

LIZZY #1H
2 WELL PROGRAM
Fisher County, Texas

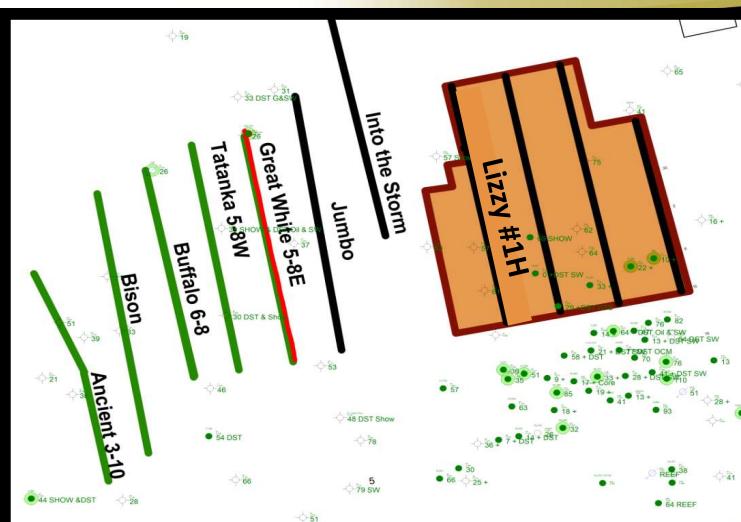
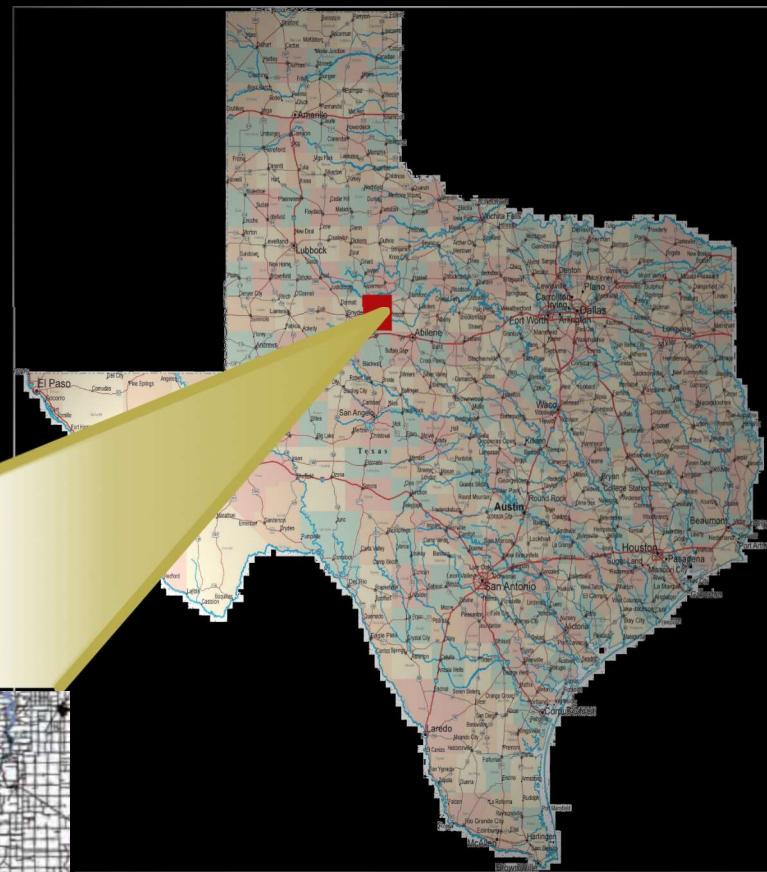
This summary is strictly informative in nature and is not intended to be a form of solicitation. All rights reserved.



Seidler Oil & Gas is an independent energy company engaged in developing Salt Water Disposal Facilities and funding oil and natural gas exploration, development, and production. Our mission is to actively seek exciting, new, profitable investment opportunities for our clients. We commit to creating a balanced, diverse investment portfolio with unparalleled customer service and dedication. Seidler is fueled by success and driven by integrity.

Fueled by success - driven by integrity.

Table of Contents



Description	Page #
Locator Map	4
Overview of the Lizzy #1H Program	5
Proposed Wells and Operators	6
Proposed Acreage & Laterals	7
Largest Properties in Fisher County	8
Close High Producing Wells	9
Close Wells of Interest	10 - 11
Western Fisher County Production	12
Seidler Oil & Gas Prospect Area	13 - 14
Lizzy #1H Well Program Economics	15
Geology	16 - 18
Advantages of Investing in Oil & Gas	19 - 20

Locator Map

Lizzy #1H

2 Well Program

Fisher County, Texas

Overview of the Lizzy #1H

The Lizzy #1H (the “Lizzy”) is an oil & gas drilling and development program in Fisher County, Texas’s recently discovered and proven productive Oolitic formation. Fisher County, Texas, is on the eastern shelf of the highly productive Permian Basin. As of April 2024, the Permian Basin reached an all-time high of 6.112 million barrels of oil produced per day (BOPD), outproducing Saudi Arabia’s massive Ghawar oilfield.

Fisher County has also reached an all-time high in oil and gas production after a new boom in 2018 driven by proven geoscience, modern drilling technology, and fracking techniques. Recent discoveries have been made in the Fisher County Strawn and Oolitic Formations.

The Lizzy #1H acreage is in the same Oolitic Formation payzone trend as the highly productive Great White and Tatanka wells a few miles to the west of the Lizzy prospect area. Investors will have the first right to participate in subsequent Seidler Oil & Gas wells planned in the Oolitic Formation to the east of the Lizzy #1H well prospect acreage.

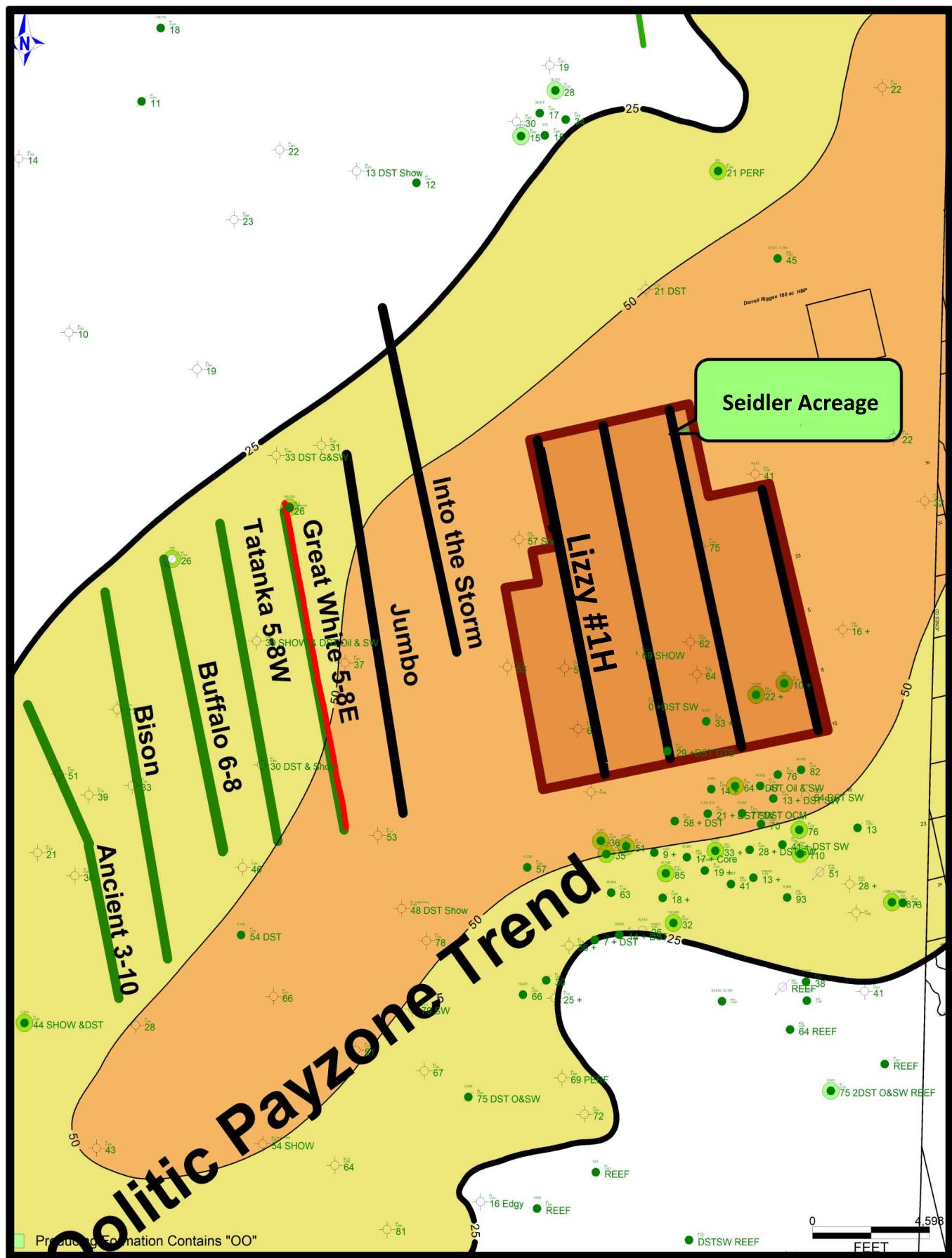
FISHER COUNTY, TEXAS OIL & GAS PRODUCTION

THE LIZZY 2 WELL PROGRAM WELLS

The Lizzy 2 Well Program Area is 947 net mineral acres. One oil & gas production well and one salt water disposal well are planned to target the Oolitic limestone formation (balls of limestone).

