THE FAUNAL ASSEMBLAGE FROM AWA'UQ (REFUGE ROCK): A UNIQUE RECORD FROM THE KODIAK ARCHIPELAGO, ALASKA # Michael A. Etnier Department of Anthropology, Western Washington University, Bellingham, WA 98225; michael.etnier@wwu.edu #### **ABSTRACT** The Awa'uq, or Refuge Rock site (KOD-450), located on Sitkalidak Island in the southern Kodiak Archipelago (hereafter, Kodiak), is well known as the site of a brutal massacre in 1784. Less appreciated is the fact that twenty-eight house pits and a well-preserved faunal midden were documented at the site in the 1990s. The midden sample is dominated by northern fur seal (Callorhinus ursinus), and large cod (Gadus macrocephalus) and halibut (Hippoglossus stenolepis). Fur seal is a common component of late prehistoric sites in southern Kodiak, but typically in conjunction with harbor seal (Phoca vitulina). Unlike other Kodiak samples, harbor seal is virtually absent from the Awa'uq sample. Bird remains are scarce, but show a high diversity of species. Fish remains also show a broad spectrum of species ranging from herring (Clupea pallasii) to sculpins (Cottidae) to cod, in addition to the large halibut. The fur seal harvest focused on adult females and sub-adult males, with low frequencies of fetal individuals and adult males present. No rookery-age fur seal pups have been identified. This suggests the hunt was conducted at sea and focused on fur seals migrating to and from rookeries in the Bering Sea, rather than on a local rookery not documented historically. The Awa'uq site (also known as Refuge Rock, KOD-450), on the southeastern shore of Sitkalidak Island, adjacent to Kodiak Island (Figs. 1, 2), is infamous as the location where hundreds of Alutiiq villagers were held under siege and later massacred by Grigorii Shelikhov and his men in August, 1784 (Black 1992, 2004). Indeed, the Alutiiq place name translates in English as "to become numb" (Steffian and Counceller 2012), and provides an indication of the dark history and cultural importance of this site. This watershed historical event overshadows the fact that Awa'uq also served domestic functions over and above the relative degree of security the site offered the Alutiiq residents. Archaeological investigations led by Rick Knecht discovered at least twenty-eight house depressions, most of which were associated with a Koniag-era occupation (postdating AD 1200; Clark 1986), as well as a large deposit of well-preserved faunal midden (Knecht et al. 2002). This paper details the analyses of faunal remains recovered in those investigations, and sheds light on what appears to be a unique faunal assemblage from the Kodiak Archipelago. #### **MATERIALS AND METHODS** A 2 m x 2 m unit was excavated into well-preserved faunal midden by Knecht et al. (2002) to a maximum depth of 54 cm below the surface (Knecht n.d.). Faunal samples were primarily recovered using 13 mm (0.5") screens (Knecht n.d.), though a few opportunistic and/or bulk samples were also collected (see below). According to Knecht et al. (2002), the midden was found to contain a variety of invertebrates (clam, mussel, chiton, urchin, and periwinkles), as well as a limited variety of mammal bones (seal and porpoise).¹ Bird bones were noted as being absent. Fish bones were not mentioned, but the midden deposit was noted to also have pieces of fire-cracked rock and gravel-tempered ceramic fragments mixed in (Knecht Figure 1. Aerial view of Awa'uq (Refuge Rock) looking north, December 2000. Photo by Sven Haakanson, Jr. Courtesy the Alutiiq Museum. et al. 2002). Further analysis of the faunal remains was not conducted prior to the current study. If any natural or arbitrary stratigraphic breaks were used in the field excavations, no record of that was documented. Thus, the entire assemblage is treated here as one cohesive unit, spanning an unknown period of accumulation prior to the abandonment of the village in 1784. Note that if some or all of this particular midden deposit is associated with the Koniag-age house pits, the materials could date to as early as AD 1200. Materials were shipped from the Alutiiq Museum and Archaeological Repository in Kodiak to Etnier's lab at Western Washington University. Faunal materials were sorted into broad classes. Invertebrate remains and fish bones were only briefly examined for this study, with taxa present noted and qualitative information on abundance recorded, while all mammal and bird bones were identified to the lowest taxonomic level possible and quantified using NISP (number of identified specimens). Comparative reference skeletons from the Burke Museum of Natural History and from Etnier's personal research collection were used to aid identifications. Male northern fur seals (Callorhinus ursinus) were distinguished from females based on a combination of sexually dimorphic size differences and age-specific epiphyseal fusion sequences. Age-at-death for fur seals was approximated using known-age skeletons and published growth curves (Etnier 2002). Age categories used are detailed in Table 1. Minimum number of elements (MNE, following Lyman 1994) was calculated for fur seals to test the hypothesis of differential body part representation. For this calculation, the minimum number of whole and non-overlapping portions of bone was summed separately for bones of the forelimb, the hind limb, and the axial skeleton. The observed MNEs were evaluated against expected frequencies using chi-square (Zar 1996). Figure 2. Kodiak Archipelago, Alaska, indicating locations of sites discussed in text. The three sites listed together with a single point on the inset map are all located within a 2 km stretch of shoreline. Inset map modified from Clark 1974. Table 1. Age categories used to generate the harvest profile for northern fur seals. | Age Category | Characteristics and Comments | | | | |---------------|--|--|--|--| | Adult | Epiphyses fully fused or annulus counts on teeth indicate adult age (3–4 years or older for females, 10–12 years or older for males) | | | | | Sub-adult | Bones at or near adult size, but lacking fused epiphyses. Note that ontogenetic maturity (fusion of epiphyses) does not necessarily correspond to reproductive maturity (see Etnier 2002). | | | | | Immature | Specimen from a young individual, but unknown whether it is old enough to be considered sub-adult (i.e., sex not known, so relative degree of development