AIPMT 2009

- **1.** Given :
 - (i) $Cu^{2+} + 2e^{-} \rightarrow Cu$, $E^{\circ} = 0.337 \text{ V}$
 - (ii) $Cu^{2+} + e^{-} \rightarrow Cu^{+}$, $E^{\circ} = 0.153 \text{ V}$

Electrode potential, E° for the reaction, $Cu^{+} + e^{-} \rightarrow Cu$, will be :-

- (1) 0.38 V
- (2) 0.52 V
- (3) 0.90 V
- (4) 0.30 V
- 2. The equivalent conductance of $\frac{M}{32}$ solution of a weak monobasic acid is 8.0 mho cm² eq⁻¹ and at

infinite dilution is 400 mho cm² eq⁻¹. The dissociation constant of this acid is :-

- (1) 1.25×10^{-4}
- (2) 1.25×10^{-5}
- (3) 1.25×10^{-6}
- $(4) 6.25 \times 10^{-4}$
- **3.** Al₂O₃ is reduced by electrolysis at low potential and high current. If 4.0×10^4 A of current is passed through molten Al₂O₃ for 6 hours, what mass of aluminium is produced? (Assume 100% current efficiency, At. mass of Al = 27 g mol⁻¹)
 - (1) 1.3×10^4 g
- (2) 9.0×10^3 g
- (3) 8.1×10^4 g
- $(4) 2.4 \times 10^5 \text{ g}$

AIPMT 2010

- **4.** An increase in equivalent conductance of a strong electrolyte with dilution is mainly due to:-
 - (1) Increase in number of ions.
 - (2) Increase in ionic mobility of ions.
 - (3) 100% ionisation of electrolyte at normal dilution.
 - (4) Increase in both i.e. number of ions and ionic mobility of ions.
- **5.** Consider the following relations for emf of a electrochemical cell:
 - (a) emf of cell =(Oxidation potential of anode) (Reduction potential of cathode)
 - (b) emf of cell = (Oxidation potential of anode) + (Reduction potential of cathode)
 - (c) emf of cell = (Reduction potential of anode) + (Reduction potential of cathode)
 - (d) emf of cell = (Oxidation potential of anode) (Oxidation potential of cathode)

Which of the above relations are correct:

- (1) (a) and (b)
- (2) (c) and (d)
- (3) (b) and (d)
- (4) (c) and (a)

- **6.** Which of the following expressions correctly represents the equivalent conductance of $Al_2(SO_4)_3$ at infinite dilution. Given that $\Lambda^{\circ}_{Al^{3+}}$ and $\Lambda^{\circ}_{SO_4^{2-}}$ are the equivalent conductances at infinite dilution of the respective ions:-
 - (1) $\Lambda^{\circ}_{Al^{3+}} + \Lambda^{\circ}_{SO_4^{2-}}$
 - $(2) \left(\Lambda^{\circ}_{Al^{3+}} + \Lambda^{\circ}_{SO_4^{2-}} \right) \times 6$
 - (3) $\frac{1}{3} \wedge_{Al^{3+}}^{0} + \frac{1}{2} \wedge_{SO_4^{2-}}^{0}$
 - (4) $2\Lambda^{\circ}_{Al^{3+}} + 3\Lambda^{\circ}_{SO_4^{2-}}$
- 7. For the reduction of silver ions with copper metals, the standard cell potential was found to be +0.46 V at 25 °C. The value of standard Gibbs energy. ΔG° will be (F = 96500 C mol^{-1})
 - (1) 98.0 kJ
- (2) 89.0 kJ
- (3) 89.0 J
- (4) -44.5 kJ

AIPMT Pre. 2011

- **8.** Standard electrode potential of three metals X, Y and Z are -1.2 V, +0.5 V and -3.0 V respectively. The reducing power of these metals will be :-
 - (1) Y > Z > X
- (2) Y > X > Z
- (3) Z > X > Y
- (4) X > Y > Z
- **9.** The electrode potentials for

$$Cu^{2+}(aq) + e^{-} \rightarrow Cu^{+}(aq)$$

and $Cu^{+}(aq) + e^{-} \rightarrow Cu(s)$

are +0.15 V and +0.50 V respectively. The value of will be :-

- (1) 0.500 V
- (2) 0.325 V
- (3) 0.650 V
- (4) 0.150 V
- 10. Standard electrode potential for Sn⁴⁺/Sn²⁺ couple is +0.15 V and that for the Cr³⁺/Cr couples is -0.74 V. These two couples in their standard state are connected to make a cell. The standard cell potential will be :-
 - (1) + 1.19 V
- (2) + 0.89 V
- (3) + 0.18 V
- (4) + 1.83 V

