ANGEL'S PUBLIC SCHOOL SAMPLE PAPER

PRE - BOARD - I SESSION 2025 - 26

TIME: 3 HRS CLASS - XII SUBJECT: PHYSICS M.M:70

General Instructions

(1) There are 33 questions in all. All questions are compulsory.

- (2) This question paper has five sections: Section A, Section B, Section C, Section D and Section E.
- (3) All the sections are compulsory.
- (4) Section A contains sixteen questions, twelve MCQ and four assertion reasoning based of 1 mark each, Section B contains five questions of two marks each, Section C contains seven questions of three marks each, Section D contains two case study-based questions of four marks each and Section E contains three long answer questions of five marks each.
- (5) There is no overall choice. However, an internal choice has been provided in two question in Section B, one question in Section C and all three questions in Section E. You have to attempt only one of the choices in such questions.
- (6) Use of calculators is not allowed.
- (7) You may use the following values of physical constants where ever necessary

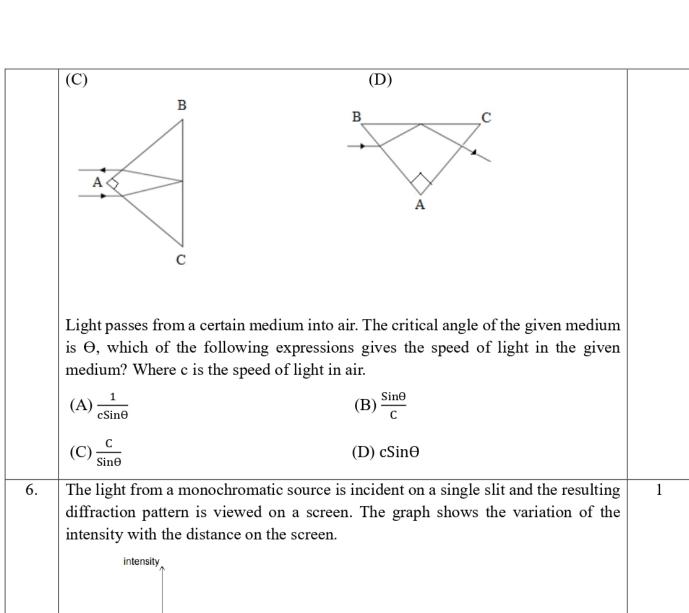
i.
$$c = 3 \times 10^8 \,\text{m/s}$$

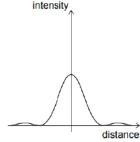
ii.
$$m_e = 9.1 \times 10^{-31} \text{ kg}$$

iii.
$$m_p = 1.7 \times 10^{-27} \text{ kg}$$

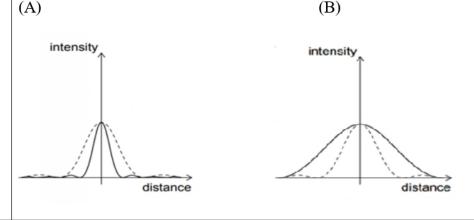
iv.
$$e = 1.6 \times 10^{-19} \text{ C}$$

