Strive for Perfection

ANGEL'S PUBLIC SCHOOL

SAMPLE PAPER

PERIODIC TEST-I SESSION 2024-25
CLASS - X CODE - 041
SUBJECT : MATHEMATICS
M.M:40

TIME : 2 HRS
General Instructions :
(a) Section - A contains 10 objective type questions each carries 1 mark.
(b) Section - B contains 4 very short type subjective questions each carries 2 marks
(c) Section - C contains 4 short type subjective questions each carries 3 marks.
(d) Section - D contain two questions each carries 5 marks.

SECTION - A

1. If two positive integers a and b are written as $a=x^{3} y^{2}$ and $b=x y^{3} ; x, y$ are prime numbers, then HCF (a, b) is :
(a) $x y$
(b) $x y^{2}$
(c) $x^{3} y^{3}$
(d) $x^{2} y^{2}$
2.

The given linear polynomial $y=f(x)$ has
(a) 2 zeros
(b) 1 zero and the zero is ' 3 '
(c) 1 zero and the zero is ' 4 '
(d) No zero

3. $2 \sqrt{ } 3$ is \qquad .
(a) an integer
(b) a rational number
(c) an irrational number
(d) a whole number
4. The exponent of 5 in the prime factorisation of 3750 is :
(a) 3
(b) 4
(c) 5
(d) 6
5. The LCM of smallest two digit composite number and smallest composite number is :
(a) 12
(b) 4
(c) 20
(d) 44
6. The distance of the point $(3,5)$ from the x-axis (in units) is :
(a) 3
(b) -3
(c) 5
(d) -5
7. In figure, the graph of a polynomial $p(x)$ is shown. The number of zeroes of $p(x)$ is
(a) 2
(b) 3
(c) 1
(d) 4

8. If one zero of the polynomial $3 x^{2}+11 x+p$ is reciprocal of the other, then the value of p is :
(a) 0
(b) 3
(c) $\frac{1}{3}$
(d) 3
9. Define coprime numbers with example.
10. What is the greatest possible speed at which a girl can walk 95 m and 171 m in an exact number of times?
(a) $17 \mathrm{~m} / \mathrm{min}$
(b) $19 \mathrm{~m} / \mathrm{min}$
(c) $13 \mathrm{~m} / \mathrm{min}$
(d) $23 \mathrm{~m} / \mathrm{min}$

SECTION - B

11. Check whether 8^{n} can end with the digit zero for any natural n ?
12. Find the value of k such that polynomial $x^{2}-(k+6) x+(2 k-1)$ has sum of its zeroes equal to half of their product.
13. If α, β are roots of $x^{2}-3 x+2$, find the polynomial whose rooms are $(2 \alpha-1)(2 \beta-1)$.
14. Define composite numbers with example.

SECTION - C

15. Two numbers are in the latio $2: 3$, and their LCM is 180 . What is HCF of these two numbers.
16. If α, β are the roots of a Polynomial $x^{2}-4 \sqrt{3} x+3$, then find the value of $\alpha+\beta-3 \alpha \beta$
17. What is the greatest Possible speed at which a girl can walk 95 m 171 m is an extract number of minutes?
18. If $(x+a)$ is a factor of Polynomials $x+l x+m$ and $x+n x+k$ prove that $a=\frac{m-k}{1-n}$.

SECTION - D

19. Prove that $\sqrt{2}$ is irrational number and hence show that $5+\sqrt{2}$ also can irrational number.

If α, β are of quadratic

polynomial $2 x^{2}+5 x+k$, find the value of k, such that
$(\alpha+\beta)^{2}-\alpha \cdot \beta=24$

20. CASE STUDY

Due to heavy storm an electric wire got bent as shown in the figure. It followed a mathematical shape given by a quadratic polynomial.

Based on the above information, answer the following questions :
(i) Name of shape in which the wire bent.
(a) Parabola
(b) Linear
(c) Hyperbola
(d) Circular
(ii) The zeroes of the polynomial are
(a) 1 and 3
(b) -1 and -3
(c) 0,3
(d) 0,1
(iii) What will be expression of the polynomial
(a) $x^{2}+1$
(b) $x^{2}+3 x+2$
(c) $x^{2}-4 x+1$
(d) $x^{2}+2 x-2$
(iv) What is the value of the polynomial, if $x=2$?
(a) -4
(b) -3
(c) -2
(d) -1
(v) If the graph is either completely above x-axis or completely below x-axis, then the number of zeroes is
(a) 0
(b) 2
(c) 4
(d) Infinite