unknown) | | | | | Pup/Juvenile | Specimen obviously from a very young individual, but age unknown | | | | | Pup | A narrow window of development, from 0 to 3 or 4 months | | | | | Fetus/Newborn | Specimen approaches the size and/or development of reference skeleton of a newborn pup | | | | | Fetus | Specimen substantially smaller and/or under-developed relative to reference skeleton of a newborn pup | | | | #### **RESULTS** The sample of invertebrates consists of approximately 10 liters of material, most of which is bivalve and gastropod shells. A cursory examination of the invertebrates in the midden sample shows that a wide range of intertidal and subtidal species were utilized at *Awa'uq* (Table 2), including Pacific octopus (*Enteroctopus dolfleini*). Although these animals were almost certainly utilized widely throughout the North Pacific in prehistoric times, I know of only one other record of octopus from an archaeological site (Atka Island, D. Hansen, pers. com., 2012). The sample of vertebrates consists of a total NISP of 2405 (birds and mammals only). Detailed examination of the fish remains (approximately 30 liters of material) is forthcoming. However, as samples were sorted to separate the midden sample into different classes, the range of fish species was documented (Table 2). In particular, it was noted that the fish sample is dominated by cod (Gadus macrocephalus) and halibut (Hippoglossus stenolepis). Many of the bones were from large (cod and halibut) or very large (halibut) individuals.2 Although cod and halibut can be caught relatively close to shore in most seasons (Mecklenburg et al. 2002), large individuals are typically only caught far offshore in deep water. Interestingly, Irish Lord (Hemilepidotus sp.), a sculpin inhabiting near-shore environments, appears to be the third most-abundant taxon, followed distantly by salmon (Salmonidae) and herring (Clupea pallasii). The herring bones were presumably collected either opportunistically or in bulk samples from the midden deposit, rather than in the 13 mm mesh screens. The sample of birds is small (NISP = 52). However, several observations can be made about the assemblage (Table 2). First, there appears to have been a preference for waterfowl at *Awa'uq*, with mallard-sized ducks comprising 40% (22/55) of the total NISP. Second, the number of species identified (n = 9) is high given the small overall sample size. Finally, the sample consists of species that represent a mix of terrestrial, near-shore, and offshore environments. In contrast to the other classes of faunal remains, the mammalian component (NISP = 2353) is extremely narrowly focused (Table 2), with only four distinct taxa represented. Furthermore, northern fur seals dominate the assemblage, comprising 79% (967/1217) of the mammals identified to a taxonomic level lower than Class. In contrast, harbor seal (*Phoca vitulina*) comprised only 0.4% of the mammals (5/1217), consisting of a single metacarpal and four phalanges. The age and sex composition of the fur seals is highly suggestive of the time and location they were harvested. The overall ratio of males to females cannot be determined with accuracy because large immature females cannot be distinguished from small immature males (Etnier 2002). Nevertheless, it is clear that adult females and sub-adult males make up the majority of specimens for
which age and sex could be determined (Table 3). The frequency of adult male bones is low (NISP = 5). Despite the inability to distinguish sex for the bones from young fur seals, many specimens could still be placed into broad age categories. The sample from *Awa'uq* seems to be bimodally distributed, with peaks in the fetal age class and the juvenile/immature age classes, the latter possibly representing the young born that year. Bones identified as potentially being from unweaned, rookery-age pups (i.e., aged zero to 3 or 4 months) are extremely rare, with an NISP of 2. Because the fur seal bones are predominantly from sub-adult males and adult females, and therefore from animals of broadly similar body size, all fur seal element counts were pooled for the analysis of body-part representation. Within each body portion (forelimb, hind limb, and axial skeleton, or trunk), the observed frequencies are significantly different from expected (Table 4). Likewise, the pooled frequencies are also significantly different from the expected frequencies for forelimb, hind limb, and axial skeleton (Table 4). #### **DISCUSSION** Aside from the near absence of bird bones noted by Knecht et al. (2002), the initial reports of the *Awa'uq* faunas seem fairly typical of other sites in the Kodiak area. Pinnipeds [primarily harbor seal and Steller sea lion (*Eumetopias jubatus*), with lower frequencies of northern fur seal and small porpoises (harbor porpoise (*Phocoena phocoena*) and Dall's porpoise (*Phocoenoides dalli*)] are commonly recovered from sites throughout the region (Clark 1974; Table 2. Summary faunal identification data for taxa recovered from Awa'uq. | Black karie chiton Limpet, indet. Limpet, indet. Limpet, indet. Limpet, indet. Limpet, indet. Littoridae + Periwinkle Littorina sp. Neptune whelk Nucella sp. Neptune whelk Nucella sp. Heart cockle Clinocardium mutallii Horse clam Tresus capax + Pacific octopus Enteroctopus defleini Barnacle, indet, Balanidae or Semibalanidae Parting Clupea pallanii Altering Clupea pallanii Salmon Salmonidae Herring Clupea pallanii Fippoglosus stenulepis Abundant; many large and extremely large individuals present Halibut Hippoglosus stenulepis Abundant; many large and extremely large individuals present Auks, puffins, and murres Alcidae Auks, puffins, and murres Alcidae Auks, puffins, and murres Alcidae 1 Albatross Phoebastria sp. 2 Gull Larru sp. 2 Gull Larru sp. 2 Gull Larru sp. 2 Gull Larrus sp. 3 Canon (Carlos red-throated) Albatross Phoebastria sp. 4 Bala deagle Halacetus leucoephalus Tir scal, or sea lion Pinnipedia 11 Probably all or mostly fur seal Probably all fur seal Northern fur seal Callorbinus usrinus See Table 3 for age/sex composition Northern fur seal Chalcininet. Cetacea 25 Mammal, indet. Cetacea Callorbinis usrinus See Tobably a mix of Delphinidae and fur seal | Common Name | Scientific Name | NISP | Comment | |--|--------------------------------|----------------------------|------|--| | Perwinkle Littorina sp. + One liter of sorted shells | Black katie