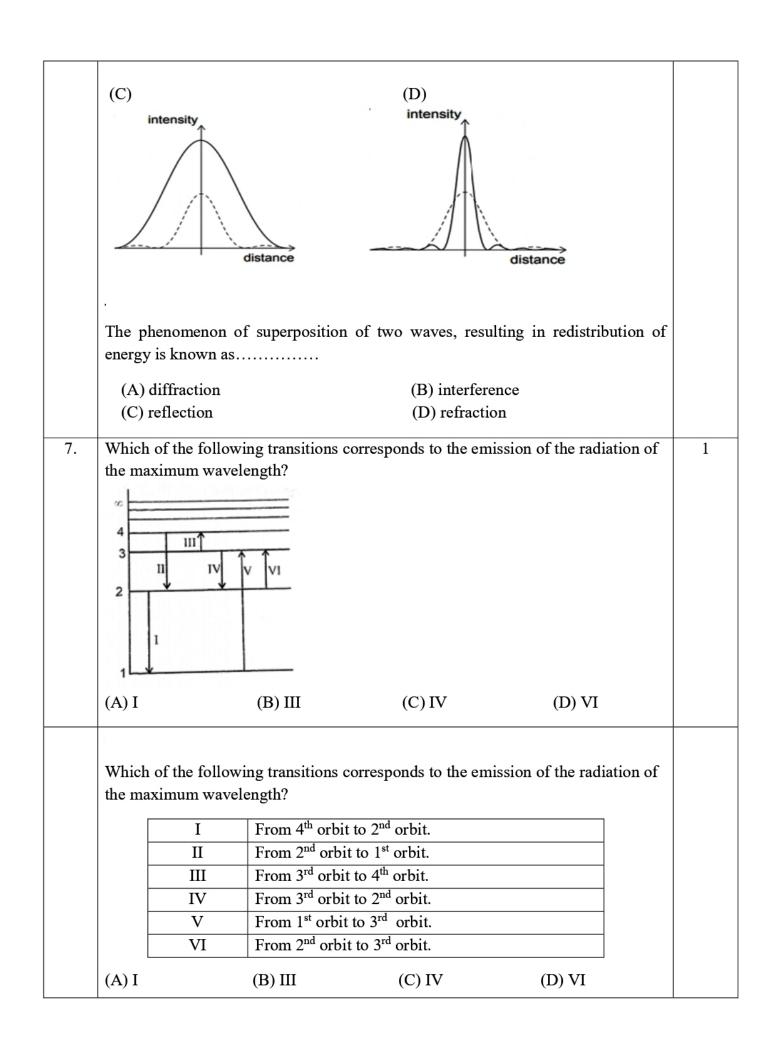
v.
$$\mu_0 = 4\pi \times 10^{-7} \text{ T m } A^{-1}$$


vi.
$$h = 6.63 \times 10^{-34} \text{ J s}$$


vii.
$$\varepsilon_0 = 8.854 \times 10^{-12} \, C^2 N^{-1} m^{-2}$$

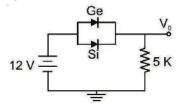
viii. Avogadro's number = 6.023×10^{23} per gram mole


	SECTION A	
Q.No.	Question	Marks
1.	If a charged hollow sphere and a solid sphere of aluminum and copper of equal radii are in electrostatic equilibrium, then which of the following statements is true? (A) Both the spheres are having equal charges. (B) The hollow sphere will have more charge than solid sphere at its surface. (C) The aluminum sphere will have more charge on its surface than copper sphere. (D) If hollow sphere is also made up of aluminum then it will have more charge.	1


2.	A coil contains N turns of insulated copper wire of diameter d and resistivity ρ wound on a cylinder of diameter D. What is the total resistance between the two ends of the coil of copper wire?(given: D>>d)	1
	(A) $\frac{4\rho ND}{d^2}$ (B) $\frac{8\rho ND}{d^2}$ (C) $\frac{2\rho ND}{d^2}$ (D) $\frac{12\rho ND}{d^2}$	
	(C) $\frac{2\rho ND}{d^2}$ (D) $\frac{12\rho ND}{d^2}$	
3.	If the phasor diagram for a device connected to AC supply is as shown in the fig, then which of the following statements is true?	1
	I V	
	 (A) When the frequency of the AC source is increased than the impedance of the device decreases. (B) This device behaves as conducting wire when connected across DC source. (C) When the frequency of the AC source is decreased than the impedance of the device decreases. (D) D. This device stores energy in the form of magnetic potential energy. 	
4.	Which of the following statement is true for the radio waves and the gamma rays? (A) The energy of gamma rays is lesser than that of the radio waves. (B) The frequency of the radio waves is higher than that of gamma rays. (C) The radio waves and the gamma rays have the same energy. (D) The energy of radio waves is lesser than that of the gamma rays.	1
5.	A glass prism has internal angles of 45°, 45° and 90°. The glass has a critical angle of 45°. Which of the following ray diagrams depicts the possible path the of light through the prism?	1
	(A) (B)	
	$\begin{array}{c} A \\ \\ C \end{array}$	

The width of slit is increased keeping the intensity of the source the same. Which of the following graphs is correct? (The original curve is shown with a dashed line.)

