (4) NH_2^- and H_2O
- Which of the following alkaline earth metal **22**. sulphates has hydration enthalpy higher than the lattice enthalpy:

(1) SrSO₄

(2) CaSO₄

(3) BeSO₄

(4) BaSO₄

23. In which one of the following species the central atom has the type of hybridisation which is not the same as that present in the other three:

(1) PCl₅

(2) SF_4

 $(3) I_{-}^{3}$

- (4) SbCl₋²-
- Property of the alkaline earth metals that 24. increases with their atomic number :-
 - (1) Electronegativity
 - (2) Solubility of their hydroxides in water
 - (3) Solubility of their sulphates in water
 - (4) Ionization energy

AIPMT Pre-2011

- **25**. Considering the state of hybridization of carbon atoms, find out the molecule among the following which is linear:
 - (1) CH₃-CH=CH-CH₃
 - (2) CH₃-C≡C-CH₃
 - (3) CH₂=CH-CH₂-C≡CH
 - (4) CH₃-CH₉-CH₉-CH₃
- **26**. Which of the following has the minimum bond length:

(1) O_2^+

(2) O_2^- (3) O_2^{2-}

(4) O₂

- **27**. Which of the two ions from the list given below that have the geometry that is explained by the same hybridization of orbitals, $NO_{2}^{-}, NO_{3}^{-}, NH_{2}^{-}, NH_{4}^{+}, SCN^{-}:$
 - (1) NO_2^- and NO_3^-

(2) NH_4^+ and NO_3^-

(3) SCN $^-$ and NH $^-_2$ (4) NO $^-_2$ and NH $^-_2$

28. Which of the following compounds has the lowest melting point:

(1) CaCl_o

(2) CaBr_o

(3) Cal₂

(4) CaF,

29. Which of the following structures is the most preferred and hence of lowest energy for SO₃:

AIPMT Pre-2012

- 30. Which one of the following pairs is isostructural (i.e. having the same shape and hybridization):
 - (1) $[NF_3 \text{ and } BF_3]$
- (2) $\left[BF_{4}^{-} \text{ and } NH_{4}^{+} \right]$
- (3) [BCl₃ and BrCl₃]
- (4) $[NH_3 \text{ and } NO_3^-]$
- 31. Which of the following species contains three bond pairs and one lone pair around the central atom:
 - (1) NH_{2}^{-}
- (2) PCl₂
- (3) H_oO
- (4) BF₂
- **32**. The pair of species with the same bond order is:
 - (1) NO. CO
- (2) N_2 , O_2
- (3) O_{9}^{2-} , B_{9}
- (4) O₂+, NO+
- **33.** Bond order of 1.5 is show by:
 - $(1) O_0^{2-}$
- (2) O_o
- $(3) O_{o}^{+}$
- $(4) O_{o}^{-}$

AIPMT Mains-2012

- During change of O_2 to O_2^- ion, the electron adds 34. on which one of the following orbitals:
 - (1) σ^* orbital
- (2) σ orbital
- (3) π^* orbital
- (4) π orbital
- Four diatomic species are listed below. Identify 35. the correct order in which the bond order is increasing in them:

 - (1) $C_2^{2-} < He_2^+ < O_2^- < NO$ (2) $He_2^+ < O_2^- < NO < C_2^{2-}$ (3) $NO < O_2^- < C_2^{2-} < He_2^+$ (4) $O_2^- < NO < C_2^{2-} < He_2^+$

NEET-UG-2013

- Which one of the following molecules contains **36**. no π bond :
 - (1) NO₂
- (2) CO₂
- (3) H₂O
- (4) SO₂

- **37**. XeF₂ is isostructural with :-
 - (1) BaCl₂
- (2) TeF,
- (3) ICl₂
- (4) SbCl₃
- 38. Dipole induced dipole interactions are present in which of the following pairs :-
 - (1) SiF₄ and He atoms
- (2) H_oO and alcohol
- (3) Cl₂ and CCl₄
- (4) HCl and He atoms
- Which of the following is a polar molecule: **39**.
 - (1) XeF₄
- (2) BF_{3}
- (3) SF₄
- (4) SiF₄
- **40**. Which of the following is paramagnetic:
 - (1) NO+
- (2) CO
- $(3) O_{2}^{-}$
- (4) CN⁻
- Identify the correct order of solubility in aqueous medium:
 - (1) $Na_{9}S > ZnS > CuS$
- (2) $CuS > ZnS > Na_2S$
- (3) $ZnS > Na_2S > CuS$
- (4) $Na_2S < CuS > ZnS$

