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Abstract: Stem cells are a versatile source for cell therapy. Their use is particularly significant for
the treatment of neurological disorders for which no definitive conventional medical treatment is
available. Neurological disorders are of diverse etiology and pathogenesis. Alzheimer’s disease
(AD) is caused by abnormal protein deposits, leading to progressive dementia. Parkinson’s disease
(PD) is due to the specific degeneration of the dopaminergic neurons causing motor and sensory
impairment. Huntington’s disease (HD) includes a transmittable gene mutation, and any treatment
should involve gene modulation of the transplanted cells. Multiple sclerosis (MS) is an autoimmune
disorder affecting multiple neurons sporadically but induces progressive neuronal dysfunction.
Amyotrophic lateral sclerosis (ALS) impacts upper and lower motor neurons, leading to progressive
muscle degeneration. This shows the need to try to tailor different types of cells to repair the specific
defect characteristic of each disease. In recent years, several types of stem cells were used in different
animal models, including transgenic animals of various neurologic disorders. Based on some of
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the successful animal studies, some clinical trials were designed and approved. Some studies were
successful, others were terminated and, still, a few are ongoing. In this manuscript, we aim to
review the current information on both the experimental and clinical trials of stem cell therapy in
neurological disorders of various disease mechanisms. The different types of cells used, their mode
of transplantation and the molecular and physiologic effects are discussed. Recommendations for
future use and hopes are highlighted.

Keywords: stem cells; therapy; neurodegenerative diseases; Parkinson’s disease; Huntington’s
disease; Alzheimer’s disease; amyotrophic lateral sclerosis; neuropathic pain; brain ischemic stroke

1. Introduction

In the 21st century, stem cells have gained tremendous importance in the fields of
medical research and therapy. Stem cells are recognized as body cells that have unique
characteristics, including the ability of self-renewal and differentiation into several type
of body cells [1]. They can remain undifferentiated (totipotent) and are capable of differ-
entiating into several mature cells [2]. Stem cells can be categorized depending on their
sources: embryonic stem cells, fetal stem cells, adult stem cells and induced pluripotent
stem cells [1].

In the medical field, stem cells have been authorized for use in bone marrow trans-
plantation for the treatment of hematological malignancies and some inherited metabolic
diseases. Recently, successful stem cell transplantation was reported to cure human immun-
odeficiency virus (HIV) infection [3]. Several experimental studies and/or clinical trials
studied the use of different kinds of stem cells for the treatment of neurological disorders
particularly the disorders lacking a definitive medical treatment. These include Alzheimer’s
disease (AD), Parkinson’s disease (PD), Huntington’s Disease (HD), amyotrophic lateral
sclerosis (ALS), multiple sclerosis (MS), temporal lobe epilepsy (TLE), neuropathic pain
(NP), and brain ischemic stroke (BIS) [4,5].

The significance of stem cells is derived from their reported ability to replenish dam-
aged cells and tissues as well as their anti-inflammatory and immune-modulatory proper-
ties. Stem cells can differentiate and replenish cells that have been weakened or destroyed,
promoting neural tissue growth and development. Most of the neurological disorders
are characterized by the widespread neuronal death and the extremely low regenerative
potential of the brain. The treatment needs materials or cells that can cross the blood brain
barrier (BBB). All these factors contribute to making stem cell therapy a viable option for
treating chronic intractable neurologic diseases [6,7]

By combining additional drugs, the results of stem cell therapy may be improved [8].
Stem cell treatment, for example, in combination with erythropoietin, had synergetic effects
on rat neurogenesis. To overcome the limitations of stem cell migration and inclusion in
functional networks [9–11], nanoparticle distribution systems are investigated. Since they
cross the BBB and enter the target brain areas without affecting the surroundings, these
nanoparticles are beneficial for drug and cell systems. Another choice for delivering and
preserving stem cells in the transplant site is hydrophilic polymer encapsulation, thereby
providing mechanical assistance in supply processes and increasing the proliferation and
differentiation in hydrogels [12]. In recent research, gene therapy and neural development
factors have also been used to extend the retention of AD and PD transplanted stem
cells [13].

Many recent trials have shown the value of peripheral stem cell treatments for acute
stroke survivors, enabling minimally invasive cell therapy to become a practical alternative
option. Additionally, there is consideration of the use of mesenchymal stem cells (MSCs) for
supplying bioactive factors, such as brain-derived neurotrophic factors (BDNF), in treating
neurologic disorders, such as HD [14–16].
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This review article aims to review the current research on the use of stem cells both
experimentally and in clinical trials for the treatment of selected neurological disorders.
The molecular mechanisms of stem cell regenerative actions will be detailed. The successful
and promising therapeutic modalities will be emphasized.

2. Selection of Transplant Recipients

Cell transplantation requires several sets of issues that must be considered in preclini-
cal and clinical trials [17]. The first is whether the disease causes brain cell death or initiates
a transition in cell interactions. The next is the probability of systemic transplantation,
which happens only if the blood–brain barrier (BBB) is known to be open. Another aspect
is whether pathology causes an inflammatory response in relation to the condition itself.
In this case, the transplanted cells can play not only an alternative role, but also an anti-
inflammatory role. All critical issues must be considered for nearly all cells used in clinical
trials [17].

Given the above, it is not easy to choose the cells to be transplanted. Many various
stem cell types play a possible therapeutic role in the treatment of neurological conditions.
Cells must play either a substitutional or trophic role. There was a great focus on the
substitution feature in earlier years of stem cell transplantation in neurological disorders.
Many experimental studies in animal models showed that transplanted cells in the nerve
tissue did not produce a physiological response [18,19]. If the neural dysfunction is still
significant and the surgical approach takes place, the tissue’s reconstitution and hence
the rebuilding of the injured neural pathways are very complex. Spinal cord damage is
associated with the loss of motor neurons with long axons covered by the myelin sheath.
In such circumstances, the transplanted cells must replenish neurons and glia; however,
to exert their therapeutic activity, they must be capable of expanding their processes in
the right direction. It is unlikely that this challenge will be completed with the current
expertise, but a potential approach for transplant research in sophisticated tissues may be
the fusion of transplant therapy and bioengineering (scaffold construction) [12].

No biomarkers or successful medicines were able to slow down disease develop-
ment, despite the billions in dollars of clinical trials and considerable advances in studying
neurodegenerative mechanisms. This makes stem cell therapy for the treatment of neurode-
generative diseases a beneficial approach to be tested [20]. The first aim of stem cell therapy
involves determining distinct neuronal subtypes and the recapitulation of a network of
neural diseases similar to those lost. The development of environmental reinforcement in
support of host neurons by the production of neurotrophic and scavenging toxic factors
and the construction of an auxiliary neural network across the affected areas is another
approach to the treatment of neurodegenerative disorders [21]. Another strategic approach
is the synthesis of neuroprotective growth factors in the sites of diseases (e.g., glial-derived
neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), the insulin-like
factor 1 growth factor (IGF-1), and VEGF).

One of the biggest concerns is immune rejection of transplanted fetal tissue or cells,
which can trigger serious host responses [22]. Although the brain is considered immuno-
privileged, few human leucocyte antigen cells remain matched to the haplotype, requiring
immunosuppression in recipients to prevent cell-induced immune refusal. While there
are a few exceptions, new technologies are necessary to increase donors’ and recipients’
compatibility and avoid further immune rejections [23,24].

