AIPMT 2009

The ionization constant of ammonium hydroxide 1. is 1.77×10^{-5} at 298 K. Hydrolysis constant of ammonium chloride is :-

(1) 5.65×10^{-12}

(2) 5.65×10^{-10}

(3) 6.50×10^{-12}

(4) 5.65×10^{-13}

2. What is the [OH-] in the final solution prepared by mixing 20.0 mL of 0.050 M HCl with 30.0 mL of 0.10M Ba(OH), ?

(1) 0.12 M

(2) 0.10 M

(3) 0.40 M

(4) 0.0050M

3. The dissociation constants for acetic acid and HCN at 25°C are 1.5×10^{-5} and 4.5×10^{-10} . respectively. The equilibrium constant for the equilibrium

> $CN^- + CH_3COOH \rightleftharpoons HCN + CH_3COO^$ would be :-

 $(1) 3.3 \times 10^4$

(2) 3.0×10^5

(3) 3.3×10^{-5}

 $(4) \ 3.0 \times 10^{-4}$

AIPMT 2010

4. If pH of a saturated solution of Ba(OH), is 12, the value of its K_{sD} is :-

(1) $5.00 \times 10^{-7} \text{ M}^{\frac{1}{5}}$

(2) $4.00 \times 10^{-6} \text{ M}^3$

 $(3)4.00 \times 10^{-7} \text{ M}^3$

 $(4) 5.00 \times 10^{-6} \text{ M}^3$

5. Find the pH of a buffer solution containing equal concentration of B⁻ and HB. (K. for B⁻ is 10⁻¹⁰):-

(1) 4

(2) 10

(3)7

(4)6

AIPMT Mains 2011

6. In qualitative analysis, the metals of Group I can be separated from other ions by precipitating them as chloride salts. A solution initially contains Ag+ and Pb²⁺ at a concentration of 0.10 M. Aqueous HCl is added to this solution until the Cl- concentration is 0.10 M. What will the concentrations of Ag+ and Pb²⁺ be at equilibrium?

 $(K_{sp} \text{ for AgCl} = 1.8 \times 10^{-10}, K_{sp} \text{ for PbCl}_{2} = 1.7 \times 10^{-5})$

(1) $[Ag^+] = 1.8 \times 10^{-11} \text{ M}$; $[Pb^{2+}] = 1.7 \times 10^{-4} \text{ M}$;

(2) $[Ag^+] = 1.8 \times 10^{-7} \text{ M}$; $[Pb^{2+}] = 1.7 \times 10^{-6} \text{ M}$;

(3) $[Ag^+] = 1.8 \times 10^{-11} \text{ M}$; $[Pb^{2+}] = 8.5 \times 10^{-5} \text{ M}$;

(4) $[Ag^+] = 1.8 \times 10^{-9} \text{ M}$; $[Pb^{2+}] = 1.7 \times 10^{-3} \text{ M}$;

7. A buffer solution is prepared in which the concentration of NH3 is 0.30 M and the concentration of NH_4^+ is 0.20 M. If the equilibrium constant, K_b for NH₃ equals 1.8×10^{-5} , what is the pH of this solution ? ($\log 2.7 = 0.43$)

(1)9.08

(2) 9.43

(3) 11.72

(4) 8.73

AIPMT Mains 2012

- 8. Buffer solutions have constant acidity and alkalinity because:
 - (1) they have large excess of H⁺ or OH⁻ions
 - (2) they have fixed value of pH
 - (3) these give unionised acid or base on reaction with added acid or alkali
 - (4) acids and alkalies in these solutions are shielded from attack by other ions
- Equimolar solutions of the following substances 9. were prepared separately. Which one of the these will record the highest pH value?

(1) LiCl

(2) BeCl₂

(3) BaCl,

(4) AlCl₃

NEET UG 2013

10. Which is the strongest acid in the following?

(1) H₂SO₃

(2) H₂SO₄

(3) HClO₃

(4) HClO₄

AIPMT 2014

Which of the following salts will give highest pH 11. in water?

(1) KCl

(2) NaCl

(3) Na₂CO₃

(4) CuSO₄

AIPMT 2015

- The $K_{\mbox{\tiny SD}}$ of $\mbox{Ag}_{\mbox{\tiny 2}}\mbox{CrO}_{\mbox{\tiny 4}},$ AgCl, AgBr and AgI are **12**. respectively, 1.1×10^{-12} , 1.8×10^{-10} , 5.0×10^{-13} , 8.3×10^{-17} . Which one of the following salts will precipitate last if AgNO₃ solution is added to the solution containing equal moles of NaCl, NaBr, NaI and Na₂CrO₄?
 - (1) AgCl
- (2) AgBr
- (3) Ag₂CrO₄ (4) AgI

Re-AIPMT 2015

- **13.** Which one of the following pairs of solution is not an acidic buffer?
 - (1) H₂CO₃ and Na₂CO₃
 - (2) H₃PO₄ and Na₃PO₄
 - (3) HClO₄ and NaClO₄
 - (4) CH₃COOH and CH₃COONa
- **14.** What is the pH of the resulting solution when equal volumes of 0.1 M NaOH and 0.01 M HCl are mixed?
 - (1) 7.0
- (2) 1.04
- (3) 12.65
- (4) 2.0

NEET-I 2016

- **15.** MY and NY $_3$, two nearly insoluble salts, have the same $K_{_{sp}}$ values of 6.2×10^{-13} at room temperature. Which statement would be **true** in regard to MY and NY $_3$?
 - (1) The molar solubilities of MY and NY₃ in water are identical.
 - (2) The molar solubility of MY in water is less than that of NY_3
 - (3) The salts MY and NY_3 are more soluble in 0.5 M KY than in pure water.
 - (4) The addition of the salt of KY to solution of MY and NY_3 will have no effect on their solubilities.

