2007 AP® CALCULUS AB FREE-RESPONSE QUESTIONS

x	f(x)	f'(x)	g(x)	g'(x)	
1	6	4	2	5	
2	9	2	3	1	
3	10	-4	4	2	
4	-1	3	6	7	

- 3. The functions f and g are differentiable for all real numbers, and g is strictly increasing. The table above gives values of the functions and their first derivatives at selected values of x. The function h is given by h(x) = f(g(x)) 6.
 - (a) Explain why there must be a value r for 1 < r < 3 such that h(r) = -5.

(b) Explain why there must be a value c for 1 < c < 3 such that h'(c) = -5.

(c) Let w be the function given by $w(x) = \int_1^{g(x)} f(t) dt$. Find the value of w'(3).

(d) If g^{-1} is the inverse function of g, write an equation for the line tangent to the graph of $y = g^{-1}(x)$ at x = 2.

2013 AP® CALCULUS AB FREE-RESPONSE QUESTIONS

t (minutes)	0	1	2	3	4	5	6
C(t) (ounces)	0	5.3	8.8	11.2	12.8	13.8	14.5

- 3. Hot water is dripping through a coffeemaker, filling a large cup with coffee. The amount of coffee in the cup at time t, $0 \le t \le 6$, is given by a differentiable function C, where t is measured in minutes. Selected values of C(t), measured in ounces, are given in the table above.
 - (a) Use the data in the table to approximate C'(3.5). Show the computations that lead to your answer, and indicate units of measure.

(b) Is there a time t, $2 \le t \le 4$, at which C'(t) = 2? Justify your answer.

(c) Use a midpoint sum with three subintervals of equal length indicated by the data in the table to approximate the value of $\frac{1}{6} \int_0^6 C(t) dt$. Using correct units, explain the meaning of $\frac{1}{6} \int_0^6 C(t) dt$ in the context of the problem.

(d) The amount of coffee in the cup, in ounces, is modeled by $B(t) = 16 - 16e^{-0.4t}$. Using this model, find the rate at which the amount of coffee in the cup is changing when t = 5.

2014 AP® CALCULUS AB FREE-RESPONSE QUESTIONS

x	-2	-2 < x < -1	-1	-1 < x < 1	1	1 < x < 3	3
f(x)	12	Positive	8	Positive	2	Positive	7
f'(x)	-5	Negative	0	Negative	0	Positive	$\frac{1}{2}$
g(x)	-1	Negative	0	Positive	3	Positive	1
g'(x)	2	Positive	3 2	Positive	0	Negative	-2

- 5. The twice-differentiable functions f and g are defined for all real numbers x. Values of f, f', g, and g' for various values of x are given in the table above.
 - (a) Find the x-coordinate of each relative minimum of f on the interval [-2, 3]. Justify your answers.
 - (b) Explain why there must be a value c, for -1 < c < 1, such that f''(c) = 0.

(c) The function h is defined by $h(x) = \ln(f(x))$. Find h'(3). Show the computations that lead to your answer.

(d) Evaluate $\int_{-2}^{3} f'(g(x))g'(x) dx.$