3. Stem Cells in Alzheimer’s Disease (AD)

Alzheimer’s disease is a widespread chronic, pathologically marked neurodegenera-
tive condition with ß-amyloid plaques and neurofibrillary tangles. Current alternatives to
medication only relieve the symptoms without treating the illness, which is a significant
problem that impacts the quality of life of patients and their care providers. Stem cell ther-
apy may offer new opportunities for AD patients’ care. More and more research has shown
that neural stem cells(NSCs) developed from embryonic stem cells (ESCs) were efficient
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as a treatment approach in AD models, showing changes both in vitro and in vivo [25,26].
Stem cells have the potential to differentiate from the brain extracellular matrix into neural
cells, and they may restore neuroplasticity and neurogenesis via neurotrophic factors [27].

The stem cell approach to treating AD was first examined in animal models [28].
Neural stem cells from neonatal rat brains were used to establish new cholinergic neurons
and increased learning and memory in rats with AD [29]. Neuron-like embryonic stem cells
were used to restore AD-damaged rat brains [30]. Lately, the most used cells in Alzheimer’s
disease research were embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), brain-
derived neural stem cells (NSCs), and induced pluripotent stem cells (iPSCs) [31].

The basal forebrain cholinergic neurons (BFCNs) are critically implicated in memory
and learning disorders, such as AD [32]. The ESCs possess the pluripotency potential,
which is double-bladed. Although that pluripotency is a great advantage for ESCs, it is a
considerable disadvantage, as it may lead to the differentiation of the ESCs into several
directions, which ultimately can lead to the formation of teratomas and tumors. Moreover,
there is a tendency for eliciting disturbed immune reactions and rejection on transplanting
ESCs [33,34]. Therefore, although the ESCs showed promising results in rat models of AD
and improved memory performance, it has limited clinical applications. Two types of ESCs
have been used in AD research: mouse ESCs (mESCs) and human ESCs (hESCs). Both
produced the differentiation into BFCNs when transplanted in mice models with AD.

The immune rejection that occurs using allogeneic hESCs can be mitigated by trans-
planting iPSCs. Therefore, stimulating the differentiation of autologous hiPSCs could
be promising in diminishing the chances of such immune rejection. Nevertheless, there
are many concerns regarding the safety of using the iPSCs including the potential risk
of oncogenesis and teratoma formation, the safety of the long-term use, the reprogram-
ming efficiency, and immunogenic liability. The partial reprogramming and the unstable
genes might elicit an immunological reaction with iPSCs. There is a need to develop new
methods and protocols to avoid the expression of the tumorigenic genes when using iP-
SCs [34,35]. The iPSCs can differentiate into different cell types, including neurons. In AD
research, iPSCs can be used, for example, to investigate the inflammatory reaction, to in-
duce macrophages that can express a protease that degrades beta-amyloid called neprilysin
and to reprogram the fibroblast and hence identify the phenotype of the AD [31,36,37].

Despite the ethical issues, the most widely used type of stem cells utilized in AD
research is MSCs obtained from umbilical cord blood. This is attributed to the feasibility of
obtaining umbilical cord blood after delivery [31,38]. Previous reports have shown that
MSCs can improve the deficits in memory and learning in AD murine models. Bouta-
jangout et al. reported that human umbilical cord mesenchymal stem cell (HUC-MSCs)
xenografts improved cognitive decline and reduced the Amyloid burden in a mouse model
of Alzheimer’s disease [39].

Many mechanisms have been suggested to be involved in this process, including
decreased beta-amyloid plaques, a dramatic decrease in β-secretase 1 (BACE-1) levels,
reduced hyperphosphorylation of tau, and the reversal of the inflammatory process in the
microglia as well as the enhancement of anti-inflammatory cytokines [40]. Additionally, the
immunomodulation and anti-inflammatory effects of MSCs have been reported to occur via
enhancing the neuroprotection and depressing the proinflammatory cytokines. Moreover,
bone marrow MSCs have been found to stimulate the formation of extracellular vesicles
and microvesicles. These vesicles, in turn, target the amyloid-beta [41,42]. Additionally, the
evolved plasticity and neurotrophic decline, decreased tau phosphorylation, and neuroin-
flammation, and tau down-regulation are promising targets for stem cells. Results showed
the transgenic mice survived without any harmful effects and showed increased memory.
This was confirmed in another study, where synaptogenesis increased the mental capacity
in mice [43,44]. The successful preliminary animal studies showed positive findings. Re-
searchers grafted human umbilical mesenchymal stem cells obtained from donor cords,
into AD mice. An anti-inflammatory and immune-modulatory reaction was simultaneously
induced in the mice by this study, and the presence of M2-like microglia enhanced synapsin
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and raised A β levels in the brain, thereby decreasing amyloid accumulation [45]. This led
to a clinical trial in 2015 using human umbilical cord blood-derived mesenchymal stem
cells (hUCB-MSCs) on nine patients with mild-to-to-moderate AD. The hUCB-MSCs were
stereotactically inserted into the hippocampus. The method of administration of the stem
cells was stable and feasible, with no consequences. Better studies with larger sample
size and placebo monitoring are needed to advance the hypothesis. The administration
of stem cell therapy was safe but needs to be further checked for its therapeutic efficacy
on AD pathogenesis. [46]. The outcome of some studies on Alzheimer’s patients is still
unknown such as (NTC01547689, NTC02672306, NTC02054208, and NTC02600130 from
Clinicaltrials.gov). Nevertheless, they are all experiments constrained by the variation of
neurons affected by AD.

The biotechnology company Nature Cell has begun a new phase II clinical trial using a
stem cell medicine for AD (AstroStem) consisting of autologous adipose tissue stem cells ad-
ministered intravenously into 60 AD patients (200 million cells/injection) (NCT03117738).

4. Stem Cells in Parkinson’s Disease (PD)

Parkinson’s disease is a degenerative disorder characterized by nigrostriatal dopamin-
ergic neuronal loss. There are about 10 million patients globally [47]. Till now, there have
been no medications that stop the dopaminergic neuronal degeneration. The PD hallmarks
represent the cytoplasmic accumulation of α-synuclein and synthesis of Lewy bodies in
dopaminergic neurons affecting several regions of the central nervous system [48,49]. It
causes motor impairments, such as muscular rigidity, bradykinesia, static tremors and
postural instability [50]. In addition, PD patients presented with other manifestations,
such as sleep and behavioral disorders and abnormal GIT motility [51]. Because no actual
treatment can halt neuronal degeneration, stem cell transplantation is a promising therapy
that can restore dopamine (DA) neurotransmission and replace the lost neurons.

Early studies in PD animal models transplanted with mesencephalic cells formed
neuronal protrusions with dopamine formation [52–56]. Additionally, human fetal ventral
mesencephalic transplantation in PD patients in clinical studies declared the moderate
improvement of PD symptoms [57–61]. However, the postmortem investigation of patients
that transplanted fetal ventral mesenchephalic (fVM) tissue grafts showed the presence
of Lewy bodies in the transplanted cells [62], suggesting that Lewy body pathology can
spread from host to graft [63]. Additionally, graft-induced dyskinesia was a side effect of
fVM transplantation. Indeed, most of successful results were achieved in PD cases below
the age of 60, shown in Figure 1 [64].

