

AP Calculus BC

Free-Response Questions

CALCULUS BC

SECTION II, Part A

Time—30 minutes
2 Questions

A GRAPHING CALCULATOR IS REQUIRED FOR THESE QUESTIONS.

t (minutes)	0	3	7	12
C(t) (degrees Celsius)	100	85	69	55

- 1. The temperature of coffee in a cup at time t minutes is modeled by a decreasing differentiable function C, where C(t) is measured in degrees Celsius. For $0 \le t \le 12$, selected values of C(t) are given in the table shown.
 - (a) Approximate C'(5) using the average rate of change of C over the interval $3 \le t \le 7$. Show the work that leads to your answer and include units of measure.
 - (b) Use a left Riemann sum with the three subintervals indicated by the data in the table to approximate the value of $\int_0^{12} C(t) dt$. Interpret the meaning of $\frac{1}{12} \int_0^{12} C(t) dt$ in the context of the problem.
 - (c) For $12 \le t \le 20$, the rate of change of the temperature of the coffee is modeled by $C'(t) = \frac{-24.55e^{0.01t}}{t}$, where C'(t) is measured in degrees Celsius per minute. Find the temperature of the coffee at time t = 20. Show the setup for your calculations.
 - (d) For the model defined in part (c), it can be shown that $C''(t) = \frac{0.2455e^{0.01t}(100-t)}{t^2}$. For 12 < t < 20, determine whether the temperature of the coffee is changing at a decreasing rate or at an increasing rate. Give a reason for your answer.

- 2. A particle moving along a curve in the xy-plane has position (x(t), y(t)) at time t seconds, where x(t) and y(t) are measured in centimeters. It is known that $x'(t) = 8t t^2$ and $y'(t) = -t + \sqrt{t^{1.2} + 20}$. At time t = 2 seconds, the particle is at the point (3, 6).
 - (a) Find the speed of the particle at time t = 2 seconds. Show the setup for your calculations.

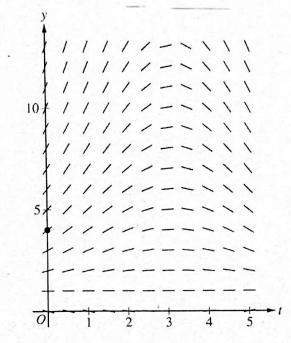
(b) Find the total distance traveled by the particle over the time interval $0 \le t \le 2$. Show the setup for your calculations.

(c) Find the y-coordinate of the position of the particle at the time t = 0. Show the setup for your calculations.

(d) For $2 \le t \le 8$, the particle remains in the first quadrant. Find all times t in the interval $2 \le t \le 8$ when the particle is moving toward the x-axis. Give a reason for your answer.

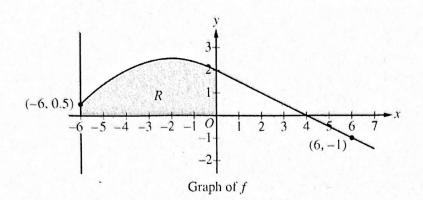
END OF PART A

© 2024 College Board. Visit College Board on the web: collegeboard.org.


CALCULUS BC

SECTION II, Part B

Time—1 hour
4 Questions


NO CALCULATOR IS ALLOWED FOR THESE QUESTIONS.

- 3. The depth of seawater at a location can be modeled by the function H that satisfies the differential equation $\frac{dH}{dt} = \frac{1}{2}(H-1)\cos\left(\frac{t}{2}\right), \text{ where } H(t) \text{ is measured in feet and } t \text{ is measured in hours after noon } (t=0). \text{ It is known that } H(0) = 4.$
 - (a) A portion of the slope field for the differential equation is provided. Sketch the solution curve, y = H(t), through the point (0, 4).

- (b) For 0 < t < 5, it can be shown that H(t) > 1. Find the value of t, for 0 < t < 5, at which H has a critical point. Determine whether the critical point corresponds to a relative minimum, a relative maximum, or neither a relative minimum nor a relative maximum of the depth of seawater at the location. Justify your answer.
- (c) Use separation of variables to find y = H(t), the particular solution to the differential equation

$$\frac{dH}{dt} = \frac{1}{2}(H-1)\cos\left(\frac{t}{2}\right)$$
 with initial condition $H(0) = 4$.

- 4. The graph of the differentiable function f, shown for $-6 \le x \le 7$, has a horizontal tangent at x = -2 and is linear for $0 \le x \le 7$. Let R be the region in the second quadrant bounded by the graph of f, the vertical line x = -6, and the x- and y-axes. Region R has area 12.
 - (a) The function g is defined by $g(x) = \int_0^x f(t) dt$. Find the values of g(-6), g(4), and g(6).

(b) For the function g defined in part (a), find all values of x in the interval $0 \le x \le 6$ at which the graph of g has a critical point. Give a reason for your answer.

(c) The function h is defined by $h(x) = \int_{-6}^{x} f'(t) dt$. Find the values of h(6), h'(6), and h''(6). Show the work that leads to your answers.

x	0	π	2π
f'(x)	5	6	0

- 5. The function f is twice differentiable for all x with f(0) = 0. Values of f', the derivative of f, are given in the table for selected values of x.
 - (a) For $x \ge 0$, the function h is defined by $h(x) = \int_0^x \sqrt{1 + (f'(t))^2} dt$. Find the value of $h'(\pi)$. Show the work that leads to your answer.

(b) What information does $\int_0^{\pi} \sqrt{1 + (f'(x))^2} dx$ provide about the graph of f?

(c) Use Euler's method, starting at x = 0 with two steps of equal size, to approximate $f(2\pi)$. Show the computations that lead to your answer.

(d) Find $\int (t+5)\cos\left(\frac{t}{4}\right) dt$. Show the work that leads to your answer.

- 6. The Maclaurin series for a function f is given by $\sum_{n=1}^{\infty} \frac{(n+1)x^n}{n^2 6^n}$ and converges to f(x) for all x in the interval of convergence. It can be shown that the Maclaurin series for f has a radius of convergence of f.
 - (a) Determine whether the Maclaurin series for f converges or diverges at x = 6. Give a reason for your answer.

(b) It can be shown that $f(-3) = \sum_{n=1}^{\infty} \frac{(n+1)(-3)^n}{n^2 6^n} = \sum_{n=1}^{\infty} \frac{n+1}{n^2} \left(-\frac{1}{2}\right)^n$ and that the first three terms of this series sum to $S_3 = -\frac{125}{144}$. Show that $\left| f(-3) - S_3 \right| < \frac{1}{50}$.

(c) Find the general term of the Maclaurin series for f', the derivative of f. Find the radius of convergence of the Maclaurin series for f'.

(d) Let $g(x) = \sum_{n=1}^{\infty} \frac{(n+1)x^{2n}}{n^2 3^n}$. Use the ratio test to determine the radius of convergence of the Maclaurin series for g.

STOP

END OF EXAM