chiton | Katharina tunicata | + | | | Neprune whelk Nucella sp. + | Limpet, indet. | Lottiidae | + | | | Neptune whelk Neptunea sp. + | Periwinkle | Littorina sp. | + | - One liter of sorted shells | | Neptune whelk Neptunea sp. + | Dogwhelk | Nucella sp. | + | | | Heart cockle Clinocardium nuttallii + Horse clam Tresus capax + Butter clam Saxidomus gigantea + Pacific octopus Enteroctopus doffeini 3 Beak fragments, perhaps from a single individual Barnacle, indet. Balanidae or Semibalanidae + Urchin Strongylocentrotus sp. + Trace amounts | Neptune whelk | Neptunea sp. | + | | | Horse clam | Blue mussel | Mytilus sp. | + | | | Butter clam Saxidomus gigantea + Pacific octopus Enteroctopus doffeini 3 Beak fragments, perhaps from a single individual Barnacle, indet. Balanidae or Semibalanidae + Urchin Strongylocentrotus sp. + Trace amounts Herring Clupea pallasii + Present, but in low numbers Salmon Salmonidae + Present, but in low numbers Cod Gadus macrocephalus + Abundant; many large individuals present Irish Lord Hemilepidotus sp. + Common Halibut Hippoglossus stenolepis + Abundant; many large and extremely large individuals present Duck, indet. Anatidae, indet. 5 Mallard-sized Dabbling duck Anas sp. 17 Mallard-sized Auks, puffins, and murres Alcidae 1 Auks, puffins, and murres Cf. Alcidae 3 Murre Uria sp. 2 Gull Larus sp. 2 Gull Larus sp. 2 Gull Larus sp. 2 Framigan Lagopus sp. 2 Loon (Pacific or red-throated) Gavia stellatalpacifica 1 Albatross Phoebastria sp. 5 Northern fulmar Fulmarus glacialis 1 Shearwater Puffinus sp. 4 Bald cagle Haliaeetus leucocephalus 1 Bird, indet. Aves 8 Scal, fur scal, or sea lion Otariidae 30 Probably all fur seal Northern fur scal Callorhinus ursinus 937 Four phalanges and one metacarpal Dolphin, indet. Catace 25 Mammal, indet. Mammalia 1136 Probably a mix of Delphinidae and fur scal | Heart cockle | Clinocardium nuttallii | + | | | Pacific octopus Enteroctopus doffeini 3 Beak fragments, perhaps from a single individual Barnacle, indet. Balanidae or Semibalanidae + Trace amounts Urchin Strongylocentrotus sp. + Trace amounts Herring Clupea pallasii + Present, but in low numbers Salmon Salmonidae + Present, but in low numbers Cod Gadus macrocephalus + Abundant; many large individuals present Irish Lord Hemilepidotus sp. + Common Halibut Hippoglossus stenolepis + Abundant; many large and extremely large individuals present Duck, indet. Anatidae, indet. 5 Mallard-sized Dabbling duck Anas sp. 17 Mallard-sized Dabks, puffins, and murres Alcidae 1 Auks, puffins, and murres Alcidae 1 Auks, puffins, and murres cf. Alcidae 3 Murre Uria sp. 2 Gull Larus sp. 2 Ptarmigan Lagopus sp. 2 | Horse clam | Tresus capax | + | | | Barnacle, indet. Balanidae or Semibalanidae + Urchin Strongylocentrotus sp. + Trace amounts Herring Clupea pallasii + Present, but in low numbers Salmon Salmonidae + Present, but in low numbers Cod Gadus macroeephalus + Abundant; many large individuals present Irish Lord Hemilepidorus sp. + Common Halibut Hippoglossus stenolepis + Abundant; many large and extremely large individuals present Duck, indet. Anatidae, indet. 5 Mallard-sized Dabbling duck Anas sp. 17 Mallard-sized Auks, puffins, and murres Alcidae 1 Auks, puffins, and murres of. Alcidae 3 Murre Uria sp. 2 Gull Larus sp. 2 Furmigan Lagopus sp. 2 Ptarmigan Lagopus sp. 2 Ptarmigan Lagopus sp. 2 Ptarmigan Lagopus sp. 5 Northern fulmar Fulmarus glacialis 1 Shearwater Puffinus sp. 4 Bald eagle Haliaeetus leucocephalus 1 Bird, indet. Aves 8 Seal, fur seal, or sea lion Pinnipedia 112 Probably all or mostly fur seal Northern fur seal Callorbinus ursinus 30 Harbor seal Phoca virulina 5 Four phalanges and one metacarpal Dolphin, indet. Delphinidae 78 Manmali, indet. Mammalia 1136 Probably a mix of Delphinidae and fur seal | Butter clam | Saxidomus gigantea | + | | | Urchin Strongylocentrotus sp. + Trace amounts Herring Clupea pallasii + Present, but in low numbers Salmon Salmonidae + Present, but in low numbers Cod Gadus macrocephalus + Abundant; many large individuals present Irish Lord Hemilepidotus sp. + Common Halibut Hippoglossus stenolepis + Abundant; many large and extremely large individuals present Duck, indet. Anatidae, indet. 5 Mallard-sized Dabbling duck Anas sp. 17 Mallard-sized Auks, puffins, and murres Alcidae 1 Auks, puffins, and murres cf. Alcidae 3 Murre Uria sp. 2 Gull Larus sp. 2 Parmigan Lagopus sp. 2 Loon (Pacific or red-throated) Gavia stellatalpacifica 1 Albatross Phoebastria sp. 5 Northern fulmar Fubranus glacialis 1 Shearwater Puffinus sp. 4 Bald eagle Haliaeetus leucoephalus 1 Bird, indet. Aves 8 Seal, fur seal, or sea lion Pinnipedia 112 Probably all or mostly fur seal Northern fur seal Callorhinus ursinus 937 See Tabl | Pacific octopus | Enteroctopus dofleini | 3 | Beak fragments, perhaps from a single individual | | Herring Clupea pallasii +
Present, but in low numbers Salmon Salmonidae + Present, but in low numbers Cod Gadus macrocephalus + Abundant; many large individuals present Irish Lord Hemilepidotus sp. + Common Halibut Hippoglassus stenolepis + Abundant; many large and extremely large individuals present Duck, indet. Anatidae, indet. 5 Mallard-sized Duck, indet. Anatidae, indet. 5 Mallard-sized Auks, puffins, and murres Alcidae 1 Auks, puffins, and murres cf. Alcidae 3 Murre Uria sp. 2 Gull Larus sp. 2 Ptarmigan Lagopus sp. 2 Laon (Pacific or red-throated) Gavia stellatadpacifica 1 Albatross Phoebastria sp. 5 Northern fulmar Fulmarus glacialis 1 Shearwater Puffinus sp. 4 Bald eagle Haliaeetus leucocephalus 1 Bird, indet. Aves 8 Seal, fur seal, or sea lion Pinnipedia 112 Probably all or mostly fur seal Fur seal or sea lion Otariidae 30 Probably all fur seal Northern fur seal Callorhinus ursinus 30 Northern fur seal Callorhinus ursinus 30 Northern fur seal Phoca vitulina 5 Four phalanges and one metacarpal Dolphin, indet. Cetacea 25 Mammal, indet. Mammalia 1136 Probably a mix of Delphinidae and fur seal | Barnacle, indet. | Balanidae or Semibalanidae | + | | | Salmon Salmonidae + Present, but in low numbers Cod Gadus macrocephalus + Abundant; many large individuals present Irish Lord Hemilepidotus sp. + Common Halibut Hippoglossus stenolepis + Abundant; many large and extremely large individuals present Duck, indet. Anatidae, indet. 