Multiple technical problems appear before the use of fVM grafts in clinical practice.
The first problem is the limited viability of grafted cells in the host striatum. Attempts
were made to deal with this issue through the supply of several neurotrophic factors [65].
The second challenge is the minimal accessibility of human fetal cells, and the variations
in protocols. Notably, immunosuppressant intake is required to avoid allograft-induced
immune rejection. We need up to seven human fetal donor cells for each patient, and this
creates actual ethical concerns [66,67].

To overcome these contests, the European consortium TRANSEURO, a multicenter for
clinical trials, works to assess the feasibility and efficacy of human fetal cell transplantation
in PD cases and provide more reliable results and more understanding of the potential
therapeutic benefits [67].

Human embryonic stem cells (hESCs) are pluripotent stem cells located in the inner
layer of early embryonic blastocysts [68], and they can differentiate into multiple cells via
various differentiation protocols in vitro [69,70]. By using hESCs, there was a remarkable
expression of dopaminergic neuronal markers together with improvement of motor de-
fects [71,72]. However, the major challenge is difficult control embryonic cell maturation
and cellular heterogeneity that result in poor results in clinical application [73,74]. Another
major problem is the risk of tumor formation [75,76].



Cells 2022, 11, 3476 6 of 30

Figure 1. Demonstrating the promising role and challenges of different types of stem cell therapy in
treating Parkinson’s disease. iPSCs: induced pluripotent stem cells, hPSCs: human pluripotent stem
cells, fVM: fetal ventral mesencephalic tissue, MSCs: mesenchymal stem cells.

The stem cell research was revolutionized after the reprogramming of human fibrob-
lasts to pluripotent cells [77–79]. iPSCs have the same characteristics as hESCs but have
a relatively easier extraction process. The most important point is non-invasive tissue
collection as it can be extracted from skin fibroblasts, mononuclear blood cells, and um-
bilical mesenchymal cells [80–83]. iPSCs could differentiate into patient-specific neurons
in vitro [84–86]. Additionally, the autologous transplantation of stem cells is important to
minimize tissue rejection [87]. The efficacy of DA neurons derived from iPSCs was like that
of hESCs [88,89]. Animal studies showed the effective improvement of symptoms after
iPSCs-derived neuron transplantation in PD animal models [90].

In a study on the PD monkey model, the transplantation of autologous iPSC-derived
DA neurons exhibited an obvious improvement in motor functions without immunosup-
pression therapy [87]. MSCs were confirmed to affect the management of multiple diseases,
including PD [91]. MSCs cause improved PD symptoms in PD mouse models. Some
improvements depend on the secretion of several neurotrophic factors that minimize DA
neuronal degeneration [92,93].

In 1987, Professor Madrazo headed a team that recognized neural grafting as a new
method for substituting missing dopamine cells. Two young PD patients were autografted
with adrenal medulla tissue into the brain, leading to improved PD symptoms, including
tremors, rigidity, and akinesia. Cell-based neural transplant and treatment have since been
regarded as potential treatments for PD as a suitable candidate for a focal degeneration
disorder [94]. Pilot research was conducted two years later including 18 patients who
confirmed the findings of Madrazo. However, the technique has been discontinued because
of insufficient preclinical evidence and patients having mental disorders after surgery [95].

These groundbreaking experimental studies are underway in stem cell therapy for
Parkinson’s disease and have brought a new and unprecedented revolution to clinical trials.
Thus, therapeutic translation instructions and treatment protocols were determined for the
patients. With this sort of technology, in 2018, a Chinese team hoped to implant neural
precursor cells that were obtained from human embryos into people with Parkinson’s dis-
ease. The research studied how the dopamine-producing neurons can progress to maturity.
The world’s first neural stem cell transplant was completed in Australia by neurologist
Dr. Andrew Evans of the Royal Melbourne Hospital and his colleagues. A few Australian
patients were administered artificially generated, parthenogenically derived neural stem
cells in a phase I safety study (NCT02452723). Furthermore, the iPSCs production by Taka-
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hashi and Yamanaka and personalized neural progenitor cells from stem cells give a great
source of patient-specific and disease-specific neurons, avoiding many of the problems
with hESC lines (on both ethical and environmental fronts) [78,96]. In light of the recent
progress in iPSCs, it was concluded that the most critical iPSCs priorities are studying the
human disease mechanisms, and that is why iPSCs studies are scarce in clinical trials [97].

In 2017, a team of Japanese researchers found a safe and efficient method to create
neurons that can make dopamine from patient-derived iPSCs cells. By the process of direct
midbrain dopaminergic progenitor grafting into the monkeys, they treated them with
1-methyl-4-phenyl-1,2, 3,6-tetrahydropyridine (MPTP), which ablates nigral dopaminergic
neurons to watch their behavior for two years to see how it will decrease their symp-
toms [89]. The researchers’ hopes were dramatically raised, as the monkeys recovered
with stable motor functions and with no cancer evidence of tumor growth in both PD
families. Therefore, these tests proved to these researchers that the technique could be used
on people.

5. Stem Cells in Huntington’s Disease (HD)

Huntington’s disease is a degenerative autosomal dominant disorder characterized by
GABAergic degeneration of medium spiny neurons (MSNs) in striatum, cerebral cortex,
thalamus, and hypothalamus [98]. This degeneration leads to progressive deterioration
of motor and cognitive functions [99]. HD represents multiple repeats of the trinucleotide
CAG in the HD gene, causing increased expression of the Huntington (HTT) protein, which
reduces brain-derived neurotrophic factor (BDNF) and causes medium spiny neurons
(MSNs) [100] protein processing abnormalities [101] and improper mitochondrial func-
tion [102]. Despite the detection of the causative mutation more than 20 years ago, no
effective treatment can halt HD consequences. Cell-based therapy is an attractive approach
to treat HD disease. The principal scope is to restore the degenerated neurons and supply
neurotropic support to avoid more deterioration; see Figure 2.

Traditionally, embryonic, and fetal striatal tissue grafts were utilized in animal models
of HD [103–105]. These studies declared that the transplanted fetal tissue successfully dif-
ferentiated into striatal tissue could improve cognitive and motor functions [103,105–112].
The usage of fetal stem cell therapy in HD is faced with many obstacles, concerns, and
ethical, technical, and safety issues. Some studies showed some side effects of fetal cell
transplantation such as graft cell overgrowth, and graft tissue rejection [113,114]. While
immunosuppressive treatments can limit these reactions, prolonged immunosuppression
raises additional safety concerns [115].

Neural stem cells were taken from a fetal brain. This procedure still needs the usage
of aborted fetuses, but the ability to generate immortalized lines of hNSCs produces
homogenous cell groups with lower tissue requirement. Ryu et al. stated that hNSCs
transplantation to the HD rat model enhanced motor functions when the hNSCs were
grafted before HD lesion, while cell transplantation after induction of HD lesion did not
improve motor function [116]. The transplanted hNSCs displayed the endogenous secretion
of BDNF, indicating that the motor enhancement may be caused partially by neurotrophic
secretion by the transplanted cells. Another study declared significant improvement in
the motor function and reduction of striatal atrophy after hNSCs transplantation in HD
model with the existence or absence of the ciliary-derived neurotropic factor supply before
transplantation, representing the role of transplanted cells in the production of further
neurotrophic support [117]. Other studies demonstrated that hNSCs migrated into the
striatum and enhanced motor functions when they were injected to the ventricles or
intravenously in HD rats, giving attention to use this less invasive method in the clinical
studies of HD patients [118,119].
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Human pluripotent stem cells took a remarkable consideration as a cell-based therapy
for neurodegenerative disorders. Early preclinical studies declared that hESC-derived
neuronal stem cells enhanced motor functions in the HD model. However, the transplanted
stem cells did not exhibit differentiation into MSNs [120,121]. To overcome this challenge,
groups of hESCs differentiated into lateral ganglionic eminence progenitor cells or into
striatal precursor cells were used to enhance cell MSNs’ specified differentiation [122–126].
While several studies declared proper integration of the transplanted cells and improvement
of motor functions [122,123], other studies did not achieve the same results [124,125]. These
discrepancies may be due to variability in the cell maturation and the transplanted cell
numbers between studies [123,125,127].