AIPMT-2014

- 42. Which of the following molecules has the maximum dipole moment:
 - (1) CO₂
- (2) CH₄
- (3) NH₃
- (4) NF₃
- 43. Which one of the following species has plane triangular shape:
 - (1) N_3^-
- (2) NO_{2}^{-}
- $(3) NO_{2}^{-}$
- (4) CO₂

AIPMT-2015

- The correct bond order in the following species is:-44.
 - (1) $O_2^{2+} < O_2^- < O_2^+$ (2) $O_2^+ < O_2^- < O_2^{2+}$
 - (3) $O_2^- < O_2^+ < O_2^{2+}$ (4) $O_2^{2+} < O_2^+ < O_2^-$
- Which of the following pairs of ions are **45**. isoelectronic and isostructural:
 - (1) ClO_3^-, CO_3^{2-}
- (2) SO_3^{2-} , NO_3^{-}
- (3) ClO₃⁻, SO₃²⁻
- (4) CO_3^{2-} , SO_3^{2-}
- **46**. Which of the following options represents the correct bond order:
 - (1) $O_2^- < O_2 < O_2^+$
 - (2) $O_2^- > O_2 < O_2^+$
 - (3) $O_2^- < O_2 > O_2^+$
 - (4) $O_2^- > O_2 > O_2^+$

- **47**. Solubility of the alkaline earth's metal sulphates in water decreases in the sequence :-
 - (1) Ca > Sr > Ba > Mg
 - (2) Sr > Ca > Mg > Ba
 - (3) Ba > Mg > Sr > Ca
 - (4) Mg > Ca > Sr > Ba
- **48**. Maximum bond angle at nitrogen is present in which of the following:
 - (1) NO_{2}^{-}
- (2) NO_{2}^{+}
- (3) NO_3^-
- (4) NO₂

RE-AIPMT-2015

- On heating which of the following releases CO₂ most easily:
 - $(1) \text{ MgCO}_3$
- (2) CaCO₃
- (3) K₂CO₃
- (4) Na₂CO₃
- Decreasing order of stability of O_2 , O_2^- , O_2^+ and O_2^- **50**.
 - $(1) O_2 > O_2^+ > O_2^{2-} > O_2^-$
 - $(2) O_2^- > O_2^{2-} > O_2^+ > O_2$
 - (3) $O_2^+ > O_2^- > O_2^- > O_2^2$
 - $(4) O_2^{2-} > O_2^{-} > O_2 > O_2^{+}$
- In which of the following pairs, both the species are not isostructural:
 - $(1) NH_3, PH_3$
 - (2) XeF₄, XeO₄
 - (3) SiCl₄, PCl⁺₄
 - (4) Diamond, silicon carbide
- **52**. The variation of the boiling points of the hydrogen halides is in the order HF > HI > HBr > HCl.

What explains the higher boiling point of hydrogen fluoride?

- (1) The bond energy of HF molecules is greater than in other hydrogen halides
- (2) The effect of nuclear shielding is much reduced in fluorine which polarises the HF molecule
- (3) The electronegativity of fluorine is much higher than for other elements in the group.
- (4) There is strong hydrogen bonding between HF molecules

NEET-I 2016

- **53**. Consider the molecules CH₄, NH₃ and H₂O. Which of the given statements is false?
 - (1) The H -C-H bond angle in CH₄, the H-N-H bond angle in NH3, and the H-O-H bond angle in H₂O are all greater than 90°
 - (2) The H-O-H bond angle in H₂O is larger than the H-C-H bond angle in CH₄.
 - (3) The H-O-H bond angle in H₂O is smaller than the H-N-H bond angle in NH₃.
 - (4) The H-C-H bond angle in CH₄ is larger than the H-N-H bond angle in NH₃.
- 54. Which one of the following orders is correct for the bond dissociation enthalpy of halogen molecules?
 - (1) $I_2 > Br_2 > Cl_2 > F_2$ (2) $Cl_2 > Br_2 > F_2 > I_2$
- - (3) $Br_2 > I_2 > F_2 > Cl_2$ (4) $F_2 > Cl_2 > Br_2 > I_2$
- **55**. Predict the correct order among the following:
 - lone pair- lone pair > lone pair bond pair > bond pair bond pair
 - (2) lone pair lone pair > bond pair bond pair > lone pair - bond pair
 - (3) bond pair bond pair > lone pair bond pair > lone pair - lone pair
 - (4) lone pair bond pair > bond pair bond pair > lone pair - lone pair
- Match the compounds given in column I with the hybridisation and shape given in column II and mark the **correct** option.