5 Mallard-sized Dubling duck Anas sp. 17 Mallard-sized Auks, puffins, and murres Alcidae 1 Auks, puffins, and murres cf. Akidae 3 Murre Uria sp. 2 Gull Larus sp. 2 Ptarmigan Lagopus sp. 2 Loon (Pacific or red-throated) Gavia stellatadpacifica 1 Albatross Phoebastria sp. 5 Northern fulmar Fulmarus glacialis 1 Shearwater Puffinus sp. 4 Bald eagle Haliacetus leucocephalus 1 Bird, indet. Aves 8 Seal, fur seal, or sea lion Pinnipedia 112 Probably all or mostly fur seal Fur seal or | Urchin | Strongylocentrotus sp. | + | Trace amounts | | SalmonSalmonidae+Present, but in low numbersCodGadus macrocephalus+Abundant; many large individuals presentIrish LordHemilepidotus sp.+CommonHalibutHippoglossus stenolepis+Abundant; many large and extremely large individuals presentDuck, indet.Anatidae, indet.5Mallard-sizedDabbling duckAnas sp.17Mallard-sizedAuks, puffins, and murresAlcidae1Auks, puffins, and murrescf. Alcidae3MurreUria sp.2GullLarus sp.2ParmiganLagopus sp.2Loon (Pacific or red-throated)Gavia stellata/pacifica1AlbatrossPhoeebastria sp.5Northern fulmarFulmarus glacialis1ShearwaterPuffinus sp.4Bald eagleHaliaeetus leucocephalus1Bird, indet.Aves8Seal, fur seal, or sea lionPinnipedia112Probably all or mostly fur sealFur seal or sea lionOtariidae30Probably all fur sealNorthern fur sealCallorhinus ursinus30Northern fur sealCallorhinus ursinus30Northern fur sealCallorhinus ursinus30Northern fur sealCallorhinus ursinus5Four phalanges and one metacarpalDolphin, indet.Delphinidae78Whale, indet.Cetacea25Mammal, indet.Mammalia1136Probably a mi | Herring | Clupea pallasii | + | Present, but in low numbers | | Irish LordHemilepidotus sp.+CommonHallibutHippoglossus stenolepis+Abundant; many large and extremely large individuals presentDuck, indet.Anatidae, indet.5Mallard-sizedDabbling duckAnas sp.17Mallard-sizedAuks, puffins, and murresAlcidae1Auks, puffins, and murrescf. Alcidae3MurreUria sp.2GullLarus sp.2PtarmiganLagopus sp.2Loon (Pacific or red-throated)Gavia stellatalpacifica1AlbatrossPhoebastria sp.5Northern fulmarFulmarus glacialis1ShearwaterPuffinus sp.4Bald eagleHaliaeetus leucocephalus1Bird, indet.Aves8Seal, fur seal, or sea lionPinnipedia112Probably all or mostly fur sealFur seal or sea lionOtariidae30Probably all fur sealNorthern fur sealCallorbinus ursinus30Probably all fur sealNorthern fur sealcf. Callorbinus ursinus30Probably all fur sealHarbor sealPhoca vitulina5Four phalanges and one metacarpalDolphin, indet.Delphinidae78Whale, indet.Cetacea25Mammal, indet.Mammalia1136Probably a mix of Delphinidae and fur seal | Salmon | | + | Present, but in low numbers | | Irish Lord Hemilepidorus sp. + Common Halibut Hippoglossus stenolepis + Abundant; many large and extremely large individuals present Duck, indet. Anatidae, indet. 5 Mallard-sized Dabbling duck Anas sp. 17 Mallard-sized Auks, puffins, and murres Alcidae 1 Auks, puffins, and murres cf. Alcidae 3 Murre Uria sp. 2 Gull Larus sp. 2 Parmigan Lagopus sp. 2 Loon (Pacific or red-throated) Gavia stellatalpacifica 1 Albatross Phoebastria sp. 5 Northern fulmar Fulmarus glacialis 1 Shearwater Puffinus sp. 4 Bald eagle Haliaeetus leucocephalus 1 Bird, indet. Aves 8 Seal, fur seal, or sea lion Pinnipedia 112 Probably all or mostly fur seal Fur seal or sea lion Otariidae 30 Probably all fur seal Northern fur seal Callorhinus ursinus 30 Probably all fur seal Northern fur seal Callorhinus ursinus 30 Four phalanges and one metacarpal Dolphin, indet. Delphinidae 78 Whale, indet. Cetacea | Cod | Gadus macrocephalus | + | Abundant; many large individuals present | | Halibut Hippoglossus stenolepis + Abundant; many large and extremely large individuals present Duck, indet. Anatidae, indet. 5 Mallard-sized Auks, puffins, and murres Alcidae 1 Auks, puffins, and murres Alcidae 3 Murre Uria sp. 2 Gull Larus sp. 2 Ptarmigan Lagopus sp. 2 Loon (Pacific or red-throated) Gavia stellatalpacifica Albatross Phoebastria sp. 5 Northern fulmar Fulmarus glacialis 1 Shearwater Puffinus sp. 4 Bald eagle Haliaeetus leucocephalus Bird, indet. Aves 8 Seal, fur seal, or sea lion Pinnipedia 112 Probably all or mostly fur seal Northern fur seal Callorhinus ursinus 30 Probably all fur seal Northern fur seal Callorhinus ursinus 30 Probably all fur seal Dolphin, indet. Delphinidae 78 Whale, indet. Cetacea 25 Mammal, indet. Mammalia 1136 Probably a mix of Delphinidae and fur seal | Irish Lord | Hemilepidotus sp. | + | | | Dabbling duckAnas sp.17Mallard-sizedAuks, puffins, and murresAlcidae1Auks, puffins, and murrescf. Alcidae3MurreUria sp.2GullLarus sp.2PtarmiganLagopus sp.2Loon (Pacific or red-throated)Gavia stellatalpacifica1AlbatrossPhoebastria sp.5Northern fulmarFulmarus glacialis1ShearwaterPuffinus sp.4Bald eagleHaliaeetus leucocephalus1Bird, indet.Aves8Seal, fur seal, or sea lionPinnipedia112Probably all or mostly fur sealFur seal or sea lionOtariidae30Probably all fur sealNorthern fur sealCallorhinus ursinus937See Table 3 for age/sex compositionNorthern fur sealcf. Callorhinus ursinus30Harbor sealPhoca vitulina5Four phalanges and one metacarpalDolphin, indet.Delphinidae78Whale, indet.Cetacea25Mammal, indet.Mammalia1136Probably a mix of Delphinidae and fur seal | Halibut | Hippoglossus stenolepis | + | | | Dabbling duckAnas sp.17Mallard-sizedAuks, puffins, and murresAlcidae1Auks, puffins, and murrescf. Alcidae3MurreUria sp.2GullLarus sp.2PtarmiganLagopus sp.2Loon (Pacific or red-throated)Gavia stellata/pacifica1AlbatrossPhoebastria sp.5Northern fulmarFulmarus glacialis1ShearwaterPuffinus sp.4Bald eagleHaliaeetus leucocephalus1Bird, indet.Aves8Seal, fur seal, or sea lionPinnipedia112Probably all or mostly fur sealFur seal or sea lionOtariidae30Probably all fur sealNorthern fur sealCallorhinus ursinus937See Table 3 for age/sex compositionNorthern fur sealcf. Callorhinus ursinus30Harbor sealPhoca vitulina5Four phalanges and one metacarpalDolphin, indet.Delphinidae78Whale, indet.Cetacea25Mammal, indet.Mammalia1136Probably a mix of Delphinidae and fur seal | Duck, indet. | Anatidae, indet. | 5 | Mallard-sized | | Auks, puffins, and murresAlcidae1Auks, puffins, and murrescf. Alcidae3MurreUria sp.2GullLarus sp.2PtarmiganLagopus sp.2Loon (Pacific or red-throated)Gavia stellatalpacifica1AlbatrossPhoebastria sp.5Northern fulmarFulmarus glacialis1ShearwaterPuffinus sp.4Bald eagleHaliaeetus leucocephalus1Bird, indet.Aves8Seal, fur seal, or sea lionPinnipedia112Probably all or mostly fur sealFur seal or sea lionOtariidae30Probably all fur sealNorthern fur sealCallorhinus ursinus937See Table 3 for age/sex compositionNorthern fur sealcf. Callorhinus ursinus30Harbor sealPhoca vitulina5Four