Induced pluripotent stem cells are another a source to be used in cell replacement
therapy of HD [128,129]. iPSCs have the advantage that they are collected from the patient,
so they allow for autologous transplantation, which avoids immune rejection and the
need for immunosuppressive therapy after transplantation [130,131]. In a study, iNSCs
derived from fibroblasts were transplanted into the striatum, differentiated to neurons
that expressed MSNs markers in mice [132]. Moreover, the transplanted cells exhibited
prolonged survival for more than 6 months. However, the nature of HD as a genetic
disorder restricts the usage of these autologous cells for cell therapy. Therefore, the genetic
modification of the HD mutation becomes an important target before autologous cell
therapy. There was a study that corrected the HD mutation in iPSCs before transplantation
into HD mouse model [129]. Although this study did not show motor improvement, the
transplanted cells were differentiated into neurons with the expression of MSNs markers.

Another promising study discussed the combination of stem cell and gene therapy in
a transgenic model of HD in mice by using the neural progenitor cells of a rhesus monkey.
Genetically adjusted NPCs showed a significant prolonged lifespan and enhancement
of motor functions [133]. While there was no evidence of tumorigenesis after hNSC
transplantation therapy in rats, the short lifespan of rat and mice models does not produce
adequate observation of prolonged side effects [115]. Thus, it is important that these
procedures are tried on other animals with a comparable lifespan to humans before using
these remedies in HD patients.
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An alternative method to obtain neural progenitor cells is by obtaining NSCs directly
from neurogenic areas of the adult brain [134,135]. An initial study utilized NSCs extracted
from the subventricular zone for transplantation into the striatum of the HD rat model.
This procedure led to a remarkable enhancement of motor functions [135]. About 15% of
transplanted cells expressed MSNs markers. Moreover, the handling of NSCs with lithium
chloride before transplantation elevated the percentage of MSN neurons to 34% [134].

6. Stem Cells in Amyotrophic Lateral Sclerosis (ALS)

Amyotrophic lateral sclerosis is a degenerative disorder that affects motor neurons
leading to atrophy and weakness of skeletal muscles [136]. Alteration in executive function
occurs in about 50% of patients, and about 15% of patients represent frontotemporal de-
mentia [137]. There is no real therapy for ALS. So, stem cells are an optimistic approach
that may restore degenerated neurons. The transplanted stem cells and derived motor
neurons require developing long axons, and synapse with endogenous neurons and mus-
cles [138,139]. ALS is a lethal neurodegenerative disease, which affects both the upper and
lower motor neurons. Only about 10 to 15% of the cases are familial, whilst the sporadic
cases represent most cases. The mechanisms underlying ALS are still elusive and many pre-
vious reports documented a variety of proposed mechanisms. Amongst these mechanisms
are dysfunction of mitochondria, oxidative stress, and glutamate toxicity. Therefore, the
development of a therapeutic protocol that affects multiple suggested mechanisms could
lead to a more favorable outcome [140,141].

There is only one documented drug for managing ALS, riluzole, in Europe, and there
have been no other newly registered drugs since 1994. In Japan and the USA, a newly
emerging drug, edaravone, has been registered [142]. Stem cell therapy in ALS disease
is based on “neighborhood theory”, where the transplanted cells secrete neuroprotective
substances that limit the process of neurodegeneration. Transplanted stem cells, also,
differentiate into astrocytes and microglia, or into other neurons, which connect with the
affected motor neurons [140].

Most of the preclinical studies conducted on ALS models expressed superoxide dis-
mutase 1 mutation (SOD1) [143]. SOD1 is the most prevalent mutation of ALS [144]. In an
early study, the intravenous injection of umbilical cord blood delayed motor symptoms
expression and prolonged survival in the ALS mice model [145,146]. Histological inves-
tigation showed that the injected cells infiltrated the regions of cerebral and spinal cord
degeneration with the expression of neural biomarkers [147]. In addition, inflammatory
cytokines were reduced in the degenerated areas [148]. In another study, grafted neurons
from ESCs were differentiated into motor neurons and transplanted to the spinal cord
of ALS rats [149]. Grafted rats showed improved motor functions but were exposed to
paralysis later. The initial improvement of motor functions indicated that the engrafted
motor neurons exhibit some benefits, probably by secretion of neurotropic factors.

Hematopoietic stem cells [150] and glial restricted precursors [151] improved motor
functions in ALS rats. In addition, bone marrow transplantation from wild rats to ALS mice
models delayed the progress of disease [152], while intravenous injection of bone marrow-
extracted stem cells to ALS mice prolonged lifespan [153]. The transplantation of olfactory
ensheathing cells delayed the appearance of symptoms; these cells were differentiated into
oligodendrocytes and astrocytes [154], indicating that various cell types can alleviate ALS
progress. The injection of mesenchymal stem cells to skeletal muscles of ALS rats produced
a neuroprotective action via secretion of the glial-cell-derived neurotrophic factor [155] or
vascular endothelial growth factor [156];

Another source of stem cells is adipose-derived MSCs. Preclinical studies showed the
potential effect of adipose-derived MSCs in ALS mice model [157]. When adipose-derived
MSCs were injected intravenously, the motor deterioration was slowed. Histological
investigation of spinal cord detected a greater number of motor neurons in adipose-derived
MSCs injected mice [158]. Additionally, the transplantation of NPCs into the spinal cord
improved the disorder phenotypes in ALS mice, implicating the neuroprotective role of
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neurotrophins [159]. The transplantation of NPCs programmed to secrete GDNF, IGF-1,
VEGF and brain-derived neurotrophic factor showed a variable level of success [160–162].

iPSCs are another source of autologous cells that have a great promise for treating
ALS [163]. The utilization of human fibroblast cells programmed into iPSCs and differ-
entiated to NPCs showed that the transplanted cells integrated into the spinal cord [164].
Another study compared the use of single versus multiple bone marrow-derived hMSCs
injections into the cerebrospinal fluid in the SOD1 transgenic mice model of ALS. The
researchers found no effect of the single hMSCs transplantation, whilst the multiple injec-
tions of hMSCs could have therapeutic potential against ALS [165]. An interesting study
where the researchers administered adipose-derived MSCs (ADMSCs) into (SOD1)-mutant
transgenic mice early in the clinical course of the disease documented postponed motor
disturbances as assessed by electrophysiological methods and clinically. Additionally, they
investigated the underlying mechanisms of this improvement. They suggested that the
neuroprotective effect of the ADMSCs either directly or indirectly is behind the long-lasting
powerful positive effect on motor function. The direct effect was obtained via the upreg-
ulation of the glial-derived growth factor, which is produced by the ADMSCs, while the
indirect effect was suggested to be via the modulation of the local glial cells secretomes to
be neuroprotective [157].