8.	A charged particle is projected along the axis of a current carrying loop. Which of the following statements is true?	1
	(A) The acceleration of the charged particle will depend on the velocity with which it is projected.	
	(B) The acceleration of the charged particle will depend on the magnitude of the current passing through the coil.	
	(C) The acceleration of the charged particle will depend on the radius of the coil.(D) The charged particle will move with constant velocity.	
9.	Two small identical magnets are allowed to fall freely one through a vertical solenoid of 20 m made up of copper and another in air through the same vertical distance. The time taken by the two magnets to fall will be	1
	 (A) same in both the cases. (B) more for the magnet falling in air. (C) more for the magnet falling through the solenoid. (D) infinite. 	
10.	The emf generated by an AC generator is given by $V=V_0 \sin \omega t$, where ω is angular frequency of armature of generator. What will be the emf if the angular frequency is doubled	1
	(A) $V=V_o \sin 2\omega t$ (B) $V=2V_o \sin \omega t$	
	(C) $V=2V_o \sin 2\omega t$ (D) $V=V_o \sin \omega t$	
11.	The ratio of the nuclear densities of two nuclei having the mass numbers 8 and 27 is	1
	(A) 8:27 (B) 3:2 (C)2:3 (D) 1:1	
12.	When we move magnetic compass from point P to Q then which of the following statement is true	1
	Q	
	P P	
	1 (7U U V	

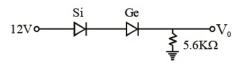

	(A) The deflection of the magnetic needle at P and Q will be in the same direction.	
	(B) The deflection of the magnetic needle at P and Q will be in the opposite directions.	
	(C) The deflection of the magnetic needle at P and Q will be perpendicular to each other.	
	(D) The deflection of the magnetic needle at P and Q will be inclined at 45° with	
	respect to each other.	
	For Questions 13 to 16, two statements are given one labelled Assertion (A) and	
	other labelled Reason (R). Select the correct answer to these questions from the options as given below.	
	(A) Both Assertion and Reason are true and Reason is the correct explanation of Assertion.	
	(B) Both Assertion and Reason are true but Reason is not the correct explanation of Assertion.	
	(C) Assertion is true but Reason is false.	
	(D) Both Assertion and Reason are false.	
13.	Assertion (A): Total energy of an electron in hydrogen atom is negative.	1
	Reason (R): The centripetal force is provided by electrostatic force.	
14.	Assertion (A): The critical angle of light passing from glass to air is minimum for violet colour.	1
	Reason (R): The wavelength of blue light is greater than the light of other colours.	
15.	Assertion (A): Two light sources emitting waves of similar wavelengths are coherent.	1
	Reason (R): Two light sources emitting waves having zero or constant phase difference are known as coherent sources.	
16.	Assertion (A): For three point charges to be in equilibrium, they must be collinear. Reason(R): One of the three charges must have different polarity than rest of the two.	1
	SECTION B	
17.	The amplitude of the magnetic field of a plane electromagnetic wave propagating	2
	along positive X axis in vacuum is 510 nT \hat{k} and its angular frequency is 60 x 10 ⁶	
	rad/sec. Write the expression for the electric field (\overrightarrow{E}) .	
18.	The following graph shows the potential difference across the terminals of a cell against its load current.	2

	Find,	
	(I) the emf of the cell and (II) the internal resistance of the cell.	
	Find the relation between internal resistance, emf, external resistance and the total current in the circuit ?	
19.	A charge q is placed inside a sphere of radius 'a' filled with water and another charge 2q is placed inside cube of side '2a' which is vacuumed inside. Find the ratio of the flux linked with the sphere to that linked with the cube. (Take relative permittivity of water as 80)	2
20(I)	Write an expression for the magnetic force per unit length between two parallel thin current carrying wires. Hence define one ampere.	2
	OR	
20(II)	Draw a diagram representing the behaviour of magnetic field lines for a	2
	(A) diamagnetic & (B) paramagnetic substance.	
	Sate Gauss's law of magnetism? Hence find the magnetic flux linked with the sphere enclosing a current carrying solenoid?	
21(I)	How does the impact parameter affect the trajectory of a α – particles scattered by a heavy nucleus? What is the value of impact parameter for head on collision of α – particles with the nucleus?	2
	OR	
21(II)	Plot a graph showing variation of de-Broglie wavelength λ versus $\frac{1}{\sqrt{V}}$, where V is accelerating potential for a particle of mass m and charge q. Obtain the slope of this graph.	