phalanges and one metacarpalDolphin, indet.Delphinidae78Whale, indet.Cetacea25Mammal, indet.Mammalia1136Probably a mix of Delphinidae and fur seal | Dabbling duck | | 17 | Mallard-sized | | Auks, puffins, and murres Cf. Alcidae Murre Uria sp. 2 Gull Larus sp. 2 Ptarmigan Lagopus sp. 2 Loon (Pacific or red-throated) Albatross Phoebastria sp. 5 Northern fulmar Fulmarus glacialis 1 Shearwater Puffinus sp. 4 Bald eagle Haliaeetus leucocephalus Bird, indet. Aves 8 Seal, fur seal, or sea lion Pinnipedia Pinnipedia 112 Probably all or mostly fur seal Fur seal or sea lion Otariidae Northern fur seal Callorhinus ursinus 30 Probably all fur seal Northern fur seal Cf. Callorhinus ursinus 30 Harbor seal Phoca vitulina 5 Four phalanges and one metacarpal Dolphin, indet. Cetacea 25 Mammal, indet. Mammalia 1136 Probably a mix of Delphinidae and fur seal | | | 1 | | | GullLarus sp.2PtarmiganLagopus sp.2Loon (Pacific or red-throated)Gavia stellata/pacifica1AlbatrossPhoebastria sp.5Northern fulmarFulmarus glacialis1ShearwaterPuffinus sp.4Bald eagleHaliaeetus leucocephalus1Bird, indet.Aves8Seal, fur seal, or sea lionPinnipedia112Probably all or mostly fur sealFur seal or sea lionOtariidae30Probably all fur sealNorthern fur sealCallorhinus ursinus937See Table 3 for age/sex compositionNorthern fur sealcf. Callorhinus ursinus30Harbor sealPhoca vitulina5Four phalanges and one metacarpalDolphin, indet.Delphinidae78Whale, indet.Cetacea25Mammal, indet.Mammalia1136Probably a mix of Delphinidae and fur seal | | cf. Alcidae | 3 | | | GullLarus sp.2PtarmiganLagopus sp.2Loon (Pacific or red-throated)Gavia stellata/pacifica1AlbatrossPhoebastria sp.5Northern fulmarFulmarus glacialis1ShearwaterPuffinus sp.4Bald eagleHaliaeetus leucocephalus1Bird, indet.Aves8Seal, fur seal, or sea lionPinnipedia112Probably all or mostly fur sealFur seal or sea lionOtariidae30Probably all fur sealNorthern fur sealCallorhinus ursinus937See Table 3 for age/sex
compositionNorthern fur sealcf. Callorhinus ursinus30Harbor sealPhoca vitulina5Four phalanges and one metacarpalDolphin, indet.Delphinidae78Whale, indet.Cetacea25Mammal, indet.Mammalia1136Probably a mix of Delphinidae and fur seal | Murre | Uria sp. | 2 | | | PtarmiganLagopus sp.2Loon (Pacific or red-throated)Gavia stellata/pacifica1AlbatrossPhoebastria sp.5Northern fulmarFulmarus glacialis1ShearwaterPuffinus sp.4Bald eagleHaliaeetus leucocephalus1Bird, indet.Aves8Seal, fur seal, or sea lionPinnipedia112Probably all or mostly fur sealFur seal or sea lionOtariidae30Probably all fur sealNorthern fur sealCallorhinus ursinus937See Table 3 for age/sex compositionNorthern fur sealcf. Callorhinus ursinus30Harbor sealPhoca vitulina5Four phalanges and one metacarpalDolphin, indet.Delphinidae78Whale, indet.Cetacea25Mammal, indet.Mammalia1136Probably a mix of Delphinidae and fur seal | Gull | | 2 | | | Loon (Pacific or red-throated)Gavia stellata/pacifica1AlbatrossPhoebastria sp.5Northern fulmarFulmarus glacialis1ShearwaterPuffinus sp.4Bald eagleHaliaeetus leucocephalus1Bird, indet.Aves8Seal, fur seal, or sea lionPinnipedia112Probably all or mostly fur sealFur seal or sea lionOtariidae30Probably all fur sealNorthern fur sealCallorhinus ursinus937See Table 3 for age/sex compositionNorthern fur sealcf. Callorhinus ursinus30Harbor sealPhoca vitulina5Four phalanges and one metacarpalDolphin, indet.Delphinidae78Whale, indet.Cetacea25Mammal, indet.Mammalia1136Probably a mix of Delphinidae and fur seal | Ptarmigan | | 2 | | | Northern fulmar Fulmarus glacialis Shearwater Puffinus sp. 4 Bald eagle Haliaeetus leucocephalus I Bird, indet. Aves Seal, fur seal, or sea lion Pinnipedia Pinnipedia Probably all or mostly fur seal Fur seal or sea lion Otariidae Otariidae Northern fur seal Callorhinus ursinus See Table 3 for age/sex composition Northern fur seal Cf. Callorhinus ursinus Olamina Ola | Loon (Pacific or red-throated) | | 1 | | | Shearwater Puffinus sp. 4 Bald eagle Haliaeetus leucocephalus 1 Bird, indet. Aves 8 Seal, fur seal, or sea lion Pinnipedia 112 Probably all or mostly fur seal Fur seal or sea lion Otariidae 30 Probably all fur seal Northern fur seal Callorhinus ursinus 937 See Table 3 for age/sex composition Northern fur seal cf. Callorhinus ursinus 30 Harbor seal Phoca vitulina 5 Four phalanges and one metacarpal Dolphin, indet. Delphinidae 78 Whale, indet. Cetacea 25 Mammal, indet. Mammalia 1136 Probably a mix of Delphinidae and fur seal | Albatross | Phoebastria sp. | 5 | | | Bald eagle Bird, indet. Aves 8 Seal, fur seal, or sea lion Pinnipedia Pinnipedia Pinnipedia Pinnipedia Pinnipedia Pinnipedia Probably all or mostly fur seal Pur seal or sea lion Otariidae Northern fur seal Pose Table 3 for age/sex composition Callorhinus ursinus Phoca vitulina Phoca vitulina Delphin, indet. Delphinidae Phoca vitulina Delphinidae Phoca vitulina Probably a mix of Delphinidae and fur seal | Northern fulmar | Fulmarus glacialis | 1 | | | Bald eagle Bird, indet. Aves 8 Seal, fur seal, or sea lion Pinnipedia Pinnipedia Pinnipedia Pinnipedia Pinnipedia Pinnipedia Probably all or mostly fur seal Pur seal or sea lion Otariidae Northern fur seal Pose Table 3 for age/sex composition Callorhinus ursinus Phoca vitulina Phoca vitulina Delphin, indet. Delphinidae Phoca vitulina Delphinidae Phoca vitulina Probably a mix of Delphinidae and fur seal | Shearwater | Puffinus sp. | 4 | | | Seal, fur seal, or sea lion Pinnipedia 112 Probably all or mostly fur seal Fur seal or sea lion Otariidae 30 Probably all fur seal Northern fur seal Callorhinus ursinus 937 See Table 3 for age/sex composition Northern fur seal Cf. Callorhinus ursinus 30 Harbor seal Phoca vitulina 5 Four phalanges and one metacarpal Dolphin, indet. Delphinidae 78 Whale, indet. Cetacea 25 Mammal, indet. Mammalia 1136 Probably a mix of Delphinidae and fur seal | Bald eagle | Haliaeetus leucocephalus | 1 | | | Fur seal or sea lion Otariidae 30 Probably all fur seal Northern fur seal Callorhinus ursinus 937 See Table 3 for age/sex composition Northern fur seal Cf. Callorhinus ursinus 30 Harbor seal Phoca vitulina 5 Four phalanges and one metacarpal Dolphin, indet. Delphinidae 78 Whale, indet. Cetacea 25 Mammal, indet. Mammalia 1136 Probably a mix of Delphinidae and fur seal | Bird, indet. | Aves | 8 | | | Fur seal or sea lion Otariidae 30 Probably all fur seal Northern fur seal Callorhinus ursinus 937 See Table 3 for age/sex composition Northern fur seal Cf. Callorhinus ursinus 