Despite that, stem-cell-based therapy in treating ALS is still in the beginning stages.
Some clinical trials have been conducted in many countries around the world [140]. For
example, a study that introduced Wharton’s jelly derived mesenchymal stem cells for
patients with ALS reported the safety and effectiveness of this therapeutic approach. The
study reported that the clinical and demographic characteristics, excluding sex, have no
significant implications on the outcome. The study reported that the predictors for an
effective outcome are female sex and good response to the first dose of therapy [141].
Another Chinese study introduced olfactory enhancing stem cells (OESCs) intracranially
and documented preliminary outcomes about controlling or reversing the physiological
derangements in ALS patients [166]. Nevertheless, other studies that utilized similar
protocols showed contradicting results [140]. Therefore, the introduction of stem cell-based
therapy for patients with ALS is still questionable and in need of further pre-clinical and
clinical research before accepting it as a line of management of ALS.

7. Stem Cells in Multiple Sclerosis (MS)

Multiple sclerosis is an autoimmune disorder characterized by neuronal loss and
demyelination [167]. Disease-modifying therapies for MS can reduce the severity of the
disease. There is no successful therapy to stop the progress of the disorder and repair
the present neural damage [168,169]. In the last two decades, stem cell therapy has been
considered a potentially attractive method for MS.

Immunoablation therapy followed by autologous hematopoietic stem cells (aHSCs)
transplantation was studied following the findings of the improvement of autoimmune
phenoyptes in patients that undergo bone marrow transplantation for hematological ma-
lignancies [170,171]. In studies conducted on rats with experimental autoimmune en-
cephalomyelitis (EAE), immunoablation followed by aHSCs promoted remission and
avoided relapses [172,173].

The rationale of this approach is to remove the present immune system by using
high-dose immunosuppressive therapy (HDIT), and develop a new intact immune system
following aHSCs transplantation [174]. Earlier studies were directed to patients with
advanced disease and higher disability [170,175,176]. Recent studies concentrated on
patients with relapsing–remitting MS (RRMS) with poor prognosis, showing that aHSCs
transplantation is most successful in these patients [177–180]. A study carried out on
patients with RRMS reported 5-year event-free survival of 69% of patients [181].

MSCs were reported as a hopeful cell therapy for neurodegenerative disorders [182,183].
These potential results may be caused by paracrine signaling and the integration of MSCs
in the damaged tissues [184]. When BM-MSCs were administered to EAE mice model, there
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was a diminution of the symptom’s severity, decrease in the infiltration of immune cells,
and decrease in demyelination and axonal injury [184–189]. These results were shown when
MSCs were injected intraventricularly, intravenously and intraperitoneally [187,190,191].
MSCs might influence differentiation of neuronal stem cell and induce axonal remyeli-
nation [192]. Histopathological analysis of EAE mice infused with MSCs reported the
repairing of white matter, and enhanced axonal integration in diseased tissues [185].

Neuronal stem cells (NSCs) had a potential therapeutic effect as they migrated to the
demyelinating tissues and differentiated into oligodendrocytes [193]. A major challenge is
the fewer NSCs available to be used as an endogenous cell therapy. IVT-transplanted NPCs
to EAE mice migrated into the injured white matter and differentiated to oligodendrocytes.
However, the direct effect on myelin remyelination is still unclear [194].

Human embryonic stem cells (hESCs) differentiate to neural cell lineage, and this has
attracted consideration as a potential approach to manage MS [195]. The transplantation
of hESC-derived neural progenitors caused an improvement of symptoms in EAE mice.
Histological analysis declared the integration of the transplanted neural progenitors in
brain tissues. The improvement might be due to neuroprotective mechanisms [196].

Studies declared that oligodendrocyte precursor-derived induced pluripotent stem
cells (iPSC) ameliorated the features of EAE [197]. This therapeutic effect was mostly due to
the neuroprotective influence rather than remyelination. However, recent studies suggest
the potential for malignancy. So, more research studies should be performed to overcome
this challenge [198].

Multiple sclerosis typically presents with relapsing-remitting illness (RRMS), which is
discrete and self-limited. However, after the remission of clinical symptoms, the damage
that occurred in the brain does not resolve. Usually, it takes about 10–20 years for the RRMS
to turn into secondary progressive MS (SPMS). Three major factors interplay to achieve the
best efficacy of aHSCs transplantation in patients with MS. These factors are the selection of
the patient, choosing the transplant regimen, and the experience of the working team [199].
In this section, we will focus on the patient section.

Previous reports documented that autologous stem cell transplantation (ASCT) began
as pilot clinical began trials (Phase I/II) in Greece in 1995 for MS patients; in 2010, there
were reports for 400 patients around the globe treated with ASCT [179]. Accumulating
pieces of evidence point to the increased efficacy of the aHSCT in patients with RRMS
when compared to patients with primary progressive MS (PPMS) or secondary progressive
MS [177,200].

aHSCT should be introduced when there is an expected severe case of MS and should
be done so early in the course of the disease, before irreversible neural damage occurs [1].
A variety of demographic and disease-related characters influence the outcome of the
therapy by aHSCT. It was found that the patients with young age, patients with active
inflammatory disease, patients with low scores of Kurtzke’s Expanded Disability Status
Scale (EDSS) and patients without other co-morbidities show the better outcome of therapy
by aHSCT [177,200,201]. The previously mentioned factors are interlinked to each other.
For instance, when the patient has a shorter disease duration, this means that he/she is
in the RRMS phase, which in turn points to better EDSS scores. It was found that patients
with the active inflammatory stage of MS have better outcomes compared to patients with
indolent inflammation. This is attributed to the ability of aHSCT to rapidly cease the
inflammatory cells; see Figure 3 [199,202].

The gadolinium enhancement leads to the breaking down of the blood–brain barrier
and hence allows the conditioned regimen to penetrate the CNS and, therefore, enhance
the process of eliminating the autoreactive immune cells. The European Group for Blood
and Marrow Transplantation (EBMT) published recommended guidelines for choosing
patients who are eligible for aHSCT in 2012. They recommended aHSCT for patients who
have RRMS and can ambulate independently, yet they suffered from two clinical relapses
associated with MRI evidence of concurrent illness during the previous year in spite of the
conventional disease-modifying therapies. Nevertheless, the individuals suffering from the
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inability to ambulate due to rapid progression of disability or sometimes those who have
clear clinical or MRI evidence of progressive disease might be eligible for aHSCT. However,
the outcome will be less favorable. Currently, there is a suggestion to use aHSCT in
patients younger than 45 years old and with a disease course of less than 10 years [203–205].
Collectively, it is apparent that aHSCT is beneficial in treating MS during the different
stages of the disease, however, for achieving a favorable outcome, the patient should be
selected according to the recommendations of EBMT.
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Figure 3. Selection criteria for patients of MS to be treated with aHSCs for a better outcome. Based
on the EBMT and previous reports, Patients with early active disease stages, younger than 45 years
old, with disease course lesser than 10 years and low scores of EDSS and no comorbidities are found
to have better outcome on transplantation of autologous stem cells. EDSS: Kurtzke’s Expanded
Disability Status Scale, EBMT: European Group for Blood and Marrow Transplantation.
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Figure 3. Selection criteria for patients of MS to be treated with aHSCs for a better outcome. Based
on the EBMT and previous reports, Patients with early active disease stages, younger than 45 years
old, with disease course lesser than 10 years and low scores of EDSS and no comorbidities are found
to have better outcome on transplantation of autologous stem cells. EDSS: Kurtzke’s Expanded
Disability Status Scale, EBMT: European Group for Blood and Marrow Transplantation.

