AIPMT 2006

- 1. Copper sulphate dissolves in excess of KCN to give
 - (1) Cu(CN)_o
- (2) CuCN
- (3) $[Cu(CN)_4]^{3-}$
- (4) [Cu(CN)₄]²⁻
- 2. [Co $(NH_3)_4(NO_9)_9$] Cl exhibits
 - (1) linkage isomerism, geometrical isomerism and optical isomerism
 - (2) linkage isomerism, ionization isomerism and optical isomerism
 - (3) linkage isomerism, ionization isomerism and geometrical isomerism
 - (4) ionization isomerism, geometrical isomerism and optical isomerism

AIPMT 2007

- 3. Which of the following will give a pair of enantiomers
 - (1) [Cr(NH₃)₆][Co(CN)₆]
- (2) [Co(en)₂Cl₂]Cl
- (3) $[Pt(NH_3)_4][PtCl_6]$
- (4) $[Co(NH_3)_4Cl_2]NO_2$
- 4. The d electron configurations of Cr2+, Mn2+, Fe2+ and Ni²⁺ are 3d⁴, 3d⁵, 3d⁶ and 3d⁸ respectively. Which one of the following agua complexes will exhibit the minimum paramagnetic behaviour
 - (1) $[Fe(H_0O)_{\epsilon}]^{2+}$
- (2) $[Ni(H_0O)_c]^{2+}$
- (3) $[Cr(H_2O)_6]^{2+}$
- (4) $[Mn(H_2O)_6]^{2+}$

AIPMT 2008

- 5. Which of the following complexes exhibits the highest paramagnetic behaviour? Where gly = glycine, en = ethylenediamine and bpy=bipyridyl (At. No. Ti = 22, V = 23, Fe = 26, Co = 27)
 - (1) $[Co(OX)_{9}(H_{9}O)_{9}]^{-}$
- (2) $[Ti(NH_3)_6]^{3+}$
- (3) [V (gly)₂(OH)₂(NH₃)₂]⁺
- (4) [Fe(en) (bpy) (NH₂)₂]²⁺
- 6. In which of the following coordination entities the magnitude of Δo (CFSE in octahedral field) will be maximum?
 - (1) $[Co(CN)_c]^{3-}$
- (2) $[Co(C_2O_4)_3]^{3-}$
- (3) $[Co(H_2O)_6]^{3+}$
- (4) $[Co(NH_3)_6]^{3+}$

AIPMT 2009

- 7. Which of the following complex ions is expected to absorb visible light?
 - (1) $[Zn(NH_2)_c]^{2+}$
- (2) $[Sc(H_2O)_3(NH_3)_3]^{3+}$
- (3) $[Ti(en)_{0}(NH_{0})_{0}]^{4+}$
- (4) $[Cr(NH_2)_c]^{3+}$

- Out of TiF_6^{2-} , CoF_6^{3-} , Cu_2Cl_2 and $NiCl_4^{2-}$ 8. colourless species are :
- (2) TiF_6^{2-} and CoF_6^{2-} (4) TiF_6^{2-} and Cu_2Cl_2
- (1) CoF₆³⁻ and NiCl₄²⁻ (3) Cu₂Cl₂ and NiCl₄²⁻
- 9. Which of the following does not show optical isomerism?
 - (1) [Co(en)₃]³⁺
- (2) $[Co(en)_2Cl_2]^+$
- (3) $[Co(NH_3)_3Cl_3]^0$
- (4) [Co(en)Cl₂(NH₃)₂]⁺
- 10. Which one of the following complexes is **not** expected to exhibit isomerism:
 - (1) [Pt (NH₂)₂ Cl₂]
- (2) [NiCl₄]²⁻
- (3) [Ni (en)₃] 2+
- (4) $[Ni(NH_3)_4(H_2O)_2]^{2+}$