30 Harbor seal Phoca vitulina 5 Four phalanges and one metacarpal Dolphin, indet. Delphinidae 78 Whale, indet. Cetacea 25 Mammal, indet. Mammalia 1136 Probably a mix of Delphinidae and fur seal | Seal, fur seal, or sea lion | Pinnipedia | 112 | Probably all or mostly fur seal | | Northern fur sealCallorhinus ursinus937See Table 3 for age/sex compositionNorthern fur sealcf. Callorhinus ursinus30Harbor sealPhoca vitulina5Four phalanges and one metacarpalDolphin, indet.Delphinidae78Whale, indet.Cetacea25Mammal, indet.Mammalia1136Probably a mix of Delphinidae and fur seal | Fur seal or sea lion | | | · | | Northern fur seal cf. Callorhinus ursinus 30 Harbor seal Phoca vitulina 5 Four phalanges and one metacarpal Dolphin, indet. Delphinidae 78 Whale, indet. Cetacea 25 Mammal, indet. Mammalia 1136 Probably a mix of Delphinidae and fur seal | Northern fur seal | Callorhinus ursinus | 937 | <u>*</u> | | Dolphin, indet.Delphinidae78Whale, indet.Cetacea25Mammal, indet.Mammalia1136Probably a mix of Delphinidae and fur seal | Northern fur seal | cf. Callorhinus ursinus | 30 | ~ A | | Dolphin, indet.Delphinidae78Whale, indet.Cetacea25Mammal, indet.Mammalia1136Probably a mix of Delphinidae and fur seal | Harbor seal | Phoca vitulina | 5 | Four phalanges and one metacarpal | | Whale, indet.Cetacea25Mammal, indet.Mammalia1136Probably a mix of Delphinidae and fur seal | Dolphin, indet. | Delphinidae | | - X | | Mammal, indet. Mammalia 1136 Probably a mix of Delphinidae and fur seal | | | 25 | | | | | | | Probably a mix of Delphinidae and fur seal | | | | | | | ^{*}Total does not include the octopus beaks Table 3. Harvest profile for fur seals from Awa'uq, compared with the aggregate harvest profile for Three Saints Bay, Kiavak, and Rolling Bay (from Etnier 2002). Absolute ages from Etnier (2002) have been converted to match the categorical ages used here. | | | A | Awa'uq | | Rolling Bay Sites | | |-------------------|-------------------|------|---------|------|-------------------|--| | | | NISP | Percent | NISP | Percent | | | Sex determined | | | | | | | | | Female, adult | 93 | 42.7 | 37 | 50.7 | | | | Female, sub-adult | 33 | 15.1 | 2 | 2.7 | | | | Male, adult | 5 | 2.3 | 2 | 2.7 | | | | Male, sub-adult | 87 | 39.9 | 32 | 43.9 | | | | Totals | 218 | 100 | 73 | 100 | | | Sex indeterminate | | | | | | | | | Fetus | 2 | 1.3 | 1 | 3.2 | | | | Fetus/Newborn | 37 | 23.1 | 0 | 0.0 | | | | Pup (?) | 2 | 1.3 | 3 | 9.7 | | | | Pup/Juvenile | 33 | 20.6 | 9 | 29.0 | | | | Immature | 80 | 50.0 | 18 | 58.1 | | | | Sub-Adult | 6 | 3.7 | 0 | 0.0 | | | | Totals | 160 | 100 | 31 | 100 | | | | Totals | 160 | 100 | 31 | 100 | | Kopperl 2003; Schaaf n.d.; Yesner 1989), as are a wide variety of intertidal and subtidal invertebrates (Foster 2004; Odell n.d.). In terms of the birds, fish, and invertebrates, the additional analyses presented here, while still incomplete, generally align the *Awa'uq* faunal assemblage with those from other sites in the region. However, the narrow focus on fur seals at *Awa'uq* appears to be unique among archaeological sites in the Kodiak Archipelago. Does this mark an early attempt by the Alutiit to play an active role in the Russian fur trade? Were they stock-piling food in anticipation of a potential siege? Or does the high frequency of fur seals simply reflect a narrowly focused seasonal hunting strategy that capitalized on the proximity of the site to the fur seals' migration route? Don Clark (1974, 1986) has noted an apparent increase in fur seal use through time based on analysis of faunal samples from elsewhere in the southern Kodiak Archipelago (Fig. 1). Based on the ratio of fur seal NISP to harbor seal NISP (Table 5), he sees evidence for increased reliance on fur seals, starting at low levels about 1000 years ago and extending forward into the proto-historic period (early 18th century) in what he characterized as a trend (Clark 1986:41). If Clark's data really represent a trend, the faunal assemblage from *Awa'uq*, occupied until August 1784, seems to have reached its natural end-point, with the near total absence of harbor seals (Table 5). Even so, the age and sex composition of the Awa'uq assemblage is broadly similar to that of the assemblages noted by Clark (1986) and further analyzed by Etnier (2002; Table 3). The main difference between these assemblages is seen in the higher relative abundance of bones in the "fetus/newborn" category recovered from Awa'uq. The presence of fetuses, and the lack of pups in these harvest profiles suggest that fur seals were not hunted from a nearby, previously unidentified rookery.3 Rather, it indicates that juveniles and pregnant adult females were hunted in the open ocean in late spring or early summer as they migrated past Kodiak on their way to the breeding grounds in the Pribilof Islands, or perhaps somewhere in the Aleutian Islands (Crockford 2012; Newsome et al. 2007). Fur seals may also have been hunted on their return to the south during the fall migrations. Because of the coarse nature of the age estimates, the two specimens provisionally assigned to the "newborn pup" category should not be taken as evidence of a local, previously undocumented fur seal breeding colony (Newsome et al. 2007). Table 4. Minimum number of elements (after Lyman 1994) from various portions of the body for fur seals. "Base" is the number of each element found in a complete carcass. "Observed" is the frequency identified from the Awa'uq assemblage. "Expected" is the frequency
expected based on the observed sub-total for that range of elements. Chi-square values: forelimb $\chi^2 = 42$; hind limb $\chi^2 = 67$; axial skeleton $\chi^2 = 20$; p > 0.001; df = 5. Pooled frequencies for forelimb, hind limb and axial skeleton: $\chi^2 = 9.3$; p = 0.009; df = 2. | | | Base | Observed | Expected | |-------------------|-------------------------|------|----------|----------| | Forelimb | | | | | | | Scapula | 2 | 5 | 5.2 | | | Humerus | 2 | 12 | 5.2 | | | Radius | 2 | 13 | 5.2 | | | Ulna | 2 | 9 | 5.2 | | | Carpals | 12 | 8 | 31.2 | | | Metacarpals | 10 | 31 | 26 | | | Subtotal | 30 | 78 | 78 | | Hind Limb | | | | | | | Pelvis | 2 | 12 | 6 | | | Femur | 2 | 21 | 6 | | | Tibia | 2 | 14 | 6 | | | Fibula | 2 | 7 | 6 | | | Tarsals | 14 | 24 | 42 | | | Metatarsals | 10 | 18 | 30 | | | Subtotal | 32 | 96 | 96 | | Axial
Skeleton | | | | | | | Teeth
(canines only) | 4 | 7 | 15.7 | | | Cranium | 1 | 11 | 3.9 | | | Mandible | 2 | 6 | 7.8 | | | Cervical