8. Stem Cells in Temporal Lobe Epilepsy (TLE)

Epilepsy is a neurological disorder which affects about 70 million patients all over the
world [206]. TLE is the most prevalent type of epilepsy characterized by repeated seizures
created in the structures of temporal lobe such as amygdala and hippocampus [207].
The loss of GABA-ergic neurons and synaptic changes were noticed in the hippocampus
in patients and animal models with TLE [208], resulting in overall increased neuronal
excitatory tone [209]. The current therapy of TLE mainly depends on anticonvulsant
therapy or surgical interventions. About 1/3 of epileptic patients exhibit poor outcome
when anticonvulsant therapy is used alone [210]. For refractory TLE, surgical intervention
with temporal lobectomy is performed. However, the surgery results in reduced cognitive
functions. So, there is an urgent requirement to find out a new therapeutic way for treatment
of TLE. In the past years, different stem types of cells were used in preclinical studies to
treat epilepsy in animal models.

Studies revealed that transplantation of ESCs could replace the damaged neurons
and produce inhibitory mediators such as GABA which reduce neuronal excitability in
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epilepsy [211]. Another study reported that the transplanted ESCs into the hippocampi of
status epilepticus mice model were differentiated to mature neurons [212].

As GABA has a role in reduction of excitability thus inhibition of seizures [211],
transplantation of fetal GABA-ergic cells to the cerebral tissues had been studied in several
epilepsy models. They hypothesized that elevation of GABA neurotransmitter level could
inhibit seizure exposure [213,214]. The transplantation of fetal neural cells in epileptic rats
minimized the severity of convulsive seizures, replaced degenerated neurons and repaired
the damaged neural circuits [215].

Recent studies focused on fetal medial ganglionic eminence (MGE) cells for the treat-
ment of TLE because MGE is the source of most striatal and hippocampal neurons [216].
The transplantation of fetal MGE precursor cells led to migration and synaptic formation in
pyramidal neurons in the brain [217], and reduction in seizures number in mice [215,218].
The intravenous injection of fetal neural stem cells provided a remarkable inhibition in
seizure rate and severity [219]. In addition, hippocampal precursor cells transplantation
enhanced memory and learning defects in epilepticus status [220].

MSCs exhibited a neuroprotective property by releasing several neurotrophic factors
and immunomodulation [221] which could inhibit seizure activity [222]. In a study, bone
marrow MSCs transplantation decreased the chemical and histological alterations, restored
neurotransmitters normal level, and reduced apoptotic and inflammatory marker levels in
an epileptic rat model [223]. Another study revealed that adipose-extracted mesenchymal
cell transplantation enhanced the release of neurotrophic markers and reduced seizure
activity in an epileptic rat model [224].

9. Stem Cells in Neuropathic Pain (NP)

Neuropathic pain is a frequent complaint and usually occurs in diabetic patients
with female predominance. Unfortunately, the current pharmacological therapies for neu-
ropathic pain are mainly symptomatic, not fully effective, and have many side effects.
Amongst these drugs are pregabalin (known commercially as Lyrica), tricyclic antidepres-
sants, and opioids [225–227]. The administration of a combination of the available drugs
may give a better outcome. However, the side effects remain to occur. Therefore, shifting
toward stem cell therapy for neuropathic pain could provide a good chance for a better
cure by affecting the underlying mechanisms of neuropathic pain instead of solely treating
the symptoms; see Figures 4 and 5 [225].

Among the crucial mechanisms of NP is the central sensitization, in which there is an
enhancement in neuronal excitability. After nerve injury, there is an enhanced release of
the excitatory neurotransmitter glutamate and upregulation of the N-methyl-d-aspartate
(NMDA) receptors in the spinal cord. Studies showed that intravenous injection of bone
marrow mesenchymal stem cells (BMSCs) inhibited the expression of NMDA receptors
and hence prevented glutamate excitotoxicity [31,228].

One of the important mechanisms that lead to pain sensation in neuropathy is the
glial cells (astrocytes, oligodendrocytes, and microglia) activation. Within 24 h post-injury,
the microglia become activated and continue for about 12 weeks. This is followed by
the release of cytokines from the microglia and astrocytes, along with the upregulation
of the glutamate and glucocorticoids. This in turn can produce spinal cord excitation
and therefore contribute to hypersensitivity and pain sensation. BMSCs were found to
lower the microglial activity when injected intrathecally in case of non-compressive disc
herniation. Additionally, it can lower the release of the inflammatory cytokines by the
spinal cord-activated microglia and therefore affect behavioral hypersensitivity in nerve
root pain [31,229,230]. Other studies found that intravenously administered ADSCs can
decrease the expression of the astrocyte marker, GFAP.
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Figure 4. Proposed mechanisms for central NP alleviation via different types of stem cell therapy.
Based on previous research, there are three main mechanisms for the antinociceptive effects of stem
cell therapy. These mechanisms encompass the modulation of the glial cells (microglia and astrocytes)
functions, weakening or reversal of central sensitization and reduction in autophagy, apoptosis and
inflammatory markers in the spinal cord. Each of these main mechanisms are mediated via different
ways according to the type of stem cells investigated. It is obvious that BMSCs act via different
mechanisms to induce the analgesic effect. Additionally, conditioning of the BMSCs via IL-1β adds
to these mechanisms. The ADSCs act mainly via depressing the astrocyte markers. Moreover, the
transplantation of autologous ADSCs reduces the autophagy, apoptotic and inflammatory markers
in the spinal cord. ADSCs: adipose-derived stem cells; aADSCs: autologous adipose-derived stem
cells; BMSCs: bone-marrow-derived stem cells; CCL7: chemokine (C-C Motif) ligand 7; CREB: cAMP
response element-binding protein; GFAP: autoimmune glial fibrillary acid protein; IL-1β BMSCs:
IL-1β conditioned bone-marrow-derived stem cells; LC3-BII: autophagy marker light chain 3; MAPK:
mitogen-activated protein kinase; NMDA: N-methyl-D-aspartate receptor; P2X4R: purinergic 2X4
receptor; TGF- β1: transforming growth factor beta 1; TUNEL: terminal deoxynucleotidyl transferase-
mediated dUTP nick-end labeling.

Furthermore, amongst the mechanisms that modulate the effect of transplanted stem
cells in NP are depressed apoptosis, autophagy, and promoting nerve recovery. It has been
found that the expression of the apoptotic marker, TUNNEL, and LC3B-II and Beclin1 in
the spinal cord are depressed in a burn fat model of neuropathic pain upon subcutaneous
transplantation of adipose stem cells [231].

