

ANGEL'S PUBLIC SCHOOL

SAMPLE PAPER

HALF YEARLY EXAM SESSION 2023 – 24 CLASS - XI CODE - 043 SUB IECT · CHEMISTRY

M.M:70

TIME: 3 HRS	SUBJ	JECT : CHEMISTRY	M.M
General Instruction.			
SECTION – A (Q NO. 1 T SECTION – B (O NO. 16 T	O 13 CARRIES 1 WI $O 23 CARRIES 2 M$		
SECTION – $C(Q NO. 24 T)$	0 31) CARRIES 3 N	ARKS FACH	
SECTION – D (Q NO. 32]		MARKS EACH	
ATTEMPT ALL QUESTION	NS		
USE OF CALCULATOR IS	NOT ALLOWED		
	<u>SE</u>	<u>ECTION – A</u>	
Q1- An adiabatic'expansion	ı of an ideal gas alwa	iys has	
(a) Decrease in temper	tature (b) $q = 0$	(c) W = 0	(d) $\Delta H = 0$.
Q2- For an endothermic rea	action ΔS is positive,	the reaction is	-
(a) feasible when $I\Delta S$	$\to \Delta H$	(b) teasible when $\Delta H >$	IΔS
(c) feasible at all temp	erature	(d) Not feasible at all	
Q3- which of the following) /// (d)	
(a) ΔG (b)	ΔE (C	(u) VV) П
(a) joule (k) joule per mole	(c) ioule per Kelvir	d) iqule per gram
Q5-The quantity of heat me	asured for a reaction	in a bomb calorimeter is eq	ual to
(a) ΛG (b)	λ) Λ H ((c) PΛV (d)	ΛE
Q6- The bond energies of (C-C, C=C; H-H and C	-H linkages are 350, 600, 40	00 and 410 kj per mole
respectively. The heat of hy	drogenation of ethyle	ene is	,
(a) -170 kj mol ⁻¹	(b) -260 kj mol ⁻¹	(c) 400 kj mol-1	(d) -450 kj mol ⁻¹
Q7- Number of pi and sigm	a bonds in benzene a	are	
[a] 3 & 12	[b] 12 & 12	[c] 6 & 11	[d] 6 & 6
Q8- The hybridisation of iod	line in I_{3^+} is		
[a] sp ³	[b] sp ³	d [c] sp ³ d ²	2 [d]sp ³ d ²
Q 9-Which hybridisation is	possible in square pla	aner molecules?	[-1] 2 -12
[a] sp ³ 0	[D] OSP ³	[C] SP	[a] sp ³ a ²
Q10- The geometry of CIO	Fion according to VS	EPR INCOLY WILL DE	[d] square planer
O11 - Which of the following	u molecule is linear?		[u] square plane
			[d] SCI2
Q12- Bond order of nitric ox	(ide (NO) is		
[a] 1	[b] 2	 [c] 2.5	[d] 1.5
Q13- Two lone pair of elect	rons and two bond pa	air of electrons are present i	n
[a] NH₃	[b] BF₃ [']	[c] H ₂ O	[d] CO ₂

SECTION - B

Q16 . Explain sp hybridisation in detail?

Q17. Name the element in periodic table having highest electron affinity and Size ?

Q18. Write postulates of molecular orbital theory

Q19. Explain screening effect and shielding effect ? How it effects the Ionisation energy?

Q20. Calculate no. of atoms in [a] 88.0 g of CO₂ [b] 10 gram atoms of Na

Q21. Arrange elements of second period on the basis of Ionisation energy . Give reason

Q22. The enthalpy of combustion of propane is - 2050 k j . the bond energy of C-C, C-H, C=O ,

O—H are 347, 414, 741, 464 k j. Calculate bond enthalpy of O=O molecule?

Q23.What is the number of photons of light with a wavelength of 4000pm that provide 1.0j of energy?

SECTION - C

Q24. Calculate the wavenumber and frequency for shortest wavelength of Bracket series?

Q25. What are maximum number of emission lines when the excited electron of H atom?

(1) in n=6 drops to ground state (2) n =5 to 2nd state?

Q26. What is node ? Draw shape of d_{xy} and d_{zx} orbitals

Q27. Explain isothermal workdone.

Q28 Derive de Broglie relation. What is its significance?

Q29. Draw molecular orbital energy diagram of N_{2^+} molecule and find its bond order , magnetic property and electronic configuration ?

Q30. Derive relation between ΔH and ΔE

Q 31. Define and prove Hess's law.

SECTION - D

Q32. Draw the structure and write shape and hybridization of the following

[1] I_{3^+} [2] SF₄ [3] XeO₂F₂ [4] PO₄³⁻ [5] H₂SO₄

OR

Calculate the enthalpy of formation of acetic acid if its enthalpy of combustion is -867 kj/mol. The enthalpies of formation of CO_2 and H_2O are – 393.5 and -285.9kj/mol.

<u>Q 33-</u> Draw molecular orbital energy level diagram of O_2 , O_2^+ , O_2^{2+} , O_2^{-2-} and arrange them on the basis of

[i] bond order [ii] bond length [iii] bond dissociation energy [iv] magnetic character **Q34.** The heat change at constant pressure for following reaction is - 92.28 kj at 298 K.

 $N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$

Calculate the heat change at constant volume and at the same temperature

OR

Calculate the enthalpy of formation of ethene . if its enthalpy of combustion is -1323kj. And enthalpy of formation of CO₂ and H₂O are -393.5kj and -249kj