AIPMT 2006

- 1. Which of the following is more basic than aniline
 - (1) Diphenyl amine
- (2) Triphenyl amine
- (3) p-nitro aniline
- (4) Benzyl amine

AIPMT 2007

- **2.** Which of the following presents the correct order of the acidity in the given compounds:
 - (1) FCH₂COOH > CH₃COOH > BrCH₂COOH > CICH₃COOH
 - (2) BrCH₂COOH > ClCH₂COOH > FCH₂COOH > CH₃COOH
 - (3) FCH₂COOH > ClCH₂COOH > BrCH₂COOH > CH₃COOH
 - (4) CH₃COOH > BrCH₂COOH > ClCH₂COOH > FCH₂COOH

AIPMT 2008

- **3.** The stability of carbanions in the following:-
 - (a) $RC \equiv \overset{\circ}{C}$
- (b)
- (c) $R_2C = \overset{\Theta}{C}H$
- (d) $R_3C \overset{\Theta}{C}H_2$

is in the order of:-

- (1) (d) > (b) > (c) >(a)
- (2) (a) >(c) >(b) >(d)
- (3) (a) > (b) > (c) > (d)
- (4) (b) > (c) > (d) >(a)
- **4.** Basic strength of:-
 - (a) $H_3C \overset{\Theta}{C}H_2$
 - (b) $H_2C = \overset{\circ}{C}H$ and
 - (c) $HC \equiv \overset{\Theta}{C}$

is in the order of:-

- (1) (a) > (c) > (b)
- (2) (a) > (b) > (c)
- (3) (b) > (a) > (c)
- (4) (c) > (b) > (a)

AIPMT 2010

5. Which one of the following compounds has the most acidic nature?

$$(1) \bigcirc CH \bigcirc CH_2OF$$

- (3) OH
- (4) OH
- **6.** Given are cyclohexanol (I), acetic acid (II), 2, 4, 6-trinitrophenol (III) and phenol (IV). In these the order of decreasing acidic character will be :-
 - (1) III > IV > II > I
- (2) III > II > IV > I
- (3) II > III > I > IV
- (4) II > III > IV > I

AIPMT Mains-2010

- **7.** Among the following four compounds :-
 - (a) phenol
 - (b) methyl phenol
 - (c) metanitrophenol
 - (d) paranitrophenol.

The acidity order is:

- (1) c > d > a > b
- (2) c > d > c > b
- (3) b > a > c > d
- (4) d > c > a > b
- **8.** Which of the following species is not electrophilic in nature :-
 - (1) BH₃
- (2) H₃O
- (3) NO₂
- 4) Čl

AIPMT Mains-2011

- **9.** Which of the following compounds is most basic?
 - (1) NH_2
- (2) O_2N \longrightarrow NH_2
- (4) N-COCH₃

AIPMT Pre.-2012

- The correct order of decreasing acid strength of trichloroacetic acid (A), trifluoroacetic acid (B), acetic acid (C) and formic acid (D) is:
 - (1) A > B > C > D
- (2) A > C > B > D
- (3) B > A > D > C
- (4) B > D > C > A

NEET-UG 2013

- $-\mathring{\mathrm{C}}\mathrm{H}_{\scriptscriptstyle{2}}$ is aromatic because it The radical, has :-
 - (1) 6p-orbitals and 7 unpaired electrons
 - (2) 6p-orbitals and 6 unpaired electrons
 - (3) 7p-orbitals and 6 unpaired electrons
 - (4) 7p-orbitals and 7 unpaired electrons
- **12**. The order of stability of the following tautomeric compounds is :-

$$\begin{array}{ccc}
O & O \\
\parallel & \parallel \\
CH_3-C-CH_2-C-CH_3 & & \longrightarrow \\
\end{array}$$
(II)

- (1) II > III > I
- (2) I > II > III
- (3) III > II > I
- (4) II > I > III

AIPMT 2015

In which of the following compounds, C-Cl bond ionisation shall give most stable carbonium ion?

$$H_{3}C$$
(1)
 $H_{3}C$
 $C-Cl$
 CH_{3}

$$(4) \xrightarrow{H_3C} \xrightarrow{H} C-C$$

Consider the following compounds 14.

Hyperconjugation occurs In:-

- (1) II only (2) III only
- (3) I and III (4) I only

15. Given:-

$$H_3C$$
 CH_3
 CH_3

The enthalpy of the hydrogenation of these compounds will be in the order as :-

- (1) III > II > I
- (2) II > III > I
- (3) II > I > III
- (4) I > II > III
- Which of the given compounds can exhibit **16**. tautomerism?