In addition to the previously mentioned central mechanisms that modulate the ac-
tion of stem cells in neuropathic pain, there are many peripheral mechanisms, including
powerful immunosuppressive and anti-inflammatory effects, enhanced expression of glial-
derived neurotrophic factor (GDNF), enhancement of neurogenesis, neuronal growth, and
myelin formation [231,232].
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Figure 5. Proposed mechanisms involved in peripheral NP alleviation by stem cell therapy. Based on
previous research, it is clear that there are two main mechanisms by which the different types of stem
cells counteract hyperalgesia. These mechanisms are regulation of the anti-inflammatory responses
and neuroprotection and promotion of the regeneration of myelin sheath. BMSCs act via the two
mechanisms through a variety of pathways that varied according to the methodologies of the previous
research. The ADSCs seem to regulate the anti-inflammatory responses, whilst the hADSCs work
through the neuroprotective mechanism. The hAFMSCs act mainly via neuroprotection [31,233,234].
ADSCs: adipose-derived stem cells; ATF3: activating transcription factor 3; BMSCs: bone marrow
derived stem cells; CGRP: calcitonin gene-related peptide CREB: cAMP response element-binding
protein; DRG: dorsal root ganglion; GDNF: glial-derived neurotrophic factor; hADSCs: human
adipose derived stem cells; hAFMSCs: amniotic fluid-derived mesenchymal stem cells; IB4: isolectin
B4; IL: interleukin; NF-κB: nuclear factor kappa-light-chain-enhancer of activated B-cell transcription
factor; NGF: nerve growth factor; pERK 1

2 : phosphorylated extracellular-regulated kinase 1
2 ; PGP9.5:

protein gene product 9.5; p-p38-MAPK protein MAPK: mitogen-activated protein kinase; S100-CBP:
S100 calcium-binding protein; TNF: tumor necrosis factor; SCI: spinal cord injury.

10. Stem Cells in Brain Ischemic Stroke (BIS)

It is generally stated that the transplantation of neural stem cells is an alternative
therapy to replace damaged or dead neural cells or improve the self-repair system after
brain ischemic stroke (BIS) [235]. In 2010, the first transplantation of a neural stem cell
on clinical patients—phase I—with BIS was performed [236]. It was reported that after
transplantation of the exogenous neural stem cells, the patients’ neurological function was
improved without any unfavorable reaction. The number of clinical studies were few;
however, there is a large number of preclinical animal studies [235,237–239]. These studies
stated that neural stem cell transplantation therapy could enhance the functional outcomes
as well as the histological outcomes where the infraction volume is considerably decreased.
It has been reported that, essentially, the transplantation is focusing in two directions; the
first strategy is to replace the dead cells, and the second strategy is to improve the self-repair
system by mediating the neural network reconstruction. Moreover, it has been found that
the degree of progress in function of BIS animal model has an effect on the injection time of
neural stem cells and the source of stem cells [239].

Tables 1 and 2 summarize the stem cells application in various neurological disorders.
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Table 1. Summary of the reviewed neurological diseases and the types of cells used in experimental
studies and/or clinical trials.

Disease Cell Type or Tissue Used for
Transplantation

Type of Research
(Experimental vs. Clinical
Trials)

Advantages Disadvantages

AD

BM-MSCs
HUC-MSCs
iPSCs
ESCs

Mostly experimental trials in
mouse models and transgenic
animals
Clinical trials using HUC-MSCs

Decreased amyloid β plaques
Decreased Tau phosphorylation
Decreased tangles
Increased microvesicles and
extracellular vesicles
Increased anti-inflammatory cytokines

Limited clinical trials

PD

Fetal Ventral mesencephalic
grafts (fVM grafts)
hiPSCs
hESCs
MSCs
NSCs

Clinical trials by direct insertion
of fetal tissues or adrenakl
medullary cells
Animal models for stem cells

Fetal grafts Successful in ameliorating
the disease symptoms
MSCs improved motor function in rats
iPSCs transformed to dopaminergic
neurons in monkey models improved
the symptoms
Adrenal medulla transplantation
improved tremors and rigidity

fVM grafts: need large
number of aborted fetuses
(ethical issues) limited
viability
require immunosuppression
produce dyskinesis
iPSCs and ESCs produced
poor results in animal models
Adrenal medulla
transplantation led to mental
disorders

HD

Embryonic & fetal tissue grafts
NSCs
hESCs
iPSCs + gene therapy

All experimental animal models iPSCs in mice produced NCs for 6
months

Ethical issues and limited
availability
ESCs did not differentiate
Need gene therapy and stem
cell therapy

ALS

ADMSCs
NPCs
iPSCs
Wharton’s Jelly MSCs

Animal models
Clinical trials using Wharton’s
Jelly MSCs

Delayed degeneration
Production of neurotropic factors,
spinal cord integration
Female patients showed better clinical
improvement

Mostly experimental animals,
limited clinical trials

MS

aHSCs
BM-MSCs
NSCs
hESCs
iPSCs

EAE mice models and clinical
trials

Decreased symptoms and immune
infiltration
Differentiation into oligodendrocytes
Human trials were successful in young
patients with active inflammation, low
EDSS scores and no comorbidities

Need large scale clinical trials
using aHSCs

TLE

ESCs
Fetal GABAergic tissue
Fetal neuronal cells
Fetal medial ganglionic cells
BM-MSCs

Experimental mice models
Production of GABA and mature
neurons neurotransmitters, reduced
apoptotic and inflammatory markers

Limited studies, no clinical
trials

NP BM-MSCs
ADMSCs Animal models

IV and intrathecal injection decreased
glutamate excitotoxicity and microglial
activity

Limited number of trials

BIS NSCs Clinical trial Improvement Limited number of studies

Table 2. A summary of recent studies reported the paracrine effect of stem cells secretomes, exosomes,
microvesicles, and extracellular vesicles on neurological disorders.

Secretome Paracrine Effect Techniques References

Mesenchymal stem cell (MSC)-secreted factors
the tissue inhibitor of metalloproteinase type 1
(TIMP-1)

Stimulate
oligodendrogenesis from cultured primary
adult neural stem cells (aNSCs) and
oligodendroglial
precursor cells (OPCs).

The MSC-conditioned medium [240]

Mesenchymal stem cell (MSC)-secreted factors
hepatocyte growth factor (HGF)

Stimulates the growth of oligodendrocytes
and neurons

Conditioned medium from human
MSCs (MSC-CM) [241]

Adipose tissue-derived mesenchymal stem cells
(ASC-CCM) secreted factors TNFα-stimulated gene-6
(TSG-6)

Neurovascular anti-inflammatory factor Conditioned medium [242]
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Table 2. Cont.

Secretome Paracrine Effect Techniques References

Wharton’s jelly of the human umbilical cord (WJ-MSC)
secreted factors

Induces neuronal maturation of SH-SY5Y
neuroblastoma cells Explant culture method [243]

Bone marrow mesenchymal stem cells (BMSCs) secreted
factors

Induced protection for neurons against
oxygen-glucose deprivation (OGD)
through in part promoting secretion of
VEGF

Hypoxia conditioning medium [244]

iPSC-derived neuronal models of Alzheimer’s disease
secretomes Aβ peptides and extracellular tau. Induces synaptic dysfunction In vivo injection into the rat brain [245]

MSC secreted exosomes and microvesicles (miR-133b)
Enhances neural functional recovery
through increase nitrite remodeling,
neurogenesis, and angiogenesis

In vivo injection in rats [246]

MSC-extracellular vesicles (PD-L1, galectin-1, and
membrane-bound TGF-beta)

Activates T-immune cell and induce
peripheral tolerance to prevent tissue
damage, therefore, it modulates the
immune response in encephalomyelitis

Conditioned medium [247]

Human adipose MSC-extracellular vesicles (neprilysin)
The active form of neprilysin acts to
decrease β-amyloid peptide accumulation
in the brain

In vitro model of Alzheimer’s disease [37]

Rat BM MSC- extracellular vesicles(Catalase)
The catalase acts as an antioxidant protects
neuron from the damaging effect induced
by β-amyloid

Co-cultures of rat hippocampal
neurons and MSCs [248]

11. Strategies to Enhance Cell Survival after Transplantation: Hypoxic Preconditioning
and Genetic Modification

Recently, stem cell research included several creative strategies for treating neural
disorders. These strategies aimed to resolve the problems of cell survival, differentiation,
and engraftment rate after stem cell transplantation. They include preconditioning with
different methods, such as hypoxia, drugs, or growth factors. They also include genetic
modifications, upregulating the expression of specific growth factors, pro-survival, or
anti-apoptotic genes of the stem cells before transplantation [249,250].

