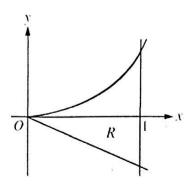
2004 AP® CALCULUS BC FREE-RESPONSE QUESTIONS

5. A population is modeled by a function P that satisfies the logistic differential equation

$$\frac{dP}{dt} = \frac{P}{5} \left(1 - \frac{P}{12} \right).$$

(a) If P(0) = 3, what is $\lim_{t\to\infty} P(t)$? If P(0) = 20, what is $\lim_{t\to\infty} P(t)$?

(b) If P(0) = 3, for what value of P is the population growing the fastest?


(c) A different population is modeled by a function Y that satisfies the separable differential equation

$$\frac{dY}{dt} = \frac{Y}{5} \left(1 - \frac{t}{12} \right).$$

Find Y(t) if Y(0) = 3.

(d) For the function Y found in part (c), what is $\lim_{t\to\infty} Y(t)$?

2014 AP* CALCULUS BC FREE-RESPONSE QUESTIONS

- 5. Let R be the shaded region bounded by the graph of $y = xe^{x^2}$, the line y = -2x, and the vertical line x = 1, as shown in the figure above.
 - (a) Find the area of R.

(b) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when R is rotated about the horizontal line y = -2.

(c) Write, but do not evaluate, an expression involving one or more integrals that gives the perimeter of R.

2016 AP® CALCULUS BC FREE-RESPONSE QUESTIONS

- 4. Consider the differential equation $\frac{dy}{dx} = x^2 \frac{1}{2}y$.
 - (a) Find $\frac{d^2y}{dx^2}$ in terms of x and y.

(b) Let y = f(x) be the particular solution to the given differential equation whose graph passes through the point (-2, 8). Does the graph of f have a relative minimum, a relative maximum, or neither at the point (-2, 8)? Justify your answer.

(c) Let y = g(x) be the particular solution to the given differential equation with g(-1) = 2. Find $\lim_{x \to -1} \left(\frac{g(x) - 2}{3(x+1)^2} \right)$. Show the work that leads to your answer.

(d) Let y = h(x) be the particular solution to the given differential equation with h(0) = 2. Use Euler's method, starting at x = 0 with two steps of equal size, to approximate h(1).

2017 AP® CALCULUS BC FREE-RESPONSE QUESTIONS

- 5. Let f be the function defined by $f(x) = \frac{3}{2x^2 7x + 5}$.
 - (a) Find the slope of the line tangent to the graph of f at x = 3.

(b) Find the x-coordinate of each critical point of f in the interval 1 < x < 2.5. Classify each critical point as the location of a relative minimum, a relative maximum, or neither. Justify your answers.

(c) Using the identity that $\frac{3}{2x^2 - 7x + 5} = \frac{2}{2x - 5} - \frac{1}{x - 1}$, evaluate $\int_5^\infty f(x) dx$ or show that the integral diverges.

(d) Determine whether the series $\sum_{n=5}^{\infty} \frac{3}{2n^2 - 7n + 5}$ converges or diverges. State the conditions of the test used for determining convergence or divergence.