Lizzy #1H- Vertical Depth 5300' +/-, Horizontal 12,000' +/-

Salt Water Disposal well- Vertical Depth 6500'

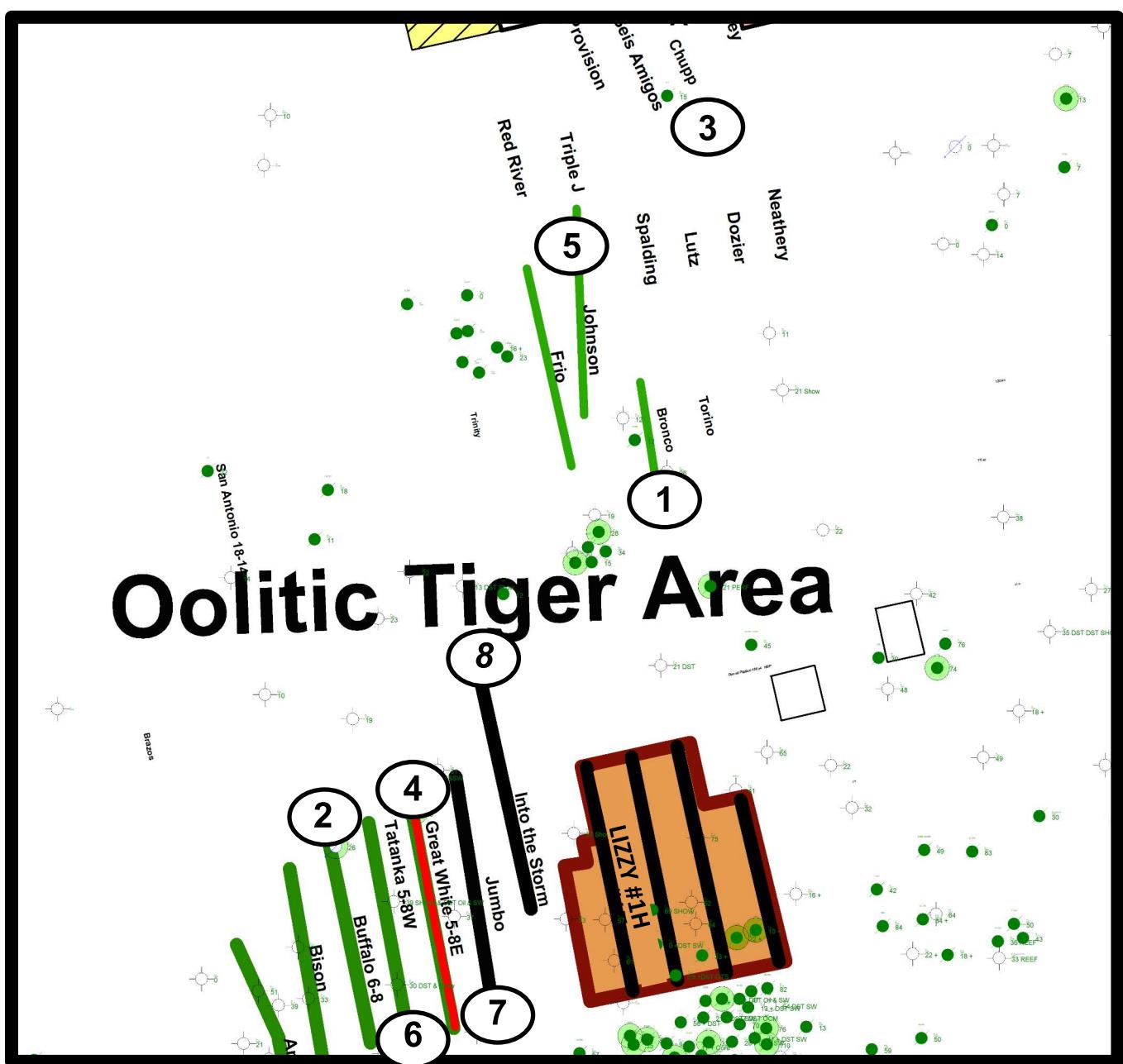

OPERATORS

Hadaway Consulting & Engineering, LLC

Hadaway of Canadian, Texas, has extensive experience in all horizontal drilling and development phases in West Texas. Moreover, Hadaway has specific expertise in the Eastern Fisher County area, having successfully worked with Peregrine Petroleum Partners drilling in the NE McCaulley Development Area. Seidler Oil & Gas contracted Hadaway to evaluate the prospect area and produce a reserve engineering study included in this presentation.

Crimson Energy Partners IV, LLC

Crimson is a private, independent oil and gas operator in Fort Worth, Texas. The Company's Management has successfully found, developed, and exploited oil and gas in the Permian Basin.