AIPMT 2010

- 11. Which of the following complex ion is not expected to absorb visible light?
 - (1) $[Ni(H_0O)_c]^{2+}$
- (2) [Ni(CN)₄]²⁻
- (3) $[Cr(NH_3)_6]^{3+}$
- (4) [Fe(H₂O)₆]²⁺
- **12**. The existence of two different coloured complexes with the composition of [Co(NH₃)₄Cl₂]⁺ is due to:-
 - (1) Ionization isomerism
 - (2) Linkage isomerism
 - (3) Geometrical isomerism
 - (4) Coordination isomerism
- **13**. Crystal field stabilization energy for high spin d⁴ octahedral complex is :-
 - (1) $-0.6 \Delta_0$
- (2) $-1.8 \Delta_0$
- $(3) -1.6 \Delta_0 + P$
- (4) $-1.2 \Delta_0$

AIPMT Pre. 2011

- 14. Of the following complex ions, which is diamagnetic in nature?
 - (1) [NiCl₄]²⁻
- (2) [Ni(CN)₄]²⁻
- (3) $[CuCl_{4}]^{2-}$
- (4) [CoF₆]³⁻
- **15**. The complex [Co(NH₃)₆][Cr(CN)₆] and [Cr(NH₃)₆] [Co(CN)₆] are the examples of which type of isomerism?
 - (1) Linkage isomerism
 - (2) Ionization isomerism
 - (3) Coordination isomersim
 - (4) Geometrical isomerism

The complex [Pt(Py)(NH₃)BrCl] will have how many geometrical isomers?

(1) 3

- (2) 4
- (3) 0
- (4) 2

AIPMT Mains 2011

17. Which of the following carbonyls will have the strongest C-O bond?

(1) [Fe(CO)₅]

(2) $[Mn(CO)_6]^+$

(3) [Cr(CO)₆]

- (4) [V(CO)₆]
- Which of the following complex compounds will exhibit highest paramagnetic behaviour :-

(At. No. Ti = 22, Cr = 24, Co = 27, Zn = 30)

(1) $[Zn(NH_{2})_{2}]^{2+}$

(2) $[Ti(NH_2)_{\epsilon}]^{3+}$

(3) $[Cr(NH_3)_6]^{3+}$

(4) $[Co(NH_3)_2]^{3+}$

AIPMT Pre. 2012

19. Which one of the following is an outer orbital complex and exhibits paramagnetic behaviour?

(1) $[Cr(NH_3)_6]^{3+}$

(2) $[Co(NH_3)_6]^{3+}$

(3) $[Ni(NH_3)_6]^{2+}$

(4) $[Zn(NH_2)_c]^{2+}$

AIPMT Mains 2012

20. Red precipitate is obtained when ethanol solution of dimethylglyoxime is added to ammoniacal Ni(II). Which of the following statements is not true?

- (1) Red complex has a tetrahedral geometry.
- (2) Dimethylglyoxime functions as bidentate ligand.
- (3) Red complex has a square planar geometry.
- (4) Complex has symmetrical H-bonding.
- **21.** Low spin complex of d⁶-cation in an octahedral field will have the following energy:-

 $(\Delta_0 = Crystal field splitting energy in an octahedral)$ field, P = Electron pairing energy)

(1)
$$\frac{-2}{5} \Delta_0 + 2P$$
 (2) $\frac{-2}{5} \Delta_0 + P$

(3)
$$\frac{-12}{5} \Delta_0 + 1$$

(3) $\frac{-12}{5} \Delta_0 + P$ (4) $\frac{-12}{5} \Delta_0 + 3P$

NEET-UG 2013

22. A magnetic moment of 1.73 BM will be shown by one among the following:-

(1) [CoCl₆]⁴⁻

(2) $[Cu(NH_3)_4]^{2+}$

(3) $[Ni(CN)_{4}]^{2-}$

(4) TiCl

AIPMT 2014

23. Which of the following complexes is used to be as an anticancer agent?

(1) $mer-[Co(NH_a),Cl_a]$

(2) cis-[PtCl_o(NH_o)_o]

(3) cis-K₂[PtCl₂Br₂]

(4) Na₂CoCl₄

AIPMT 2015

24. Cobalt (III) chloride forms several octahedral complexes with ammonia. Which of the following will not give test of chloride ions with silver nitrate at 25°C?

