

ANGEL'S PUBLIC SCHOOL

PERIODIC TEST – I SESSION 2024 – 25 CLASS – X CODE – 041

TIME : 2 HRS

SUBJECT : MATHEMATICS

M.M:40

General Instructions :

- (a) Section A contains 10 objective type questions each carries 1 mark.
- (b) Section B contains 4 very short type subjective questions each carries 2 marks
- (c) Section C contains 4 short type subjective questions each carries 3 marks.
- (d) Section D contain two questions each carries 5 marks.

<u>SECTION – A</u>

1. If two positive integers a and b are written as $a = x^3y^2$ and $b = xy^3$; x, y are prime numbers, then HCF (a, b) is :

- 5. The LCM of smallest two digit composite number and smallest composite number is :
- (a) 12 (b) 4 (c) 20 (d) 44 6. The distance of the point (3, 5) from the x – axis (in units) is : (a) 3 (b) – 3 (c) 5 (d) – 5 7. In figure, the graph of a polynomial p(x) is shown. The number of zeroes of p(x) is (a) 2 (b) 3 (c) 1 (d) 4

8. If one zero of the polynomial $3x^2 + 11x + p$ is reciprocal of the other , then the value of p is : (a) 0 (b) 3 (c) $\frac{1}{3}$ (d) 3 **9.** Define coprime numbers with example.

- **10.** What is the greatest possible speed at which a girl can walk 95m and 171 m in an exact number of times ?
 - (a) 17 m / min (b) 19 m / min (c) 13 m / min (d) 23 m / min **SECTION B**
- **11.** Check whether 8ⁿ can end with the digit zero for any natural n ?
- 12. Find the value of k such that polynomial $x^2 (k + 6)x + (2k 1)$ has sum of its zeroes equal to half of their product.
- **13.** If α , β are roots of $x^2 3x + 2$, find the polynomial whose rooms are $(2\alpha 1)(2\beta 1)$.
- 14. Define composite numbers with example.

SECTION - C

- **15.** Two numbers are in the latio 2 : 3, and their $\overline{\text{LCM} \text{ is } 180}$. What is HCF of these two numbers.
- **16.** If α , β are the roots of a Polynomial $x^2 4\sqrt{3}x + 3$, then find the value of $\alpha + \beta 3 \alpha \beta$
- **17.** What is the greatest Possible speed at which a girl can walk 95 m 171m is an extract number of minutes?
- **18.** If (x + a) is a factor of Polynomials x + lx + m and x + nx + k prove that $a = \frac{m-k}{l}$.

SECTION - D

19. Prove that $\sqrt{2}$ is irrational number and hence show that $5 + \sqrt{2}$ also can irrational number.

OR

If α , β are of quadratic polynomial $2x^2 + 5x + k$, find the value of k, such that $(\alpha + \beta)^2 - \alpha \cdot \beta = 24$

20. CASE STUDY

Due to heavy storm an electric wire got bent as shown in the figure. It followed a mathematical shape given by a quadratic polynomial.

Based on the above information, answer the following questions :

(i) Name of shape in which the wire bent.

	(a)	Parabola	(b)	Linear	(c)	Hyperbola	(d)	Circular	
(ii)	The zeroes of the polynomial are								
	(a)	1 and 3	(b)	-1 and -3	(c)	0, 3	(<i>d</i>)	0, 1	
(iii)	What will be expression of the polynomial								
	(a)	$x^{2} + 1$	(<i>b</i>)	$x^2 + 3x + 2$	(c)	$x^2 - 4x + 1$	(<i>d</i>)	$x^2 + 2x - 2$	
(iv)	What is the value of the polynomial, if $x = 2$?								
	(a)	-4	(b)	- 3	(c)	-2	(<i>d</i>)		
(v)	If the graph is either completely above x-axis or completely below x-axis, then the number of								
		bes is							
	(a)	0	, (i	5) 2 (c) 4	(<i>d</i>)	Infinite		