Colu	mn-I	Column-II				
(a)	XeF ₆	(i) Distorted				
			octahedral			
(b)	XeO ₃	(ii)	Square			
			planar			
(c)	XeOF ₄	(iii)	pyramidal			
(d)	XeF ₄	(iv)	Square			
			pyramidal			

Code:-

	(a)	(b)	(c)	(d)
(1)	(i)	(iii)	(iv)	(ii)
(2)	(i)	(ii)	(iv)	(iii)
(3)	(iv)	(iii)	(i)	(ii)
(4)	(iv)	(i)	(ii)	(iii)

NEET-II 2016

- **57.** The correct geometry and hybridization for XeF_4 are:
 - (1) Planar triangle, sp³d³
 - (2) square planar, sp³d²
 - (3) octahedral, sp³d²
 - (4) trigonal bipyramidal, sp³d
- **58.** Among the following which one is a wrong statement?
 - (1) SeF₄ and CH₄ have same shape
 - (2) I₃⁺ has bent geometry
 - (3) PH_5 and $BiCl_5$ do not exist
 - (4) $p\pi$ - $d\pi$ bonds are present in SO_2
- **59.** The hybridizations of atomic orbitals of nitrogen in and respectively are
 - (1) sp, sp² and sp³
 - (2) sp^2 , sp and sp^3
 - (3) sp, sp 3 and sp 2
 - (4) sp², sp³ and sp
- **60.** Which of the following fluoro-compounds is most likely to behave as a Lewis base ?
 - (1) CF₄
- (2) SiF₄
- (3) BF₃
- (4) PF₃
- **61.** Which of the following pairs of ions is isoelectronic and isostructural?
 - (1) SO_3^{2-} , NO_3^{-}
 - (2) ClO₃⁻, SO₃²⁻
 - (3) CO_3^{2-} , NO_3^{-}
 - (4) ClO₃⁻, CO₃²⁻

NEET(UG) 2017

- **62.** Ionic mobility of which of the following alkali metal ions is lowest when aqueous solution of their salts are put under an electric field?
 - (1) K
- (2) Rb
- (3) Li
- (4) Na

63. Match the interhalogen compounds of column-I with the geometry in column II and assign the correct. code.

Co	lumn-I	Column-II						
(a)	XX'	(i)	T-shape					
(b)	XX' ₃	(ii)	(ii) Pentagonal					
			bipyramidal					
(c)	XX' ₅	(iii)	Linear					
(d)	XX' ₇	(iv)	Square-Pyramidal					
		(v)	Tetrahedral					

Code:

(a)	(b)	(c)	(d)
(1) (iii)	(i)	(iv)	(ii)
(2) (v)	(iv)	(iii)	(ii)
(3) (iv)	(iii)	(ii)	(i)
(4) (iii)	(iv)	(i)	(ii)

- **64.** Which of the following pairs of compounds is isoelectronic and isostructural?
 - (1) Tel₂, XeF₂
- (2) IBr₂, XeF₂
- (3) IF₃, XeF₂
- (4) BeCl₂, XeF₂
- **65.** The species, having bond angles of 120° is :-
 - (1) CIF₃
- (2) NCl₃
- (3) BCl₃
- (4) PH₃
- **66.** Which of the following pairs of species have the same bond order?
 - (1) O₂, NO⁺
- (2) CN⁻, CO
- (3) N_2 , O_2^-
- (4) CO, NO

NEET(UG) 2018

- **67.** Among CaH₂, BeH₂, BaH₂, the order of ionic character is
 - (1) BeH₂ < CaH₂ < BaH₃
 - (2) $CaH_{2} < BeH_{2} < BaH_{3}$
 - (3) $BeH_2 < BaH_2 < CaH_2$
 - (4) $BaH_2 < BeH_2 < CaH_2$