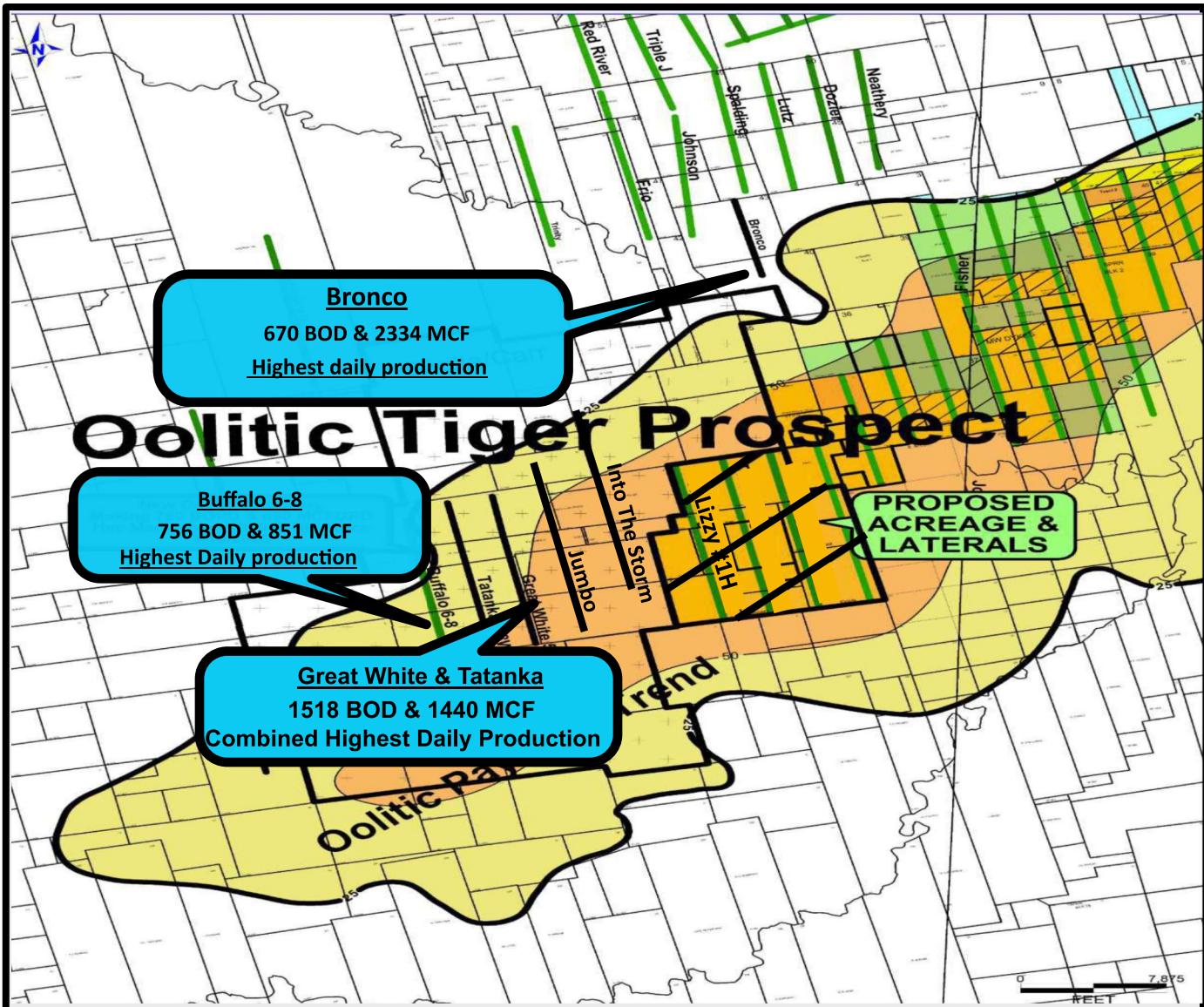

LARGEST PROPERTIES IN FISHER COUNTY, TX

	Property Name	Reporting Period	Oil Production	Gas Production	Active Wells
	BIG BEND	Mar 2024	3.9k BBL	13.7k MCF	2
1	BISCAYNE 64-7	Mar 2024	10.1k BBL	29.5k MCF	1
2	BRONCO UNIT	Mar 2024	7.9k BBL	36.5k MCF	1
	BUFFALO 6-8	Mar 2024	15.6 k BBL	11.8k MCF	1
	CANYONLANDS	Mar 2024	3.7k BBL	17k MCF	3
	CAPITOL REEF	Mar 2024	6.7k BBL	25k MCF	3
3	CHUPP UNIT	Mar 2024	4.2k BBL	24.8k MCF	1
	COCHRAN	Mar 2024	4.8k BBL	0 MCF	3
	GOLDEN GATE	Mar 2024	5.3k BBL	9.5k MCF	2
	GRAND CANYON	Mar 2024	14.8k BBL	36.6k MCF	3
	GRAND TETON	Mar 2024	17.6k BBL	23.1k MCF	2
4	GREAT WHITE 5-8E 1H	Mar 2024	20.9k BBL	14.3k MCF	1
	JENNA UNIT	Mar 2024	15k BBL	118.1k MCF	4
5	JOHNSON UNIT	Mar 2024	5.1k BBL	20k MCF	1
	KINGS CANYON 30-47	Mar 2024	8.9k BBL	22k MCF	1
	MESA VERDE 67-8 1H	Mar 2024	14.6k BBL	37k MCF	1
	MOJAVE	Mar 2024	11.2k BBL	30.9k MCF	2
	OLYMPIA 57-56 1H	Mar 2024	9.9k BBL	9.4k MCF	1
	ROUND TOP PALO PINTO	Mar 2024	5.8k BBL	0 MCF	36
6	TATANKA 5-8W 1H	Mar 2024	4.2k BBL	1.8k MCF	1

Close High Producing Wells

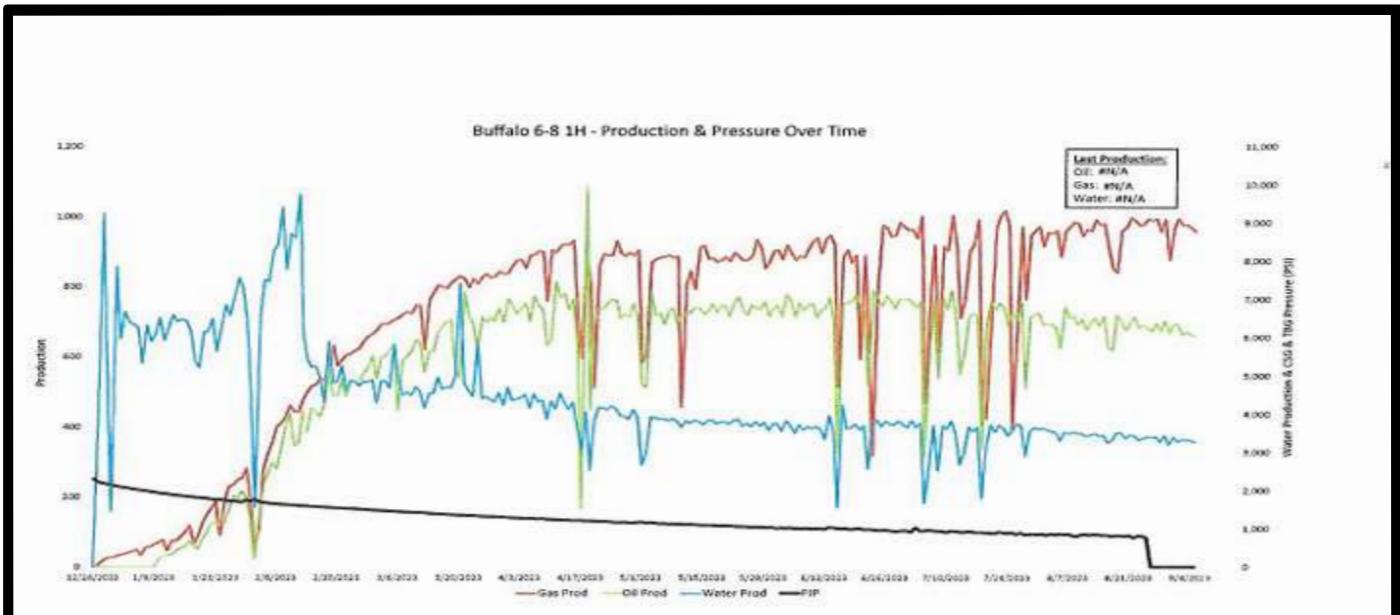
Five of the 20 most significant producing properties in Fisher County are within 3 miles of the Lizzy #1H prospect acreage, as shown on the ShaleXP® table to the left and located by numbers below.

Additionally, the recently drilled Bronco Unit #1H – numbered 1 below and a few miles to the north of the Lizzy #1H prospect acreage – began production in September 2023 and is informally reported to be making up to 670 barrels of oil a day and 2,334 MCF of natural gas per day. The Jumbo 7 and Into The Storm 8 wells are less than a mile to the west of the Lizzy #1H and have been permitted.



CLOSE PRODUCING WELLS OF INTEREST

The **Buffalo 6-8** (API # 42-151-33288) is located approximately 1.5 miles west of the **Lizzy #1H** in the same geological formation. The Buffalo has produced up to 756 barrels of oil daily and 851 MCF of natural gas daily. **The Buffalo has produced 189,144 BBL as of April 2024.** The Buffalo was drilled and completed by Cholla Petroleum


Cholla Petroleum has recently completed two additional wells – the **Tatanka** (API# 42-151-33330) and the **Great White** (API# 42-151-33331) between the Buffalo and the **Lizzy #1H** acreage. These two wells are among the largest producing properties in Fisher County.

The **Bronco Unit #1H** (API# 42-151-33312), approximately 3 miles north of the Oolitic acreage play, came online in September 2023. The Bronco is reported to make up to 670 barrels of oil daily and 2,334 mcf of natural gas per day.

BRONCO	API # 42-151-33312	BUFFALO	API # 42-151-33288
Recent Reporting Date	June - 2024	Recent Reporting Date	June - 2024
Recently Reported Oil Prod	5,788 BBL	Recently Reported Oil Prod	3,975 BBL
Recently Reported Gas Prod	30,236 MCF	Recently Reported Gas Prod	3,470 MCF
Overall Production Dates Available	Aug 2023 - June 2024	Overall Production Dates Available	Jan 2023 - June 2024
Total Oil Production	110,882 BBL	Total Oil Production	193,306 BBL
Total Gas Production	432,266 MCF	Total Gas Production	200,344 MCF
Estimated Daily Oil Production	193 BBL	Estimated Daily Oil Production	133 BBL
Estimated Daily Gas Production	1,008 MCF	Estimated Daily Gas Production	116 MCF

GREAT WHITE	API #42-151-33331	TATANKA	API # 42-151-33330
Recent Reporting Date	June - 2024	Recent Reporting Date	June 2024
Recently Reported Oil Prod	16,255 BBL	Recently Reported Oil Prod	20,919 BBL
Recently Reported Gas Prod	17,583 MCF	Recently Reported Gas Prod	19,726 MCF
Overall Production Dates Available	Nov 2023 - June 2024	Overall Production Dates Available	Nov 2023 - June 2024
Total Oil Production	132,050 BBL	Total Oil Production	115,275 BBL
Total Gas Production	104,543 MCF	Total Gas Production	82,784 MCF
Estimated Daily Oil Production	542 BBL	Estimated Daily Oil Production	698 BBL
Estimated Daily Gas Production	587 MCF	Estimated Daily Gas Production	658 MCF