(1) CoCl₃·4NH₃

(2) CoCl₃·5NH₃

(3) CoCl₃·6NH₃

(4) CoCl₃·3NH₃

- **25**. Which of these statements about [Co(CN)₆]³⁻ is true:-
 - (1) [Co(CN)₆]³⁻ has four unpaired electrons and will be in a low-spin configuration.
 - (2) [Co(CN)₆]³⁻ has four unpaired electrons and will be in a high spin configuration.
 - (3) [Co(CN)₆]³⁻ has no unpaired electrons and will be in a high-spin configurtion.
 - (4) [Co(CN)₆]³⁻ has no unpaired electrons and will be in a low-spin configuration.

Re-AIPMT 2015

- The name of complex ion, $[Fe(CN)_6]^{3-}$ is :-26.
 - (1) Tricyanoferrate (III) ion
 - (2) Hexacyanidoferrate (III) ion
 - (3) Hexacyanoiron (III) ion
 - (4) Hexacyanitoferrate (III) ion
- The hybridization involved in complex [Ni(CN)₄]²⁻ is (At.No. Ni = 28)

(1) d^2sp^2

(2) $d^2 sp^3$

(3) dsp²

 $(4) sp^{3}$

- 28. The sum of coordination number and oxidation number of the metal M in the complex [M(en)₂(C₂O₄)]Cl (where en is ethylenediamine) is:-(1) 7(2) 8(3)9
- **29**. Number of possible isomers for the complex $[Co(en)_{2}Cl_{2}]$ Cl will be : (en = ethylenediamine) (2) 4(1) 3(3) 2 $(4)\ 1$

NEET-I 2016

- **30**. Which of the following has longest C-O bond length? (Free C-O bond length in CO is 1.128Å).
 - (1) Ni(CO),

(2) [Co(CO)₄][⊙]

(3) [Fe(CO)₄]²⁻

(4) $[Mn(CO)_6]^{\dagger}$

NEET-II 2016

- The correct increasing order of trans-effect of the 31. following species is:
 - (1) $Br^- > CN^- > NH_3 > C_6H_5^-$
 - (2) $CN^- > Br^- > C_6H_5^- > NH_3$
 - (3) $NH_3 > CN^- > Br^- > C_6H_5^-$
 - (4) $CN^{-} > C_{c}H_{c}^{-} > Br^{-} > NH_{o}$
- 32. Jahn-Teller effect not observed in high spin complexes of :-
 - $(1) d^4$
- $(2) d^9$
- (3) d^7
- $(4) d^{8}$

NEET(UG) 2017

- 33. An example of a sigma bonded organometallic compound is:
 - (1) Grignard's reagent
- (2) Ferrocene
- (3) Cobaltocene
- (4) Ruthenocene
- **34.** Pick out the correct statement with respect to $[Mn(CN)_6]^{3-}$:-
 - (1) It is sp³d² hybridised and tetrahedral
 - (2) It is d²sp³ hybridised and octahedral
 - (3) It is dsp² hybridised and square planar
 - (4) It is sp³d² hybridised and octahedral

35.