68.	Magnesium reacts ionic compound.	If the ground s	tate electronic	7 5.			e incorr ollowing:		itement r	elated to	PCl ₅
	configuration of (', the simplest		(1)	Three	equatoria	l P-Cl	bonds n	nake an a	ngle
	formula for this co (1) Mg ₂ X ₃	MgX ₂ (2)				of 120)° with ea	ch othe	er		
	(3) Mg_2X	(4) Mg3X			(2)		xial P–Cl ach other	bonds	make an	angle of	180°
69.	Consider the follo				(3)	Axial 1 P-Cl b		ds are	longer ti	han equat	orial
	Which one of the order?		highest bond		(4)	PCl ₅ m	olecule is	non-re	eactive		
	(1) NO	(2) CN ⁻		76	Ma	4-1-41	V		da : C	-l I	:41
	(3) CN ⁺	(4) CN		76.				-		olumn-I d assign	
70	1171 · 1 · C · 1	(1) . 1	11 .			rrect co		, o.u		a accigii	
70.	Which one of the form MF_6^{3-} ion ?	following elemen	its is unable to			Colun		Co	lumn-II		
	(1) Ga (2) A	I (3) B	(4) In		(a)	XeF ₄		(i)	pyrami	dal	
						XeF ₆		(ii)	square		
71.	In the structure of	ClF ₃ , the numbe	r of lone pairs			XeOF		(iii)		d octahed	ral
	of electrons on ce					XeO ₃	•	(iv)		pyramidal	
	(1) one (3) four	(2) two (4) three				de :		, ,	•	1 5	
	(o) Ioui	(+) unee				(a)	(b)		(c)	(d)	
	NEET	Γ(UG) 2019			(1)		(ii)		(iii)	(i∨)	
72 .	The number of	sigma (σ) and pi	(π) bonds in			(ii)	(iii)		(iv)	(i)	
	pent-2-en-4-yne is	S :-			(3)		(iii)		(i)	(iv)	
	(1) 10σ bonds an					(iii)	(iv)		(i)	(ii)	
	(2) 8 σ bonds and				` ,	` ,	, ,		· /	()	
	(3) 11 σ bonds an (4) 13 σ bonds an			77.	VA/I-	vich is t	tha corre	et the	rmal etak	oility orde	r for
	(1) 10 0 001143 411	a no n oona					, S, Se, T			mily orde	1 101
73 .	Which of the	following diaton	nic molecular		-					ID.	
	species has only	π bonds according	g to Molecular			-	$H_2O < H$	-	_	-	
	Orbital Theory?	(O) NI				-	$H_2S < H_2$	-	_	2	
	(1) O ₂ (3) C ₂	(2) N ₂ (4) Be ₂			(3)	H_2Po	< H ₂ Te <	H ₂ Se	< H ₂ S <	H_2O	
	(0) C_2	(1) BC ₂			(4)	H ₂ Se <	< H ₂ Te <	H ₂ Po	$< H_2O <$	H_2S	
74 .	Which of the follo	wing species is n	ot stable ?								
	(1) $[SiF_6]^{2-}$						ET(UG) 2	,		•	
	(2) $[GeCl_6]^{2-}$			78.			he follow		_	etic?	
	(3) $[Sn(OH)_6]^{2-}$				(1)	N_2			(2) H_2		

(4) O₂

(3) Li₂

(4) $[SiCl_6]^{2-}$

- **79.** Which of the following is the correct order of dipole moment?
 - (1) $NH_3 < BF_3 < NF_3 < H_9O$
 - (2) $BF_3 < NF_3 < NH_3 < H_2O$
 - (3) $BF_3 < NH_3 < NF_3 < H_2O$
 - (4) $H_2O < NF_3 < NH_3 < BF_3$
- **80.** The number of hydrogen bonded water molecule(s) associated with CuSO₄.5H₂O is :-
 - (1) 3

 $(2)\ 1$

(3) 2

(4)5

NEET(UG) 2020

- **81.** Identify a molecule which does not exist.
 - (1) O₂

(2) He₂

(3) Li₂

(4) C_2

- **82.** Which of the following set of molecules will have zero dipole moment?
 - (1) Boron trifluoride, beryllium difluoride, carbon dioxide, 1,4-dichlorobenzene
 - (2) Ammonia, beryllium difluoride, water, 1,4-dichlorobenzene
 - (3) Boron trifluoride, hydrogen fluoride, carbon dioxide, 1,3-dichlorobenzene
 - (4) Nitrogen trifluoride, beryllium difluoride, water, 1,3-dichlorobenzene