Western Fisher and Eastern Scurry Strawn Sand and Oolitic Horizontal Production

109 Wells - 19,031 BOPD
Average Well age - 31 months
As of 12/2022
Cumulative Production
18,305,640 BO and 33,277,413 MCF

Producing Formation Contains "Strawn S"
Producing Formation Contains "OO"

Seidler Oil & Gas

SOG Acreage

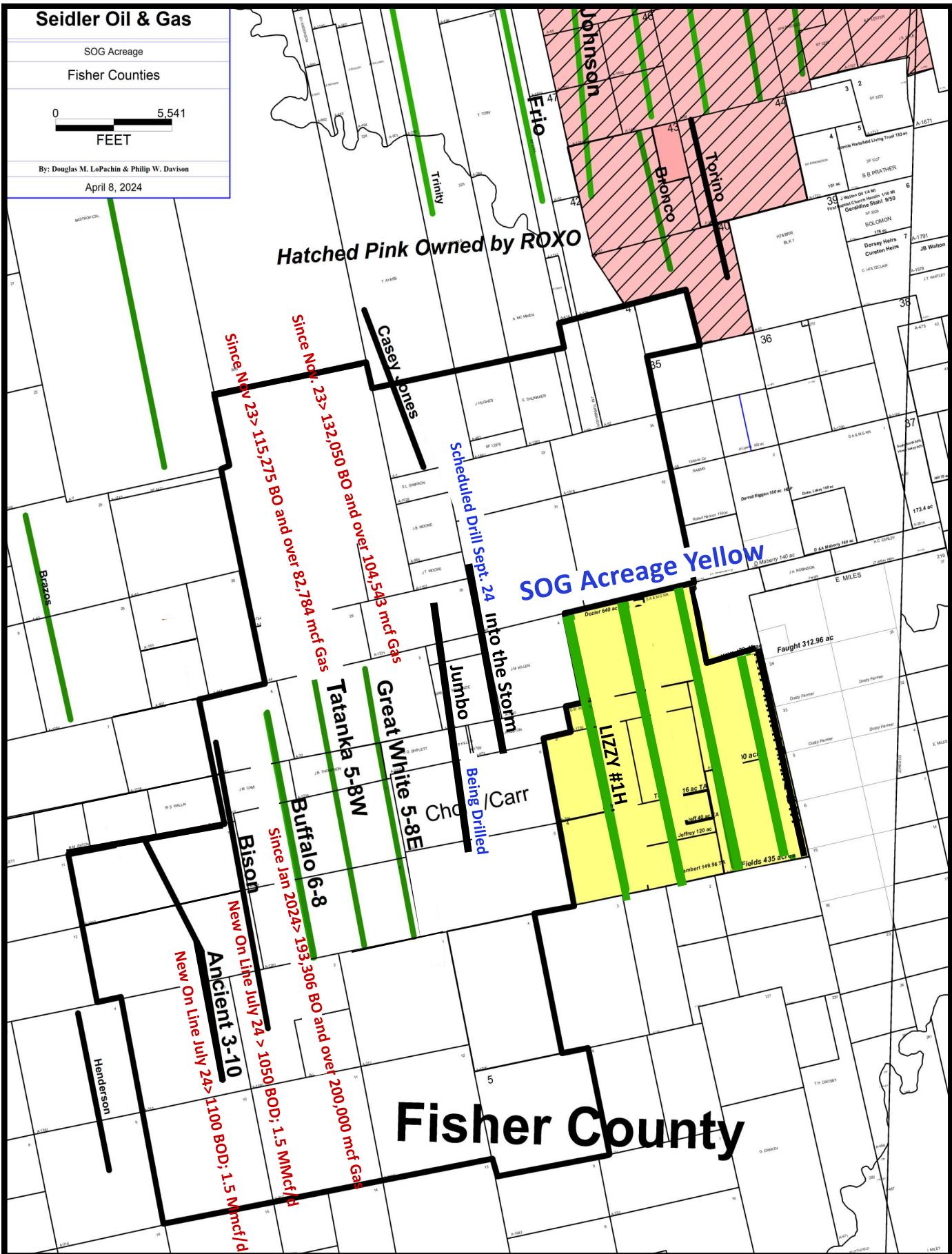
Fisher & Jones Counties

0 13,142 FEET

By: Douglas M. LePachin & Philip W. Davison
April 11, 2024

Pied Piper Area

763.00 Acres Remaining 5L
#17,74 Acres Sold to LR


NE McCaulley Area

Rust Color Owned by LR (2624.12 acres)
Yellow Color Owned by SL (3711.67 acres)
Green Color Owned by PPP