Vertebrae | 7 | 31 | 27.4 | | | Thoracic
Vertebrae | 16 | 58 | 62.6 | | | Lumbar
Vertebrae | 5 | 24 | 19.6 | | | Subtotal | 35 | 137 | 137 | | Combined
Data | | | | | | | Forelimb | 30 | 96 | 96.2 | | | Hind Limb | 32 | 78 | 102.6 | | | Axial
Skeleton | 35 | 137 | 112.2 | | | Subtotal | 97 | 311 | 311 | | | | | | | As Clark (1986) points out, the beginnings of the Kodiak fur seal harvests were not related to the commercial fur trade because the earliest fur seal bones substantially predate any Russian presence in Kodiak. However, by the middle of the 18th century, Russian fur traders were well known to the Alutiit, and had been for many decades (Black 1992, 2004; Luehrmann 2008). In fact, low frequencies of Euro-American trade goods were recovered from Awa'uq (Knecht et al. 2002), indicating at least some direct or indirect trade. Several lines of evidence, however, suggest that the Alutiit residents at Awa'uq were not stockpiling furs in anticipation of trade with the Russians. First, the dating of the midden deposit is completely unresolved. The accumulation of bones could span decades or millennia. Second, no sea otter (Enhydra lutris) bones were recovered from the midden, though sea otters would have been more highly sought for their furs than fur seals, and would still have been at pre-commercial population levels. Third, interactions between Russian traders and the Alutiit prior to the siege at Awa'uq had been anything but peaceful (Black 1992, 2004; Crowell 1997). Given the time of year the siege took place (August), fur seals were also clearly not stock-piled in anticipation of a siege. The migrating fur seals would have been harvested primarily in late May or early June, at which point Grigorii Shelikhov and his men would have been in the Aleutian Islands, en route to Unalaska Island (Crowell 1997). All of these points suggest that the faunal assemblage from *Awa'uq* represents the remains of a narrowly focused subsistence strategy. But even if *Awa'uq* were a uniquely situated seasonal hunting camp focused on pelagic sea mammals, the near-total absence of harbor seals still requires explanation. The low frequency of harbor seal bones could have arisen through one of three scenarios: - 1. harbor seals were not present in the area in substantial numbers; - 2. harbor seals were present as they are today, but not harvested in any appreciable numbers; - harbor seals were present as they are today, and harvested in proportion to their abundance, but not deposited in and/or recovered from the midden that was excavated by Knecht et al. (2002). Scenario 1 does not seem particularly likely, given that nearby sites that immediately post-date the abandonment of *Awa'uq*, the Artel site (Clark 1986) and Three Saints Harbor (Crowell 1997), both contain harbor seal bones (172/282 and 7/50, respectively, of total mammal NISP; see also Table 5). Nor does Scenario 2 seem likely. The Table 5. NISPs and the ratio of fur seals to harbor seals from sites discussed in text. Data for Three Saints Bay, Kiavak, Rolling Bay, and the Artel site from Clark (1986). "NISP Mammals" includes only those specimens identified to a taxonomic category lower than class. | Site | Date AD | NISP fur seal | NISP harbor seal | NISP mammals | Ratio | |------------------|-------------------|---------------|------------------|--------------|-------| | Three Saints Bay | 1–1000 | 20 | 167 | 371 | 1:8 | | Kiavak | 1700s | 50 | 92 | 243 | 1:2 | | Rolling Bay | 1700s | 184 | 58 | 316 | 3:1 | | Artel | 1780s | 98 | 172 | 282 | 1:2 | | Awa'uq | 1200 (?) to 1780s | 967 | 5 | 1217 | 193:1 | limited data available for the invertebrate and fish remains indicate that at least some foraging activity was occurring in the near-shore waters. Absent any culturally mediated avoidance of harbor seals, basic foraging theory tenets indicate they would always be taken upon encounter (cf. Broughton 1994). According to Scenario 3, for whatever reason, the bones of harvested harbor seals were not deposited and/or recovered by Knecht et al.'s excavations. It is worth noting that *Awa'uq* is bounded by cliffs, with extremely limited access to the top of the sea stack (Fig. 2). Thus, large-bodied animals such as harbor seals (adults can weigh up to 170 kg, compared to an adult female fur seal that weighs ~40 kg) may have been butchered on the beach, with only the meat transported up the cliffs to the village. I have demonstrated that fur seal skeletal element frequencies do not match the expected frequencies of a complete skeleton. However, the specific ways in which they depart from expected do not clearly match what would be predicted from transport decisions. Specifically, the bones of the forelimb are all over-represented except for the bones of the wrist (Table 4). If front flippers were being systematically removed for differential treatment, either as specialty food items or for discard on the beach, then carpals and metacarpals should be affected similarly. The situation is less clear for bones of the axial skeleton, with thoracic vertebrae and canine teeth being slightly underrepresented, and bones of the cranium slightly over-represented. The only body segment with frequencies that may result from transport decisions is the hind limb, where tarsals and metatarsals are both under-represented in the assemblage. On balance, the MNE data indicate that transport decisions did not significantly affect fur seal element frequencies—a finding not that is too surprising for carcasses that would have weighed on the order of 40 kg and could have been transported in their entirety. Another possibility is that front and rear flipper bones were not recovered in the process of screening the midden deposits. However, if the element representation of the limbs were a function of recovery bias associated with the use of 13 mm screens, it is unclear why metatarsals would be affected while metacarpals were not. The best way to resolve the issue would be more detailed excavations at *Awa'uq*. Not only would this help determine the antiquity of the village, but it could also shift the emphasis of the site's history further away from the dark final days of occupation and shed light on the origins and development of such a heavy reliance on fur seals. ## **CONCLUSION** The midden samples from *Awa'uq* indicate that the Alutiiq residents harvested