NEET(UG) 2020(COVID-19)

- **83.** Among the compounds shown below which one revealed a linear structure?
 - (1) NO₂

(2) HOCl

(3) O_3

(4) N_2O

84. Match the compounds of Xe in column I with the molecular structure in column II.

Column-I	Column-II
(a) XeF ₂	(i) Square planar
(b) XeF ₄	(ii) Linear
(c) XeO ₃	(iii) Square pyramidal
(d) XeOF ₄	(iv) Pyramidal
(1) (a)-(ii) (b)-(i) (c)-(iii)	(d)-(iv)
(2) (a)-(ii) (b)-(iv) (c)-(iii)	(d)-(i)
(3) (a)-(ii) (b)-(iii) (c)-(i)	(d)-(iv)
(4) (a)-(ii) (b)-(i) (c)-(iv)	(d)-(iii)

85. Match the coordination number and type of hybridisation with distribution of hybrid orbitals in space based on Valence bond theory.

Coordination	Distribution
number and	of hybrid
type of	orbitals
hybridisation	in space
(a) 4, sp ³	(i) trigonal
	bipyramidal
(b) 4, dsp ²	(ii) octahedral
(c) 5, sp ³ d	(iii) tetrahedral
(d) 6 , d^2sp^3	(iv) square planar

Select the correct option:

- (1) (a)-(ii) (b)-(iii) (c)-(iv) (d)-(i)
- (2) (a)-(iii) (b)-(iv) (c)-(i) (d)-(ii)
- (3) (a)-(iv) (b)-(i) (c)-(ii) (d)-(iii)
- (4) (a)-(iii) (b)-(i) (c)-(iv) (d)-(ii)
- **86.** Identify the wrongly matched pair.

Molecule	Shape or geometry
	of molecule
(1) PCl ₅	Trigonal planar
(2) SF ₆	Octahedral
(3) BeCl ₂	Linear
(4) NH ₃	Trigonal pyramidal

87. The potential energy (y) curve for H_2 formation as a function of internuclear distance (x) of the H atoms is shown below.

The bond energy of H_2 is :

(1)
$$(b - a)$$

(2)
$$\frac{(c-a)}{2}$$

(3)
$$\frac{(b-a)}{2}$$

$$(4) (c - a)$$

NEET(UG) 2021

- $\begin{tabular}{ll} \bf 88. & BF_3 \ is \ planar \ and \ electron \ deficient \ compound. \\ & Hybridization \ and \ number \ of \ electrons \ around \\ & the \ central \ atom, \ respectively \ are: \\ \end{tabular}$
 - (1) sp^3 and 4
- (2) sp^3 and 6
- (3) sp^2 and 6
- $(4) \text{ sp}^2 \text{ and } 8$

89. Match List - I with List - II.

List-I	List-II
(a) PCl ₅	(i) Square pyramidal
(b) SF ₆	(ii) Trigonal planar
(c) BrF ₅	(iii) Octahedral
(d) BF ₃	(iv) Trigonal bipyramidal

Choose the **correct** answer from the options given below.

- (1) (a)-(iv), (b)-(iii), (c)-(i), (d)-(ii)
- (2) (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)
- (3) (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)
- (4) (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i)
- **90.** Which of the following molecules is non-polar in nature?
 - (1) POCl₃
- (2) CH₂O
- (3) SbCl₅
- (4) NO₂
- **91.** From the following pairs of ions which one is not an iso-electronic pair?
 - (1) O²⁻, F⁻
- (2) Na+, Mg²⁺
- (3) Mn²⁺, Fe³⁺
- (4) Fe²⁺, Mn²⁺

		_	_		_		7	_	_	4.0		10	4.0	- 4	4 -
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	2	4	2	3	2	1	3	3	1	2	2	2	4	1	3
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	1	2	4	1	3	3	3	4	2	2	1	1	3	1	2
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	2	3	4	3	2	3	3	4	3	3	1	3	2	3	3
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	1	4	2	1	3	2	4	2	2	1	1	2	1	1	4
Que.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Ans.	2,3	3	1	2	3	2	1	4	2	3	2	1	3	4	4
Que.	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
Ans.	2	3	4	2	2	2	1	4	4	2	1	3	3	1	3
Que.	91														
Ans.	4														