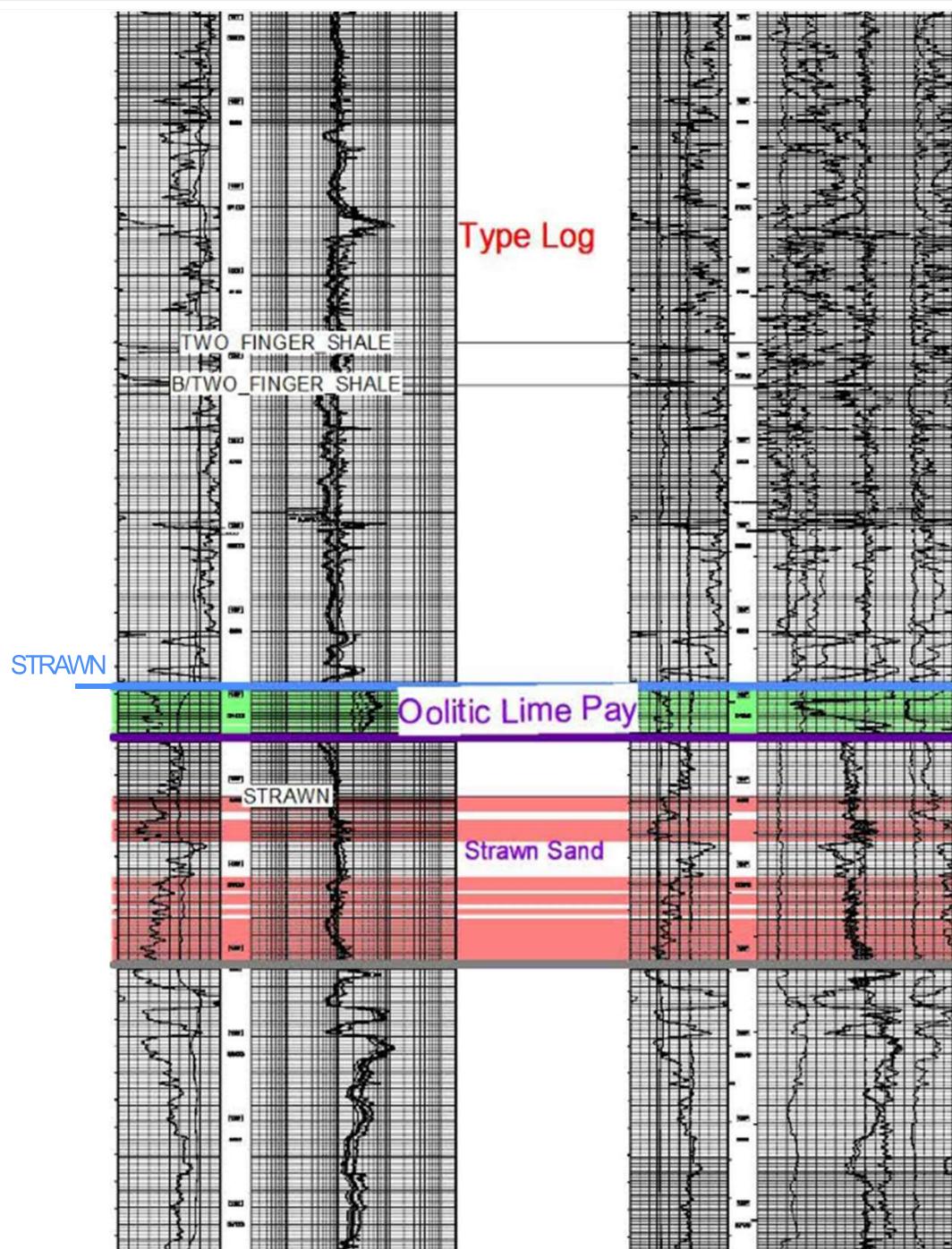
Oolitic Area

Jones County

Fisher County

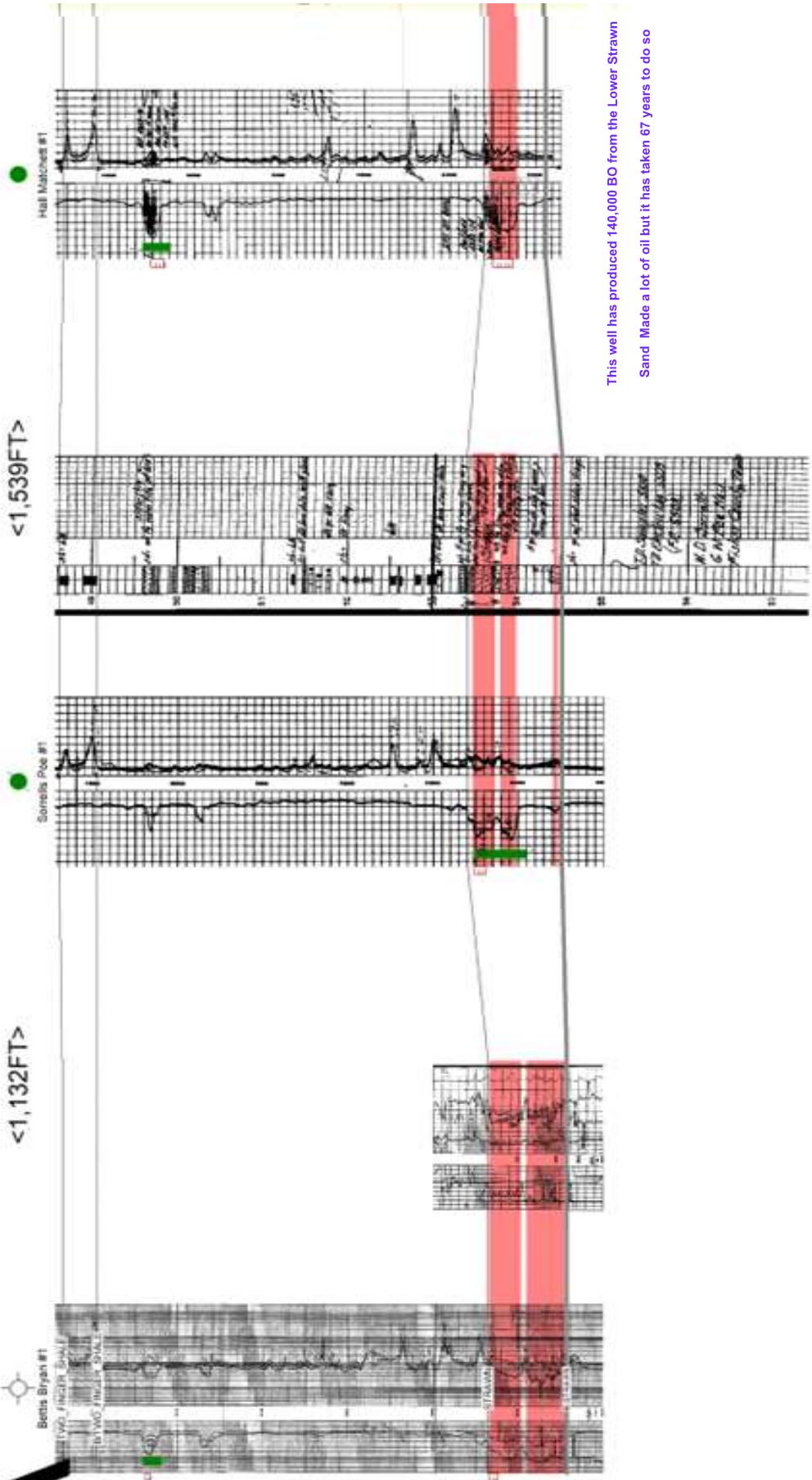
Lizzy #1H Well Economics

Total Production		Days	Price	Potential Gross Monthly Revenue	NRI%	Potential Monthly Revenue 1% WI in each well \$195,000 Investment		Months to Payout \$195,000 Investment
1,000	BOPD	30	\$85.00	\$ 25,500		Gross	\$ 18,954	
1,000	MCFD	30	\$2.75	825		(Severance Tax)	1,950	
				\$ 26,325	72.00%	(OP EXP)	300	
							\$ 16,704	11.67
750	BOPD	30	\$85.00	\$ 19,125		Gross	\$ 14,216	
750	MCFD	30	\$2.75	619		(Severance Tax)	1,463	
				\$ 19,744	72.00%	(OP EXP)	300	
							\$ 12,453	15.66
500	BOPD	30	\$85.00	\$ 12,750		Gross	\$ 9,477	
500	MCFD	30	\$2.75	413		(Severance Tax)	975	
				\$ 13,163	72.00%	(OP EXP)	300	
							\$ 8,202	23.78
Total Production		Days	Price	Potential Gross Monthly Revenue	NRI%	Potential Monthly Revenue 1% WI in each well \$195,000 Investment		Months to Payout \$195,000 Investment
1,000	BOPD	30	\$75.00	\$ 22,500		Gross	\$ 16,686	
1,000	MCFD	30	\$2.25	675		(Severance Tax)	1,719	
				\$ 23,175	72.00%	(OP EXP)	300	
							\$ 14,667	13.29
750	BOPD	30	\$75.00	\$ 16,875		Gross	\$ 12,515	
750	MCFD	30	\$2.25	506		(Severance Tax)	1,289	
				\$ 17,381	72.00%	(OP EXP)	300	
							\$ 10,926	17.85
500	BOPD	30	\$75.00	\$ 11,250		Gross	\$ 8,343	
500	MCFD	30	\$2.25	338		(Severance Tax)	859	
				\$ 11,588	72.00%	(OP EXP)	300	
							\$ 7,184	27.14
Total Production		Days	Price	Potential Gross Monthly Revenue	NRI%	Potential Monthly Revenue 1% WI in each well \$195,000 Investment		Months to Payout \$195,000 Investment
1,000	BOPD	30	\$65.00	\$ 19,500		Gross	\$ 14,418	
1,000	MCFD	30	\$1.75	525		(Severance Tax)	1,487	
				\$ 20,025	72.00%	(OP EXP)	300	
							\$ 12,631	15.44
750	BOPD	30	\$65.00	\$ 14,625		Gross	\$ 10,814	
750	MCFD	30	\$1.75	394		(Severance Tax)	1,115	
				\$ 15,019	72.00%	(OP EXP)	300	
							\$ 9,399	20.75
500	BOPD	30	\$65.00	\$ 9,750		Gross	\$ 7,209	
500	MCFD	30	\$1.75	263		(Severance Tax)	743	
				\$ 10,013	72.00%	(OP EXP)	300	
							\$ 6,166	31.63