- 11. If the $E^{\circ}_{\mbox{\tiny cell}}$ for a given reaction has a negative value, then which of the following gives the correct relationship for the values of ΔG° and K..?
 - (1) $\Delta G^{\circ} > 0$; $K_{eq} > 1$ (2) $\Delta G^{\circ} < 0$; $K_{eq} > 1$
 - $\label{eq:deltaG} \mbox{(3)} \ \Delta G^{\circ} < 0; \ K_{_{eq}} < 1 \qquad \qquad \mbox{(4)} \ \Delta G^{\circ} > 0; \ K_{_{eq}} < 1$

AIPMT Mains 2011

- **12.** A solution contains Fe^{2+} , Fe^{3+} and Γ ions. This solution was treated with iodine at 35 °C. E° for Fe^{3+} | Fe^{2+} is +0.77 V and E° for $I_2 \mid 2I^- = 0.536$ V. The favourable redox reaction is :-
 - (1) Fe^{2+} will be oxidised to Fe^{3+}
 - (2) I₂ will be reduced to I⁻
 - (3) There will be no redox reaction
 - (4) I^- will be oxidised to I_2

AIPMT Pre. 2012

13. Limiting molar conductivity of NH₄OH

 $\left(i.e. \stackrel{\circ}{\Lambda}_{m(NH_4OH)}\right)$ is equal to:-

- (1) $\mathring{\Lambda}_{m(NH_4OH)} + \mathring{\Lambda}_{m(NH_4CI)} \mathring{\Lambda}_{m(HCI)}$
- (2) $\stackrel{\circ}{\Lambda}_{m(NH_4Cl)} + \stackrel{\circ}{\Lambda}_{m(NaOH)} \stackrel{\circ}{\Lambda}_{m(NaCl)}$
- (3) $\mathring{\Lambda}_{m(NH_4Cl)} + \mathring{\Lambda}_{m(NaCl)} \mathring{\Lambda}_{m(NaOH)}$
- (4) $\mathring{\Lambda}_{m(NaOH)} + \mathring{\Lambda}_{m(NaCl)} \mathring{\Lambda}_{m(NH_4Cl)}$

AIPMT Mains 2012

- Molar conductivities (Λ_m°) at infinite dilution of NaCl, HCl and CH₃COONa are 126.4, 425.9 and 91.0 S $\text{cm}^2~\text{mol}^{-1}$ respectively. $\Lambda_m^{\circ}~\text{for}$ CH3COOH will be :-
 - (1) $290.8 \text{ S cm}^2 \text{ mol}^{-1}$
 - (2) 390.5 S cm² mol⁻¹
 - (3) $425.5 \text{ S cm}^2 \text{ mol}^{-1}$
 - (4) 180.5 S cm² mol⁻¹

NEET-UG 2013

- **15**. At 25 °C molar conductance of 0.1 molar aqueous solution of ammonium hydroxide is 9.54 ohm⁻¹ cm² mol⁻¹ and at infinite dilution its molar conductance is 238 ohm⁻¹ cm² mol⁻¹. The degree of ionisation of ammonium hydroxide at the same concentration and temperature is :-
 - (1) 40.800 %
- (2) 2.080 %
- (3) 20.800 %
- (4) 4.008 %
- A hydrogen gas electrode is made by dipping **16**. platinum wire in a solution of HCl of pH = 10and by passing hydrogen gas around the platinum wire at 1 atm pressure. The oxidation potential of electrode would be?
 - (1) 1.18 V
- (2) 0.059 V
- (3) 0.59 V
- (4) 0.118 V
- 17. A button cell used in watches function as following

 $Zn(s)+Ag_{2}O(s)+H_{2}O(\ell) \rightleftharpoons 2Ag(s)+Zn^{2+}(aq)+2OH^{-}(aq)$

If half cell potentials are

$$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s); E^{\circ} = -0.76 \text{ V}$$

$$Ag_2O(s) + H_2O(\ell) + 2e^- \rightarrow 2Ag(s) + 2OH^-(aq);$$

 $E^{\circ} = 0.34 \text{ V}$

The standard cell potential will be :-

- (1) 1.34 V
- (2) 1.10 V
- (3) 0.42 V
- (4) 0.84 V

AIPMT 2014

- When $0.1 \text{ mol } MnO_4^{2-}$ is oxidised the quantity of electricity required to completely oxidise MnO₄²to MnO_4 is :-
 - (1) 96500 C
- (2) 2×96500 C
- (3) 9650 C
- (4) 96.50 C
- **19**. The weight of silver (at wt. = 108) displaced by a quantity of electricity which displaces 5600 mL of O₂ at STP will be :-
 - (1) 5.4 g
- (2) 10.8 g
- (3) 54.0 g
- (4) 108.0 g