NEET-II 2016

- **16.** The percentage of pyridine (C_5H_5N) that forms pyridinium ion $(C_5H_5N^+H)$ in a 0.10 M aqueous pyridine solution $(K_b$ for $C_5H_5N = 1.7 \times 10^{-9})$ is
 - (1) 0.77%
- (2) 1.6%
- (3) 0.0060%
- (4) 0.013%
- **17.** The solubility of AgCl(s) with solubility product 1.6×10^{-10} in 0.1 M NaCl solution would be
 - (1) $1.6 \times 10^{-11} \text{ M}$
- (2) zero
- (3) 1.26×10^{-5} M
- (4) 1.6×10^{-9} M

NEET(UG) 2017

- **18.** Concentration of the Ag^+ ions in a saturated solution of $Ag_2C_2O_4$ is 2.2×10^{-4} mol L^{-1} Solubility product of $Ag_2C_2O_4$ is :-
 - (1) 2.66×10^{-12}
- (2) 4.5×10^{-11}
- (3) 5.3×10^{-12}
- $(4) 2.42 \times 10^{-8}$

NEET(UG) 2018

- **19.** Following solutions were prepared by mixing different volumes of NaOH and HCl of different concentrations:
 - a. $60mL\frac{M}{10}HCl + 40mL\frac{M}{10}NaOH$
 - $b. \quad 55mL\frac{M}{10}HCl + 45mL\frac{M}{10}NaOH$
 - c. $75mL\frac{M}{5}HCl + 25mL\frac{M}{5}NaOH$
 - $d. \quad 100 mL \frac{M}{10} HCl + 100 mL \frac{M}{10} NaOH$

pH of which one of them will be equal to 1?

(1) b

will be

- (2) a
- (3) d
- (4) c
- **20.** The solubility of BaSO₄ in water 2.42×10^{-3} gL⁻¹ at 298 K. The value of solubility product (K_a)

(Given molar mass of BaSO₄ = 233 g mol⁻¹)

- (1) $1.08 \times 10^{-10} \text{ mol}^2 \text{ L}^{-2}$
- (2) $1.08 \times 10^{-12} \text{ mol}^2 \text{ L}^{-2}$
- (3) $1.08 \times 10^{-14} \text{ mol}^2 \text{ L}^{-2}$
- (4) $1.08 \times 10^{-8} \text{ mol}^2 \text{ L}^{-2}$

NEET(UG) 2019

- **21.** pH of a saturated solution of $Ca(OH)_2$ is 9. The solubility product (K_{av}) of $Ca(OH)_2$ is :-
 - (1) 0.5×10^{-15}
- (2) 0.25×10^{-10}
- (3) 0.125×10^{-15}
- (4) 0.5×10^{-10}
- **22.** Which will make basic buffer?
 - (1) 50 mL of 0.1 M NaOH + 25 mL of 0.1 M CH₃COOH
 - (2) 100 mL of 0.1 M $CH_3COOH + 100$ mL of 0.1M NaOH
 - (3) 100 mL of 0.1 M HCl + 200 mL of 0.1 M NH₄OH
 - (4) 100 mL of 0.1 M HCl + 100 mL of 0.1 M NaOH

NEET(UG) (Odisha) 2019

- **23.** The pH of 0.01 M NaOH (aq) solution will be
 - (1) 7.01
- (2) 2
- (3) 12

(4) 9

- **24.** Which of the following cannot act both as Bronsted acid and as Bronsted base?
 - (1) HCO₃
- (2) NH₃
- (3) HCl
- (4) HSO₄
- **25.** The molar solubility of CaF_2 ($K_{sp} = 5.3 \times 10^{-11}$) in
 - 0.1 M solution of NaF will be
 - (1) $5.3 \times 10^{-11} \text{ mol } L^{-1}$
 - (2) $5.3 \times 10^{-8} \text{ mol L}^{-1}$
 - (3) $5.3 \times 10^{-9} \text{ mol } L^{^{-1}}$
 - (4) $5.3 \times 10^{-10} \text{ mol L}^{-1}$

NEET (UG) 2020

- **26.** Find out the solubility of Ni(OH)₂ in 0.1M NaOH. Given that the ionic product of Ni(OH)₂ is 2×10^{-15} .
 - $(1) 1 \times 10^8 \text{ M}$
- (2) $2 \times 10^{-13} \text{ M}$
- (3) $2 \times 10^{-8} \text{ M}$
- (4) $1 \times 10^{-13} \text{ M}$

NEET (UG) 2020 (COVID-19)

- **27.** Which among the following salt solutions is basic in nature?
 - (1) Ammonium chloride
 - (2) Ammonium sulphate
 - (3) Ammonium nitrate
 - (4) Sodium acetate
- **28.** The solubility product for a salt of the type AB is 4×10^{-8} . What is the molarity of its standard solution?
 - (1) $2 \times 10^{-4} \text{ mol/L}$
- (2) $16 \times 10^{-16} \text{ mol/L}$
- (3) $2 \times 10^{-16} \text{ mol/L}$
- (4) $4 \times 10^{-4} \text{ mol/L}$

NEET (UG) 2021

- **29.** The pK_b of dimethylamine and pK_a of acetic acid are 3.27 and 4.77 respectively at T (K). The correct option for the pH of dimethylammonium acetate solution is:
 - (1) 8.50
- (2) 5.50
- (3) 7.75
- (4) 6.25

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	2	2	1	1	1	4	2	3	3	4	3	3	3	3	2
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	
Ans.	4	4	3	4	1	1	3	3	3	3	2	4	1	3	