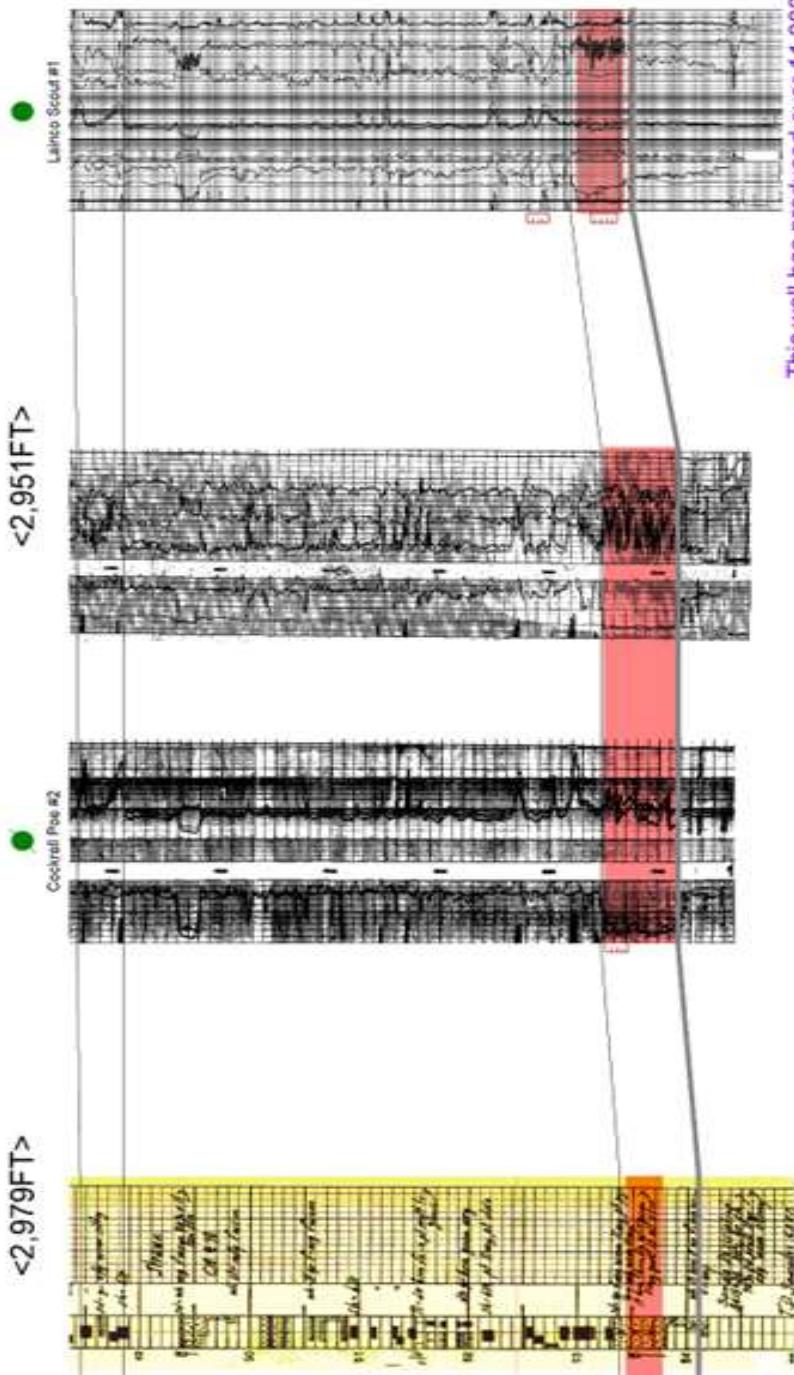

THIS ILLUSTRATION REPRESENTS ONLY AN ESTIMATE OF REVENUE THAT MAY BE RECEIVED WITH RESPECT TO A ONE PERCENT WORKING INTEREST AND THE PRODUCTION LEVELS STATED. VARIANCES IN PRODUCTION RATES, COMMODITY PRICES, AND LEASE OPERATING EXPENSES WILL DIRECTLY IMPACT NET REVENUE. THIS ILLUSTRATION IS SUBJECT TO ALL OF THE RISKS DESCRIBED IN "RISK FACTORS" AND ELSEWHERE IN THE PRIVATE PLACEMENT MEMORANDUM YOU RECEIVED. THIS PROSPECT COULD BE A "DRY HOLE" AND RESULT IN ZERO REVENUE

Geology

Fisher County Type Log


Cholla Buffalo Well
Induction Log

Density/Neutron Log


JONES COUNTY

A

JONES COUNTY

A'

This well has produced over 11,000 BO since 2/2/2020
Thus proving the reserves and the tight nature of the formation

Tax Advantages of Investing in Oil & Gas

Why Invest in Oil and Gas?

Oil and gas can offer certain tax benefits, often associated with specific types of investments and structures. Here are some ways in which investing in oil and gas might lower taxes:

- 1. Intangible Drilling Costs (IDCs):** Investors in oil and gas exploration and drilling projects may be able to deduct intangible drilling costs (IDCs). These costs include expenses related to drilling that don't have a salvage value, such as labor, drilling fluids, and specific rental fees. Deducting IDCs can result in a reduction of taxable income.
- 2. Depletion Allowance:** Investors in oil and gas properties may be eligible for a depletion allowance. Depletion is a tax deduction that accounts for the reduction in the value of an oil or gas reservoir as it is produced. This allowance allows investors to recover a portion of their investment tax-free. The depletion allowance is currently 15% of gross revenue.
- 3. Pass-Through Entities:** Many oil and gas investments are structured as pass-through entities, such as Limited Partnerships or Limited Liability Companies (LLCs). In these structures, income and deductions pass through to the individual investors, who report them on their tax returns. This can allow investors to benefit from certain tax advantages associated with business activities.

Here are some potential benefits associated with investing in oil and gas:

- 1. Income Generation:** Certain oil and gas investments, such as royalty interests or income-focused partnerships, can provide regular income through dividends or distributions. This can be appealing to investors seeking consistent cash flow.
- 2. Potential for Capital Appreciation:** Depending on the success of exploration and drilling activities, investors may experience capital appreciation as the value of oil and gas reserves increases. If the exploration leads to successful production, the value of the investment can rise.
- 3. Tax Benefits:** As mentioned earlier, there are potential tax benefits associated with oil and gas investments, including deductions for intangible drilling costs, depletion allowances, and, in some cases, tax credits. These tax advantages can help offset the overall tax liability for investors.
- 4. Diversification:** Investing in oil and gas can diversify an investment portfolio. Since the performance of the oil and gas sector is often influenced by factors different from those affecting other sectors, it can serve as a hedge against risks associated with economic fluctuations.
- 5. Inflation Hedge:** Oil and gas investments, particularly those tied to the production of commodities, can act as a hedge against inflation. The value of energy resources often rises with inflation, providing a potential safeguard for investors against the eroding effects of rising prices.
- 6. Global Demand:** The demand for energy, including oil and gas, is consistently high globally. Investments in this sector can be driven by the growing demand for energy resources, especially in emerging economies.

Tax Advantages of Investing in Oil & Gas

Why Invest in Oil and Gas?

It's crucial to emphasize that investing in oil and gas carries risks, including commodity price volatility, regulatory changes, and geological uncertainties. Before making investment decisions, individuals should conduct thorough due diligence, consider their risk tolerance, and, when necessary, seek advice from financial professionals. Additionally, staying informed about market trends and developments in the energy sector is essential for making informed investment decisions.

The classification of income from oil and gas investments as passive or active can depend on the level of involvement and the specific nature of the investment. Here's a general distinction between passive and active income in the context of oil and gas investments:

1. Passive Income:

Oil Royalties and Distributions: If an investor receives income from a passive investment in oil and gas, such as a royalty or a limited partnership interest, this income is typically considered passive. Royalties are payments made to mineral rights owners based on a percentage of production, and distributions from a passive investment are often generated without direct involvement in day-to-day operations.

Limited Partnership Interests: Many oil and gas investments are structured as limited partnerships or similar entities, where investors have limited decision-making roles. Income generated through limited partnership interests is often treated as passive.

2. Active Income:

Working Interests and Direct Operations: If an investor actively participates in the operations of an oil and gas project, such as through a working interest, the income generated may be considered active. Active participation may involve involvement in decision-making, drilling operations, and day-to-day management of the project.

Material Participation: In some tax jurisdictions, participation and involvement in oil and gas activities can determine whether the income is passive or active. Material participation requirements may be used to classify the income, and meeting certain thresholds of involvement could categorize it as active income.

Tax laws are complex, and the specific tax benefits available can depend on various factors, including the type of investment, the structure of the investment vehicle, and the investor's circumstances. Before making any investment decisions, it's advisable to consult with a tax professional or financial adviser who can provide guidance based on your specific situation and the latest tax regulations. Additionally, tax laws can change, so staying informed about the latest codes is crucial.

Common Oil Field Terms

"BBL" stands for "barrels." It is a unit of volume commonly used to measure and quantify the production, consumption, and transportation of crude oil and other petroleum products. One barrel is equivalent to 42 U.S. gallons or approximately 159 liters. The term "BBL" is widely used when referring to oil and gas quantities, such as barrels of oil produced per day (BOPD) or minutes in a pipeline. **"MBO"** is an acronym for thousands of barrels of oil.

"BOE" is a unit of energy based on the approximate energy released by burning one barrel (42 U.S. gallons or 159 liters) of crude oil. It is used to aggregate different types of energy resources (oil, natural gas, etc.) into a standard measure to facilitate comparisons. For example, if a company produces oil and natural gas, it might express its total production in terms of BOE to provide a standardized metric. **"MMBO"** is an acronym for "millions of barrels of oil equivalent." **"BOE"** is a unit of energy based on the approximate energy released by burning one barrel (42 U.S. gallons or 159 liters) of crude oil. It is used to aggregate different types of energy resources (oil, natural gas, etc.) into a standard measure to facilitate comparisons. For example, if a company produces oil and natural gas, it might express its total production in terms of BOE to provide a standardized metric.