AIPMT 2015

- **20**. A device that converts energy of combustion of fuels like hydrogen and methane, directly into electrical energy is known as :-
 - (1) Electrolytic cell
- (2) Dynamo
- (3) Ni-Cd cell
- (4) Fuel Cell

NEET-I 2016

- 21. The pressure of H₂ required to make the potential of H2-electrode zero in pure water at 298 K is :-
 - (1) 10^{-14} atm
- (2) 10⁻¹² atm
- (3) 10^{-10} atm
- (4) 10-4 atm

NEET-II 2016

- **22**. The molar conductivity of a 0.5 mol/dm³ solution of AgNO₃ with electrolytic conductivity of $5.76 \times 10^{-3} \, \text{S cm}^{-1}$ at $298 \, \text{K}$ is
 - (1) 0.086 S cm²/mol
- (2) 28.8 S cm²/mol
- (3) 2.88 S cm²/mol
- (4) 11.52 S cm²/mol
- 23. During the electrolysis of molten sodium chloride, the time required to produce 0.10 mol of chlorine gas using a current of 3 A is
 - (1) 220 minutes
- (2) 330 minutes
- (3) 55 minutes
- (4) 110 minutes
- **24.** If the $E^{\circ}_{\mbox{\tiny cell}}$ for a given reaction has a negative value, which of the following gives the **correct** relationships for the values of ΔG° and K_{o} ?
 - (1) $\Delta G^{\circ} < 0$; $K_{eq} > 1$ (2) $\Delta G^{\circ} < 0$; $K_{eq} < 1$

 - (3) $\Delta G^{\circ} > 0$; $K_{eq} < 1$ (4) $\Delta G^{\circ} > 0$; $K_{\infty} > 1$
- **25**. The number of electrons delivered at the cathode during electrolysis by a current of 1 A in 60 s is (charge on electron = 1.60×10^{-19} C)
 - (1) 3.75×10^{20}
- (2) 7.48×10^{23}
- $(3) 6 \times 10^{23}$
- $(4) 6 \times 10^{20}$

NEET(UG) 2017

In the electrochemical cell:-**26**.

> $Zn | ZnSO_4(0.01M) | | CuSO_4(1.0 M) | Cu$, the emf of this Daniel cell is E₁. When the concentration of ZnSO₄ is changed to 1.0M and that of CuSO₄ changed to 0.01M, the emf changes to E_2 .

Which one of the relationship is correct between E₁ and E₂?

(Given,
$$\frac{RT}{F} = 0.059$$
)

- (1) $E_1 < E_2$
- (2) $E_1 > E_2$
- (3) $E_2 = 0 \neq E_1$
- $(4) E_1 = E_2$

NEET(UG) 2018

27. Consider the change in oxidation state of Bromine corresponding to different EMF values as shown in the diagram below:

$$BrO_4^ \xrightarrow{1.82 \text{ V}}$$
 $BrO_3^ \xrightarrow{1.5 \text{ V}}$ $HBrO$
 $Br^ \xrightarrow{1.0652\text{V}}$ Br_2 $\xrightarrow{1.595 \text{ V}}$

Then the species undergoing disproportionation is:-

- (1) BrO₃
- (2) BrO₄

(3) Br₂

(4) HBrO

NEET(UG) 2019

For a cell involving one electron $E_{cell}^{\circ} = 0.59V$ at 298 K, the equilibrium constant for the cell reaction is :-

Given that
$$\frac{2.303RT}{F} = 0.059V$$
 at $T = 298K$

- (1) 1.0×10^2
- (2) 1.0×10^5
- (3) 1.0×10^{10}
- $(4) 1.0 \times 10^{30}$
- **29.** For the cell reaction

$$2Fe^{3+}$$
 (aq) + $2I^{-}$ (aq) $\rightarrow 2Fe^{2+}$ (aq) + I_{2} (aq)

 $E_{\text{cell}}^{\circ} = 0.24V$ at 298 K. The standard Gibbs energy (Δ, G°) of the cell reaction is :

[Given that Faraday constant $F = 96500 \text{ C mol}^{-1}$]

- (1) 46.32 kJ mol⁻¹
- $(2) 23.16 \text{ kJ mol}^{-1}$
- (3) 46.32 kJ mol⁻¹
- (4) 23.16 kJ mol⁻¹