- (1) I and III
- (2) II and III
- (3) I, II and III
- (4) I and II

Re-AIPMT 2015

- Which of the following statements is not correct **17**. for a nucleophile?
 - (1) Nucleophiles attack low e⁻ density sites
 - (2) Nucleophiles are not electron seeking
 - (3) Nucleophile is a Lewis acid
 - (4) Ammonia is a nucleophile

18. Correct order of K_b is

(iii) CH₃CH₂-NH₂

(1) iv > iii > ii > i

(2)
$$iii > i > ii > iv$$

(3) i > ii > iii > iv

(4)
$$ii > iii > iv > i$$

NEET-I 2016

- **19.** The correct statement regarding a carbonyl compound with a hydrogen atom on its alpha carbon, is:-
 - a carbonyl compound with a hydrogen atom on its alpha-carbon never equilibrates with its corresponding enol.
 - (2) a carbonyl compound with a hydrogen atom on its alpha-carbon rapidly equilibrates with its corresponding enol and this process is known as aldehyde-ketone equilibration.
 - (3) a carbonyl compound with a hydrogen atom on its alpha-carbon rapidly equilibrates with its corresponding enol and this process is known as carbonylation.
 - (4) a carbonyl compound with a hydrogen atom on its alpha-carbon rapidly equilibrates with its corresponding enol and this process is known as keto-enol tautomerism.
- **20.** The **correct** statement regarding the basicity of arylamines is :-
 - (1) Arylamines are generally less basic than alkylamines because the nitrogen lone-pair electrons are delocalized by interaction with the aromatic ring π electron system.
 - (2) Arylamines are generally more basic than alkylamines because the nitrogen lone-pair electrons are not delocalized by interaction with the aromatic ring π electron system.
 - (3) Arylamines are generally more basic than alkylamines because of aryl group.
 - (4) Arylamines are generally more basic than alkylamines, because the nitrongen atom in arylamines is sp-hybridized.

NEET-II 2016

21. Which among the given molecules can exhibit tautomerism?

- (1) Both I and II
- (2) Both II and III
- (3) III only
- (4) Both I and III

22. The **correct** order of strengths of the carboxylic acids

is

- (1) III > II > I
- (2) II > I > III
- (3) I > II > III
- (4) II > III > I

NEET(UG) 2017

- **23.** Which one is the correct order of acidity?
 - (1) CH=CH>CH₃-C=CH>CH₂=CH₃>CH₃-CH₃
 - (2) CH=CH>CH₂=CH₂>CH₃-C=CH>CH₃-CH₃
 - (3) CH₃-CH₃>CH₉=CH₉>CH₃-C=CH>CH=CH
 - (4) CH₂=CH₂>CH₃-CH=CH₂>CH₃-C=CH>CH=CH

24. Which one is the most acidic compound?

25. The **correct** increasing order of basic strength for the following compounds is :

- (1) III < I < II
- (2) III < II < I
- (3) II < I < III
- (4) II < III < I

GC0096

- **26.** The **correct** statement regarding electrophile is:-
 - (1) Electrophile is a negatively charged species and can form a bond by accepting a pair of electrons from another electrophile
 - (2) Electrophiles are generally neutral species and can form a bond by accepting a pair of electrons from a nucleophile
 - (3) Electrophile can be either neutral or positively charged species and can form a bond by accepting a pair of electrons from a nucleophile
 - (4) Electrophile is a negatively charged species and can form a bond by accepting a pair of electrons from a nucleophile

NEET(UG) 2018

27. Which of the following is correct with respect to –I effect of the substituents ? (R = alkyl)

(1)
$$-NH_{2} < -OR < -F$$

$$(2) -NR_{2} < -OR < -F$$

$$(3) - NH_2 > - OR > - F$$

$$(4) - NR2 > - OR > - F$$

NEET(UG) 2019

- **28.** The **correct** order of the basic strength of methyl substituted amines in aqueous solution is:-
 - (1) $(CH_3)_2NH > CH_3NH_2 > (CH_3)_3N$
 - (2) $(CH_3)_3N>CH_3NH_2>(CH_3)_2NH$
 - (3) (CH₃)₃N>(CH₃)₉NH>CH₃NH₉
 - (4) $CH_3NH_2>(CH_3)_2NH>(CH_3)_3N$

- **29.** The compound that is most difficult to protonate is:-
 -) H O H (2) H₃C O H
 - H_3C CH_3 (4) Ph O H

NEET(UG) 2019 (ODISHA)

- **30.** The most stable carbocation, among the following is:-
 - (1) $(CH_3)_3 C \overset{\oplus}{C}H CH_3$
 - (2) $CH_3 CH_2 \overset{\oplus}{C}H CH_2 CH_3$
 - (3) $CH_3 \overset{\oplus}{C}H CH_2 CH_2 CH_3$
 - (4) $CH_3 CH_2 \overset{\oplus}{C}H_2$

NEET(UG) 2020

- **31.** A tertiary butyl carbocation is more stable than a secondary butyl carbocation because of which of the following?
 - (1) Hyperconjugation
 - (2) –I effect of –CH₃ groups
 - (3) +R effect of -CH₃ groups
 - (4) -R effect of -CH₃ groups

NEET(UG) 2020 (COVID-19)

32. Which of the following substituted phenols is the strongest acid?

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	4	3	3	2	3	2	4	2	3	3	2	3	2	2	1
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	3	3	2	4	1	3	4	1	3	3	3	1	1	4	3
Que.	31	32													
Ans.	1	1													