"MCF" stands for "thousand cubic feet." It is a unit of measurement used to quantify natural gas volumes. The "M" represents one thousand in Roman numerals, and "C.F." stands for cubic feet. Therefore, when you see "MCF," it denotes a volume of natural gas equal to one thousand cubic feet. This unit is commonly used to express natural gas production, consumption, or reserves. For example, if a natural gas well produces 5,000 MCF daily, it has 5 million cubic feet of natural gas daily. Similarly, reserves or resources of natural gas can be expressed in MCF to indicate the volume in thousands of cubic feet.

"MMCF" stands for "million cubic feet." It is a unit of measurement used to quantify natural gas volumes. The "MM" represents one million in Roman numerals, and "C.F." represents cubic feet. Therefore, when you see "MMCF," it denotes a volume of natural gas equal to one million cubic feet. This unit is commonly used to express natural gas production, consumption, or reserves. For example, if a natural gas well produces 5,000 MMCF daily, it produces 5 million cubic feet of natural gas daily. Similarly, reserves or resources of natural gas can be expressed in MMCF to indicate the volume in millions of cubic feet.

"BCF" stands for "billion cubic feet." It is a unit of measurement used to quantify natural gas volumes. The "B" represents one million in Roman numerals, and "C.F." stands for cubic feet. Therefore, when you see "BCF," it denotes a volume of natural gas equal to one billion cubic feet. This unit is commonly used to express natural gas production, consumption, or reserves. For example, if a natural gas well produces 5,000 BCF daily, it has 5 billion cubic feet of natural gas daily. Similarly, reserves or resources of natural gas can be expressed in BCF to indicate the volume in billions of cubic feet.

"BHA" stands for "Bottom Hole Assembly." The Bottom Hole Assembly refers to the lower part of a drill string used in drilling operations. It is the assembly of tools and equipment located at the bottom end of the drill string, just above the drill bit. The BHA plays a crucial role in the drilling process, as it contains various tools and components designed for specific functions such as drilling, measurement, and wellbore evaluation. The components of a Bottom Hole Assembly can include the drill bit, mud motor, measurement-while-drilling (MWD) tools, logging-while-drilling (LWD) tools, and other specialized equipment. The configuration of the BHA can vary depending on the specific requirements of the drilling operation, such as the type of formation being drilled and the objectives of the well. In summary, the Bottom Hole Assembly is a critical part of the drilling system, and it is responsible for carrying out various tasks to facilitate the drilling of oil and gas wells.

"BOE" stands for "Barrel of Oil Equivalent." It is a unit of energy representing the approximate energy content of one barrel (42 U.S. gallons or about 159 liters) of crude oil. The term is used to standardize and aggregate different types of energy resources, such as oil and natural gas, into a standard measure. The conversion is typically based on the energy content rather than the volume or mass of the substances being compared. The typical conversion is that 1 BOE equals the energy released by burning one barrel of crude oil, allowing a more straightforward comparison of different energy sources and facilitates energy production and consumption discussions in a unified metric.

"BOP" stands for "Blowout Preventer." A Blowout Preventer is a critical piece of safety equipment used in drilling operations to control and prevent the uncontrolled release of oil or natural gas from a well during drilling. It is designed to seal the wellbore in the event of a blowout a sudden and uncontrollable release of oil or gas. The Blowout Preventer is typically located on the wellhead and comprises various components, including hydraulic systems, rams, and valves. Different Blowout Preventers, such as annular and ram preventers, each serve specific functions in well control. The primary purpose of a Blowout Preventer is to provide a barrier that can be activated to shut in the well and prevent the escape of hydrocarbons in the event of an unexpected increase in pressure. Blowout Preventers are a critical part of well control systems and are an essential safety feature in drilling operations to prevent blowouts and mitigate the risk of catastrophic well incidents.

"D.P." refers to the Drilling Platform. This term describes a platform or structure used for drilling operations.

"GIP" commonly stands for "Gas Initially in Place." GIP refers to the estimated total quantity of natural gas in a subsurface reservoir before any extraction or production activities occur. It represents the total volume of gas that is theoretically available in the reservoir. Gas Initially In Place is an essential parameter in reservoir engineering and petroleum economics, providing insight into the potential resource base of a natural gas reservoir. However, it's important to note that not all the gas initially in place may be recoverable due to technical and economic constraints. The estimation of GIP involves various geological and engineering assessments, which are critical factors in evaluating the overall potential of a gas field.

"M.D." can stand for "Measured Depth." Measured Depth refers to the length of the wellbore or hole that has been drilled, and it is typically measured from the surface to a specific point down the well. This measurement helps assess the Depth at which various formations, reservoirs, or target zones are encountered during drilling operations. The term "M.D." is often used in contrast to **"TVD"** (True Vertical Depth), which considers the inclination and direction of the wellbore to provide a measurement of the actual vertical Depth from the surface to the target point. So, when you encounter "M.D." in the oil and gas industry, it generally refers to the measured wellbore depth. **"M.D."** also stands for "Mud Density." Mud density refers to the thickness or weight of the drilling mud, a specially designed fluid used during drilling operations to lubricate the drill bit, carry drill cuttings to the surface, and provide pressure to prevent well blowouts. Maintaining the appropriate mud density is crucial for well stability and effective drilling. However, it's important to note that "M.D." can have different meanings depending on the context.

"M.W." can stand for different terms depending on the specific context. Two common interpretations are:

1. Mud Weight (M.W.): Mud weight refers to the density or weight of the drilling mud used in drilling operations. It is a crucial parameter that drillers monitor and control to ensure proper wellbore stability and prevent blowouts. Mud weight is typically measured in pounds per gallon or pounds per cubic foot.

2. Mud Weighted (M.W.): In some contexts, "M.W." can also stand for "Mud Weighted," indicating that specific measurements or calculations have been adjusted or corrected based on the properties of the drilling mud.

As with many acronyms in the oil and gas industry, the precise meaning of "M.W." will depend on the specific application or discipline within the field.

Common Oil Field Terms

"MWD" stands for "Measurement While Drilling," MWD tools refer to the suite of instruments and sensors incorporated into the drill string to gather real-time data while drilling a well. These tools provide critical information about the wellbore, including its inclination, azimuth, and sometimes formation properties.

Critical components of MWD tools may include:

1. Directional Sensors: These sensors help determine the wellbore's inclination and azimuth, providing information about the well's deviation from the vertical and its orientation.

2. Gamma-Ray Sensors: Gamma-ray sensors measure the natural gamma radiation emitted by formations surrounding the wellbore. This information aids in identifying different rock layers and formations.

3. Magnetometers: Magnetometers measure the Earth's magnetic field, providing additional data for determining the wellbore's direction.

4. Pressure and Temperature Sensors: These sensors monitor down-hole conditions, helping operators make decisions related to wellbore stability and drilling fluid properties. The real-time data collected by MWD tools is crucial for wellbore navigation, geosteering, and overall wellbore placement. It allows drilling engineers to make informed decisions to optimize the drilling process and ensure the well is drilled accurately to its intended target.

"POOH" stands for "Pulling Out of Hole." It refers to withdrawing the drill string and other bottom-hole assembly components from the wellbore during drilling operations. Pulling out of the hole is a standard operation when the drill bit or other equipment needs to be replaced; maintenance or other operations necessitate retrieving the drill string.

"RIH" (Running in Hole) is used when the drill string and equipment are lowered or run into the wellbore during drilling. POOH and RIH are routine operations in the drilling process and are carried out as needed to perform various wellbore tasks.

"PUD" stands for "Proved Undeveloped." It is a classification used in the assessment of oil and gas reserves. Reserves are categorized based on the degree of certainty regarding their recoverability and the stage of development. "Proved reserves" refer to estimated quantities that geological and engineering data demonstrate with reasonable certainty to be recoverable in the future from known reservoirs under existing economic and operating conditions. The term "undeveloped" in PUD indicates that these reserves are in known reservoirs but are not yet in production and are awaiting development. In summary, PUD reserves are quantities of oil and gas considered proven but still awaiting the necessary development activities to bring them into production.

"P/U" can stand for "Pick Up." This term is used in the context of various operations involving the handling or retrieval of equipment in a wellbore. For example, "P/U" might be used in phrases like:

1. P/U Tubing refers to picking up or retrieving tubing from the wellbore.

2. P/U Casing refers to picking up or retrieving casing from the wellbore.

These operations are part of routine activities during well construction, maintenance, or workover operations, where equipment such as tubing or casing is lowered into or retrieved from the wellbore using the drilling rig or other specialized equipment. The term "P/U" helps communicate specific actions related to handling equipment in the well.