It has been reported that preconditioned neural stem cells with hypoxia before trans-
plantation produced a significant increase in the rate of survival, proliferation, and dif-
ferentiation as well as decrease in the number of apoptotic cells [251,252]. In addition, it
also showed a significant increase in the biological function of transplanted cells [253]. The
oxygen level of 1.5 to 5.3% was found to be efficient to increase proliferation of neural stem
cells and differentiation into functional neuron cells [254]. The postulated mechanism is the
activation of hypoxia-inducible factor1 (HIF1) transcriptional complex [255,256]. It com-
prises alpha (HIF1-α) and beta (HIF1-β) subunits. In mammals, it is the master regulator
that facilitates important homeostatic responses to low oxygen levels. In the presence of
oxygen, the HIF1-α is downregulated through hydroxylation by prolyl-4-hydroxylase and
factor-inhibiting HIF enzymes [255,257]. These two hydroxylases inhibit the activation
of the HIF system. Meanwhile, under hypoxic condition, HIF1-α will translocate to the
nucleus and form dimerization with HIF1-β subunits. Then, the activated HIF system
is attached to the hypoxia response elements, leading to activation of the expression of
several essential genes, such as erythropoietin (EPO), vascular endothelial growth factor
(VEGF) and glucose transporter 1 (GLUT-1) [258]. Those genes have a fundamental role in
improving neural stem cell survival and treating ischemic stroke disorders.

Another way to improve cell survival and therapeutic outcomes after transplantation
is to genetically modify the stem cell. The neural stem cell is genetically modified prior
transplantation to overexpress neurotrophic support genes, such as brain-derived neu-
rotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), VEGF, EPO and
nerve growth factor (NGF). These produce enhanced survival rates and improved prolif-
eration and neural differentiation [259–262]. In addition, they show immunomodulatory
action and increase the expression of antioxidant and survival genes such as Bcl-2 [259,263].
Gretchen et al. (2018) used a genetically modified human cortical-derived neural stem
cell to overproduce GDNF before transplantation into a rat cortex. These cells were able



Cells 2022, 11, 3476 18 of 30

to differentiate into astrocytes producing GDNF [264]. Hypoxic preconditioning and ge-
netically modified neural stem cell transplantation characterize a therapeutic strategy for
neural disorders.

12. Conclusions and Future Perspectives

Previous studies indicated that stem cell therapy for neurological diseases may be
successful in experimental disease models and in certain limited clinical trials. The selection
of the most suitable cell type that suits a particular disease is a challenge. This is due to the
diverse neuropathological effects of these diseases. Despite the drawbacks and complexities
of stem cell treatment, the future of neurodegenerative disorders is still an exciting approach.
It remains impractical and far to use stem cells in neurodegenerative diseases to substitute
missing neurons and incorporate them into the original neural circuitry [265]. However, it is
more practical and feasible in the short-term to use stem cells to provide therapeutic factors
and inhibit disease progression. More information on the correct delivery strategy and
immunosuppression, graft survival, and effectiveness will be provided by the continuing
and prospective clinical trials. The development of new cellular origins and the further
development of successful combination approaches to treating neuropathic disorders was
possible through best practices in stem cell therapies. The use of ESCs and iPSCs, though
pluripotent, may be complicated by teratomas and /or cancer. MSCs, whether derived
from bone marrow or adipocytes, possess immense plasticity, but their mode of action
and duration of survival in the host is questionable. Human umbilical cord stem cells
provided some improvement in cognitive function in AD. The grafting of fetal and/or
adrenal medullary tissues in PD had positive impact on the disease symptoms, but the
patients suffered from neuropsychiatric complications. Additionally, the use of fetal tissue
from aborted fetuses creates ethical concerns in different disciplines. In addition, long-term
immunosuppression is needed after tissue transplantation. Combining the transplanted
cells with certain drugs, such as erythropoietin, proved to be useful in experimental
neurogenesis. Nanoparticle distribution systems cross the BBB and enter the target brain
areas without affecting the surroundings; these nanoparticles are beneficial for facilitating
the delivery of drugs and cell systems. Stem cells could be encapsulated in hydrophilic
polymers, thus helping delivery and preservation in the transplant site [12]. Gene therapy
and neural development factors have also been used to extend the retention of AD and
PD transplanted stem cells [13]. Cell preconditioning with growth factors, exposure to
hypoxia, and genetic modification proved to be useful at the experimental level. The idea
is to provide a better fate and function to the transplanted cells. The combination and
preconditioning therapies are gaining momentum and it seems that they will dominate the
future work in this field.
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Abbreviations

AD Alzheimer’s Disease
ADSCs Adipose Derived Stem Cells
aHSCT Autologous Hematopoietic Stem cells
ALS Amyotrophic Lateral Sclerosis
ASC-CCM Adipose Tissue-Derived Mesenchymal Stem Cells
ASCT Autologous Stem Cell Transplantation
BACE 1 Beta-secretase 1
BBB Blood-Brain Barrier
BDNF Brain-Derived Neurotrophic Factors
BIS Brain Ischemic Stroke
BM-MSCs Bone Marrow Mesenchymal Stem Cells
CNS Central Nervous System
DA Dopamine
EAE Experimental Autoimmune Encephalomyelitis
EBMT European Group for Blood and Marrow Transplantation
EDSS Expanded Disability Status Scale
EPO Erythropoietin
ESCs Embryonic Stem Cells
fVM Fetal Ventral Mesenchephalic
GABA Gamma-Aminobutyric Acid
GDNF Glial-Derived Neurotrophic Factor
GIT Gastrointestinal
GLUT-1 Glucose Transporter 1
HD Huntington’s Disease
HDIT High-Dose Immunosuppressive Therapy
hESCs Human Embryonic Stem Cells
HGF Hepatocyte Growth Factor
HIF Hypoxia-Inducible Factor1
HTT Huntingtin
hUCB-MSCs Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells
HUC-MSCs Human Umbilical Cord Mesenchymal Stem Cell
iPSCs induced Pluripotent Stem Cells
LC3B-II Autophagy Marker Light Chain 3
MGE Medial Ganglionic Eminence
MS Multiple Sclerosis
MSCs Mesenchymal Stem Cells
MSN Medium Spiny Neuron
NGF Nerve Growth Factor
NMDA N-methyl-D-aspartate receptor
NP Neuropathic Pain
NSCs Neural Stem Cells
OESCs Olfactory Enhancing Stem Cells
PD Parkinson’s Disease
PPMS Primary Progressive Multiple Sclerosis
RRMS Relapsing–Remitting Multiple Sclerosis
SOD1 Superoxide Dismutase 1
SPMS Secondary Progressive Multiple Sclerosis
TGF Transforming Growth Factor
TIMP-1 Tissue Inhibitor of Metalloproteinase Type 1
TLE Temporal Lobe Epilepsy
TSG-6 TNFα-stimulated gene-6
TUNNEL Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling
VEGF Vascular Endothelial Growth Factor
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