- Correct increasing order for the wavelengths of absorption in the visible region the complexes of Co³⁺ is :-
 - (1) $[Co(H_2O)_6]^{3+}$, $[Co(en)_3]^{3+}$, $[Co(NH_3)_6]^{3+}$
 - (2) $[Co(H_2O)_6]^{3+}$, $[Co(NH_3)_6]^{3+}$, $[Co(en)_3]^{3+}$
 - (3) $[Co(NH_3)_6]^{3+}$, $[Co(en)_3]^{3+}$, $[Co(H_2O)_6]^{3+}$
 - (4) $[Co(en)_3]^{3+}$, $[Co(NH_3)_6]^{3+}$, $[Co(H_2O)_6]^{3+}$

NEET(UG) 2018

- **36.** The type of isomerism shown by the complex [CoCl₂(en)₂] is
 - (1) Geometrical isomerism
 - (2) Coordination isomerism
 - (3) Ionization isomerism
 - (4) Linkage isomerism

- The geometry and magnetic behaviour of the complex [Ni(CO)₄] are
 - (1) square planar geometry and diamagnetic
 - (2) tetrahedral geometry and diamagnetic
 - (3) square planar geometry and paramagnetic
 - (4) tetrahedral geometry and paramagnetic
- Iron carbonyl, Fe(CO), is **38**.
 - (1) tetranuclear
- (2) mononuclear
- (3) trinuclear
- (4) dinuclear

NEET(UG) 2019

- What is the **correct** electronic configuration of **39**. the central atom in K_a[Fe(CN)_a] based on crystal field theory?

 - (1) $t_{2\sigma}^4 e_{\sigma}^2$ (2) $t_{2\sigma}^6 e_{\sigma}^0$ (3) $e^3 t_2^3$ (4) $e^4 t_2^2$

NEET(UG) 2019 (ODISHA)

- The Crystal Field Stabilisation Energy (CFSE) for **40**. [CoCl₆]⁴⁻ is 18000 cm⁻¹. The CFSE for [CoCl₄]²⁻ will be-
 - (1) 6000 cm⁻¹
- (2) 16000 cm⁻¹
- (3) 18000 cm⁻¹
- (4) 8000 cm⁻¹

NEET(UG) 2020

- **41.** Which of the following is the correct order of increasing field strength of ligands to form coordination compounds?
 - (1) $CN^- < C_2O_4^{2-} < SCN^- < F^-$
 - (2) $SCN^{-} < F^{-} < C_{2}O_{4}^{2-} < CN^{-}$
 - (3) $SCN^{-} < F^{-} < CN^{-} < C_{2}O_{4}^{2-}$
 - (4) $F^- < SCN^- < C_2O_4^{2-} < CN^-$
- **42**. Urea reacts with water to form A which will decompose to form B. B when passed through Cu²⁺ (ag), deep blue colour solution C is formed. What is the formula of C from the following?
 - (1) CuCO₃·Cu(OH)₉
- (2) CuSO₄
- (3) $[Cu(NH_3)_4]^{2+}$
- (4) Cu(OH)₂

NEET(UG) 2021

- **43.** Ethylene diaminetetraacetate (EDTA) ion is:
 - (1) Hexadentate ligand with four "O" and two "N" donor atoms
 - (2) Unidentate ligand
 - (3) Bidentate ligand with two "N" donor atoms
 - (4) Tridentate ligand with three "N" donor atoms

44. Match List-I with List-II

	List-I	List-II				
(a)	[Fe(CN) ₆] ³⁻	(i)	5.92 BM			
(b)	[Fe(H ₂ O) ₆] ³⁺	(ii)	0 BM			
(c)	[Fe(CN) ₆] ⁴⁻	(iii)	4.90 BM			
(d)	[Fe(H ₂ O) ₆] ²⁺	(iv)	1.73 BM			

Choose the ${\color{red} {\bf correct}}$ answer from the options given below

- (1) (a)-(iv), (b)-(ii), (c)-(i), (d)-(iii)
- (2) (a)-(ii), (b)-(iv), (c)-(iii), (d)-(i)
- (3) (a)-(i), (b)-(iii), (c)-(iv), (d)-(ii)
- (4) (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii)

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	3	3	2	2	2	1	4	4	3	2	2	3	1	2	3
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	1	2	3	3	1	4	2	2	4	4	2	3	3	1	3
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	
Ans.	4	4	1	2	4	1	2	2	2	4	2	3	1	4	