"Rotate Drilling" typically refers to rotating the drill string, including the drill bit, to create a borehole or wellbore in the subsurface. This rotation allows the drill bit to cut through the rock formations, and the drilling mud or drilling fluid is circulated to carry the cuttings to the surface. The rotation of the drill string is one of the fundamental components of the drilling process, and it helps advance the wellbore. The drilling rig's rotary table or top drive system imparts rotational motion to the drill string. Drilling can involve various techniques, and the term "Rotate Drilling" emphasizes the importance of the rotational aspect in the overall drilling operation. It distinguishes this process from other phases of drilling, such as tripping (pulling out the drill string) or making connections (adding or removing drill pipe).

"Section" can have different meanings depending on the specific context. Here are a couple of possible interpretations:

1. Land Surveying and Leasing: In the context of land leasing and surveying, a "section" typically refers to a unit of land measurement. In the United States, a section is a square tract of land, typically one mile by one mile, and it is a standard unit for dividing and describing land parcels.

2. Geological and Wellbore Interpretation: In geological and wellbore interpretation, a "section" may refer to a unit of measurement along a wellbore. For example, well logs or geological interpretations may be divided into sections to analyze specific intervals or formations.

SIP" can refer to various terms depending on the specific context. Three common interpretations are:

1. SIP - Seismic Inversion Package: In geophysics and exploration, SIP can stand for Seismic Inversion Package. Seismic inversion is a technique used to estimate rock and fluid properties in subsurface formations based on seismic data. It helps in mapping and understanding the characteristics of the subsurface, aiding in the exploration and development of oil and gas reservoirs.

2. SIP - Sucker Rod Pumping: In the context of production operations, SIP can also refer to Sucker Rod Pumping. Sucker rod pumps are commonly used in the oil industry to lift liquids, including oil or water, from a well to the surface. This method is a form of artificial lift.

3. SIP - Shut-In Pressure: refers to the pressure observed at the wellbore when the well is closed or shut in. Shutting in a well involves closing the valves at the surface isolating the wellbore from the production or reservoir. When the well is shut in, pressure builds up at the wellhead due to the natural pressure in the reservoir. Shut-in Pressure is a crucial parameter in well testing and reservoir evaluation. It provides insights into the reservoir's pressure and helps reservoir engineers and geoscientists assess reservoir characteristics, such as pressure depletion, connectivity, and potential production rates. The Shut-in Pressure is typically measured and recorded at the surface, and the data is used for analysis and decision-making in the optimization and management of oil and gas reservoirs.

"Slide drilling" generally refers to a drilling technique used in directional or horizontal drilling. It involves controlling the wellbore's inclination or direction by adjusting the drill bit's orientation without rotating the entire drill string. In slide drilling, the drill bit is intentionally kept in a fixed position, and the drilling direction is achieved by changing the angle of the drill pipe, creating a curved or slanted wellbore. This technique is often employed when drilling deviated or horizontal wells to reach specific targets or reservoirs. Slide drilling is a crucial method in directional drilling operations, providing a way to navigate the wellbore through different geological formations or to access specific reservoir zones. It allows for precise well placement and reservoir contact, enhancing overall well performance and hydrocarbon recovery.

Common Oil Field Terms

"Stand" can refer to a couple of different things:

- 1. Drill Pipe Stand:** A "stand" can refer to a set or group of connected drill pipes positioned vertically in a drilling rig's derrick or mast. These stands usually comprise multiple individual joints of drill pipe connected end-to-end. Stands are added or removed during drilling as the drill string is tripped in or out of the wellbore.
- 2. Measurement Unit:** In some contexts, "stand" might be used as a unit of measurement for specific quantities related to oil and gas production or reserves. For example, "barrels per stand" could refer to the production rate or reserves calculated in terms of the number of barrels of oil.

"T.D." commonly stands for "Total Depth." Total Depth refers to the deepest point reached by the drill bit in a wellbore. It marks the completion of the drilling process for that well. When a well gets its total Depth, the drill bit has penetrated the planned Depth, and drilling activities for that wellbore are typically concluded. The measurement of total Depth is crucial for various reasons, including assessing the geological formations, evaluating the potential reservoirs, and determining the overall success of the drilling operation. Total Depth is often expressed in feet or meters, depending on the unit of measurement used in a particular region or project.

"Tripping in the hole" refers to lowering the drill string back into the wellbore, including the drill bit and other bottom hole assembly components. This operation is the opposite of "tripping out of the hole," where the drill string is pulled out of the wellbore. Tripping in the hole is a routine operation during drilling activities and is performed for various reasons, including:

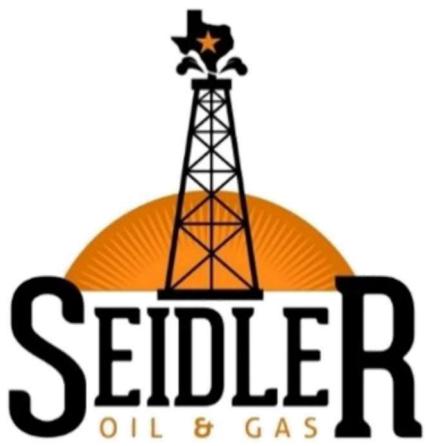
- 1. Changing or Replacing Equipment:** It allows for replacing the drill bit or other drill string components.
- 2. Adding or Removing Drill Pipe:** This facilitates adding or removing sections of the drill pipe to adjust the length of the drill string.
- 3. Performing Maintenance:** Tripping in the hole may require routine maintenance or repairs.

The term "tripping" comes from the historical practice of manually handling individual drill pipe joints during these operations. Modern drilling rigs often use automated systems to facilitate tripping operations, improving safety and efficiency.

"TVD" stands for "True Vertical Depth." True Vertical Depth is a measurement that represents the vertical distance from a specific point in a wellbore to a reference point at the surface. Unlike measured Depth (M.D.), which is the length of the wellbore along the path drilled (regardless of deviation), TVD accounts for the inclination or variation of the wellbore. It provides a more accurate measure of the vertical Depth, considering the actual vertical distance from the surface to the target point in the subsurface. TVD is critical in well planning, reservoir evaluation, and other aspects of drilling and production operations where an accurate understanding of the wellbore's actual vertical position is required.

"AFE" stands for "Authorization for Expenditure." An Authorization for Expenditure is a document that outlines the estimated costs and expenditures associated with a specific oil and gas project or well. The operator presents a formal proposal to the working interest partners, seeking their approval and financial commitment for the planned activities. The AFE typically includes details such as:

- 1. Project Description:** Describing the scope of work or the nature of the project.
- 2. Estimated Costs:** Provide a breakdown of the anticipated costs associated with drilling, completion, and other relevant activities.
- 3. Risks and Contingencies:** Outlining potential risks and including contingency plans.
- 4. Authorization Details:** Describing the terms and conditions for the partners' approval and participation.


Working interest partners review the AFE, and if they agree with the proposed costs and activities, they authorize the expenditure of funds for the project. A signed AFE allows the operator to move forward with the planned operations and serves as a financial commitment from the participating parties.

"ESP" typically stands for "Electric Submersible Pump." An Electric Submersible Pump is a type of pump submerged in the wellbore, typically near the bottom of an oil or water well. ESPs lift fluids, such as oil or water, from the well to the surface. Critical components of an ESP system include:

- 1. Motor:** The electric motor is at the bottom of the pump and powered by surface electricity.
- 2. Pump:** The pump is responsible for lifting the fluids to the surface. The electric motor drives it.
- 3. Seals and Cables:** The system is equipped with seals to prevent fluid from entering the motor, and electrical cables deliver power to the motor.

ESP systems are commonly employed in wells with high lifting requirements or challenging down-hole conditions. They are instrumental in enhancing the production rate of oil wells, providing artificial lift to bring fluids to the surface efficiently.

"B.C." stands for **Barrels of Condensate**. In the context of oil and gas production, "B.C." could refer to barrels of condensate. Condensate is a light liquid hydrocarbon mixture often found in association with natural gas.

Corporate Profile

Full Corporate Name Seidler Oil & Gas, LP
State of Formation: Texas
Date of Formation: 07/2006
Federal Tax ID#: 20-5242029

President & Owner

Frank Seidler

REFERENCES

American National Bank
Jake Hardin
817-442-3065

Legal

Whitaker Chalk Swindle & Schwartz PLLC
John R Fahy
817-878-0547

Contact Us

817-259-1777
877-752-1777 (Toll Free)
www.soglp.com
7140 East FM 917
Alvarado, Texas 76009