a wide range of intertidal, subtidal, near-shore, and pelagic resources. However, their main focus was a highly specialized harvest of migrating fur seals in late spring and perhaps also in the fall. Harbor seals appear to have not been harvested in appreciable numbers, despite the fact that other near-shore resources (invertebrates, fish, birds) were harvested. Awa'uq is a somber place with a dark history. But the history of the people who lived there is much more complicated than suggested by a single, violent event. It is not uncommon for archaeological sites to exhibit characteristics of "special-use" sites. What makes Awa'uq so unique is the degree of specialization that appears to have taken place here. Despite the painful history of this site, recovery of additional midden samples could provide valuable insights into the origins of and the final days of a subsistence economy unique in the Kodiak Archipelago. #### **ACKNOWLEDGEMENTS** This research was funded through a Cooperative Agreement between Western Washington University and Lake Clark National Park and Preserve (H8W07060001), through the Pacific Northwest Cooperative Ecosystems Studies Unit. Thanks to the Kodiak Area Native Association for granting permission to analyze the materials from this important site. Thanks also to the Alutiiq Museum and Archaeological Repository, Kodiak, and the Burke Museum of Natural History and Culture, Seattle, for their cooperation in providing access to the *Awa'uq* collections. Carlile Transportation Systems graciously covered shipping costs between Kodiak and Bellingham. The manuscript has benefitted greatly from comments by Jeanne Schaaf, Don Clark, and Aron Crowell. #### **NOTES** - 1. Scientific names were not used by Knecht et al. (2002), leading to some confusion as to what taxa were present in the assemblage. - 2. The largest cod bones were comparable in size to those from a one-meter-long individual in Etnier's reference collection, while the halibut bones were as large as or larger than those from a two-meter-long individual in Etnier's reference collection. Maximum reported sizes for these species are 1.2 m and 2.7 m, respectively (Froese and Pauly 2012). - 3. Note that fur seals do not typically "haul out," or rest, in nonbreeding aggregations except immediately adjacent to breeding colonies (Gentry 1998). #### **REFERENCES** Black, Lydia T. 1992 The Russian Conquest of Kodiak. *Anthropological Papers of the University of Alaska* 24:165–182. 2004 Russians in Alaska, 1732–1867. University of Alaska Press, Fairbanks. Broughton, Jack M. 1994 Declines in
Mammalian Foraging Efficiency during the Late Holocene, San Francisco Bay, California. *Journal of Anthropological Archaeology* 13:371–401. Clark, Donald W. 1974 Koniag Prehistory: Archaeological Investigations at Late Prehistoric Sites on Kodiak Island, Alaska. Tübinger Monographien zur Urgeschichte. Verlag W. Kolhammer, Stuttgart. 1986 Archaeological and Historic Evidence for an 18th-Century "Blip" in the Distribution of the Northern Fur Seal at Kodiak Island, Alaska. *Arctic* 39:39–42. Crockford, Susan J. 2012 Archaeozoology of Adak Island: 6000 Years of Subsistence History in the Central Aleutians. In The People Before: The Geology, Paleoecology and Archaeology of Adak Island, Alaska, edited by D. West, V. Hatfield, E. Wilmerding, C. Lefèvre, and L. Gualtieri. BAR International Series 2322. Archaeopress, Oxford. Crowell, Aron L. 1997 Archaeology and the Capitalist World System: A Study from Russian America. Plenum Press, New York. Etnier, Michael A. 2002 The Effects of Human Hunting on Northern Fur Seal (*Callorhinus ursinus*) Migration and Breeding Distributions in the Late Holocene. Unpublished Ph.D. dissertation. Department of Anthropology, University of Washington, Seattle. Froese, Rainer, and Daniel Pauly, editors 2012 Fishbase. World Wide Web electronic publication. www.fishbase.org, version 10/2012. Foster, Nora 2004 Shellfish Remains from the Mink Island Site, Katmai National Park and Preserve, Alaska. Unpublished manuscript on file, National Park Service, Anchorage. Gentry, Roger L. 1998 Behavior and Ecology of the Northern Fur Seal. Princeton University Press, Princeton, NJ. Knecht, Richard A. n.d. Awa'uq 1992 field season. Unpublished field notes on file, Alutiiq Museum and Archaeological Repository, Kodiak, AK. Knecht, Richard A., Sven Haakanson, and Shawn Dickson 2002 *Awa'uq*: Discovery and Excavation of an 18th Century Alutiiq Refuge Rock in the Kodiak Archipelago. In *To the Aleutians and Beyond*, edited by B. Frohlich, and R. Gilberg. Publications of the National Museum Ethnographical Series, vol. 20, pp. 177–191. Department of Ethnography, National Museum of Denmark, Copenhagen. ## Kopperl, Robert E. 2003 Cultural Complexity and Resource Intensification on Kodiak Island, Alaska. Unpublished Ph.D. dissertation. Department of Anthropology, University of Washington, Seattle. ## Luehrmann, Sonja 2008 Alutiiq Villages under Russian and U.S. Rule. University of Alaska Press, Fairbanks. # Lyman, R. Lee 1994 Relative Abundances of Skeletal Specimens and Taphonomic Analysis of Vertebrate Remains. *Palaios* 9:288–298. Mecklenburg, Catherine W., T. Anthony Mecklenburg, and Lyman K. Thorsteinson 2002 Fishes of Alaska. American Fisheries Society, Bethesda, MD. Newsome, Seth D., Michael A. Etnier, Diane Gifford-Gonzalez, Donald L. Phillips, Marcel van Tuinen, Elizabeth A. Hadly, Daniel P. Costa, Douglas J. Kennett, Tom P. Guilderson, and Paul L. Koch 2007 The Shifting Baseline of Northern Fur Seal Ecology in the Northeast Pacific Ocean. *Proceedings of the National Academy of Sciences* 104(23):9709–9714. ## Odell, Molly n.d. Analysis of Shellfish Remains from Miktsqaq Angayuk and Settlement Point. Unpublished manuscript on file, Department of Anthropology, University of Washington, Seattle. ## Schaaf, Jeanne M. n.d. Analysis of Vertebrate Remains from the Mink Island site, Katmai National Park and Preserve, Alaska. Unpublished data on file, National Park Service, Anchorage. ## Steffian, Amy F., and April L. G. Counceller 2012 The Alutiiq Word of the Week Fifteen Year Compilation. Alutiiq Museum & Archaeological Repository, Kodiak, AK. ## Yesner, David R. 1989 Osteological Remains from Larsen Bay, Kodiak Island, Alaska. *Arctic Anthropology* 26(2):96–106. ## Zar, Jerrold H. 1996 *Biostatistical Analysis*, 3rd ed. Prentice Hall, Upper Saddle River, NJ.