NEET(UG) (Odisha) 2019

30. Following limiting molar conductivities are given as

$$\lambda_{m(H_2SO_4)}^0 = x S cm^2 mol^{-1}$$

$$\lambda_{m(K_2SO_4)}^0 = y \ S cm^2 \ mol^{-1}$$

$$\lambda_{m(CH_3COOK)}^0 = z \ Scm^2 \, mol^{-1}$$

 $\lambda_{\rm m}^0$ (in S cm 2 mol $^{\!-\!1}\!)$ for CH $_3$ COOH will be-

$$(1) x - y + 2 z$$

(2)
$$x + y - z$$

$$(3) x - y + z$$

$$(4) \ \frac{\left(x-y\right)}{2} + z$$

- 31. The standard electrode potential (E°) values of $Al^{3+}|Al$, $Ag^{+}|Ag$, $K^{+}|K$ and $Cr^{3+}|Cr$ are -1.66 V, 0.80V, -2.93 V and -0.74 V respectively. The correct decreasing order of reducing power of the metal is:
 - (1) Ag > Cr > Al > K
- (2) K > Al > Cr > Aq
- (3) K > Al > Ag > Cr
- (4) Al > K > Ag > Cr

NEET (UG) 2020

- **32**. The number of Faradays(F) required to produce 20 g of calcium from molten CaCl₂ (Atomic mass of $Ca = 40 \text{ g mol}^{-1}$) is :
 - (1) 4
- $(2)\ 1$
- (3) 2
- (4) 3
- 33. On electrolysis of dil. sulphuric acid using Platinum (Pt) electrode, the product obtained at anode will be:
 - (1) SO₂ gas
- (2) Hydrogen gas
- (3) Oxygen gas
- (4) H₂S gas

NEET (UG) 2020 (COVID-19)

- 34. Identify the reaction from following having top position in EMF series (Std.red. potential) according to their electrode potential at 298 K.

 - (1) $Mg^{2+} + 2e^{-} \rightarrow Mg(s)$ (2) $Fe^{2+} + 2e^{-} \rightarrow Fe(s)$
 - (3) $Au^{3+} + 3e^{-} \rightarrow Au(s)$
- (4) $K^+ + 1e^- \rightarrow K(s)$

35. In a typical fuel cell, the reactants (R) and product (P) are :-

(1)
$$R = H_{2(0)}, O_{2(0)}; P = H_2O_{2(\ell)}$$

(2)
$$R = H_{2(0)}, O_{2(0)}; P = H_2O_{(\ell)}$$

(3)
$$R = H_{2(0)}, O_{2(0)}, Cl_{2(0)}; P = HClO_{4(0)}$$

(4)
$$R = H_{2(q)}, N_{2(q)}; P = NH_{3(aq)}$$

NEET (UG) 2021

36. The molar conductance of NaCl, HCl and CH₃COONa at infinite dilution are 126.45,426.16 and 91.0 S cm² mol⁻¹ respectively. The molar conductance of CH₃COOH at infinite dilution is.

Choose the right option for your answer.

(1)
$$201.28 \text{ S cm}^2 \text{ mol}^{-1}$$

(2)
$$390.71 \text{ S cm}^2 \text{ mol}^{-1}$$

(3)
$$698.28 \text{ S cm}^2 \text{ mol}^{-1}$$

- (4) 540.48 S cm² mol⁻¹
- The molar conductivity of 0.007 M acetic acid is **37**. 20 S cm² mol⁻¹. What is the dissociation constant of acetic acid? Choose the correct

$$\begin{bmatrix} \Lambda_{\text{H}^+}^{\circ} = 350\,\text{S}\,\text{cm}^2\text{mol}^{-1} \\ \Lambda_{\text{CH}_3\text{COO}^-}^{\circ} = 50\,\text{S}\,\text{cm}^2\text{mol}^{-1} \end{bmatrix}$$

(1) $1.75 \times 10^{-4} \text{ mol L}^{-1}$

option.

- (2) $2.50 \times 10^{-4} \text{ mol L}^{-1}$
- (3) $1.75 \times 10^{-5} \text{ mol L}^{-1}$
- (4) $2.50 \times 10^{-5} \text{ mol L}^{-1}$

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	2	2	3	2	3	1	2	3	2	2	4	4	2	2	4
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	3	2	3	4	4	1	4	4	3	1	2	4	3	1	4
Que.	31	32	33	34	35	36	37								
Ans.	2	2	3	3	2	2	3								