	SECTION C	
22.	With the help of circuit diagram explain working of the full wave rectifier.	3
23.	 (I) The current I₁ in a wire is getting divided in two wires with currents I₂ and I₃ at a junction in a circuit. The currents in the three wires are related by I₁ = I₂ + I₃. (A) State the fundamental law from which this relation is derived. (B) Explain the validation of law of conservation of energy in Kirchhoff's voltage law? (II) How the balancing condition gets affected if you are interchanging the 	3
24.	galvanometer and the cell in the Wheat stone bridge? A fast-moving neutron collides with the nucleus of Plutonium (Pu), thereby	3
	producing Xenon (Xe) and Zirconium (Zr) along with neutrons. (I) Write the nuclear fission reaction. (II) Find the energy released in the above nuclear reaction. Given atomic masses: $m\binom{239}{94}Pu = 239.052157u$, $m\binom{103}{40}Zr = 102.926597u$, $m\binom{134}{54}Xe = 133.905040u$ & $m\binom{10}{0}n = 1.00866u$.	
25.	A compound microscope consists of an objective lens of focal length 0.82 cm and an eyepiece lens of focal length 2.9 cm. An object is placed 0.91 cm from the objective lens. The image is formed at the near point (25 cm) from the eye. (I) Calculate that the angular magnification of the microscope. (II) Draw the ray diagram of compound microscope in normal adjustment.	3
26.	Draw the reflected wave front for a plane wave front incident on a plane reflecting surface. Hence verify the laws of reflection using Huygen's principle. (I) Define wave front? (II) Define wavelet? (III) What will be the shape of the wave front intercepted by a large reflecting type telescope on earth, due to a star far-away from our solar system?	3

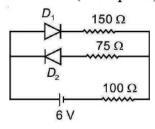
27(I)	If a point sized object having charge 1C and mass 1g is projected with velocity of	3
	$2\hat{\imath}$ m/s from a point (0,2cm,0) in the region of magnetic field -0.1 \hat{k} T which spreads	
	in the first quadrant.	
	A) What will be the shape of the path followed by the given charged particle? (B) At what point it will cross the X-axis? (C) What will be the kinetic energy of particle when it will enter in the fourth quadrant?	
	OR	
27(II)	A solenoid has a core of material with relative permeability 200. The windings of the solenoid are insulated from the core and carry a current of 1A. If the number of turns is 2000 per metre, calculate (A) magnetic intensity, (B) magnetic field &	3
	(C) magnetisation	
28.	A conducting coil of 50 turns and area $\frac{5}{\pi}$ cm ² is rotating along the axis of solenoid of length 50cm and 2000 turns, carrying current of 5 A. What will be the value of maximum emf generated?	3
	SECTION - D	
29	When an external voltage is applied across a semiconductor diode such that p-side is connected to the positive terminal of the battery and n-side to the negative terminal it is said to be forward biased. The applied voltage mostly drops across the depletion region and the voltage drop across the p-side and n-side of the junction is negligible. When an external voltage is applied across the diode such that n-side is positive and p-side is negative, it is said to be reverse biased. The applied voltage mostly drops across the depletion region.	1 Mark each

(I) Ge and Si diodes start conducting at 0.3 V and 0.7 V respectively. In the following figure if Ge diode connection are reversed, the value of V_0 changes by (assume that the Ge diode has large breakdown voltage)



(A) 0.2 V

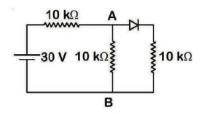
(B) 0.4 V


(C) 0.6 V

- (D) 0.8 V
- (II.) The value of V_0 and I_d for the network are :

(A) 13 V, 2.32mA

- (B) 11.7 V, 2.08mA
- (C) 11.3V, 2.01mA
- (D) 11V, 1.96mA
- (III.) The circuit shown below contains two ideal diodes, each with a forward resistance of 50Ω . If the battery voltage is 6 V, the current through the 100Ω resistance (in amperes) is



(A) 0.036

(B) 0.020

(C) 0.030

- (D) 0.027
- (IV) In the figure, potential difference between A and B is

(A) Zero

(B) 5 V

(C) 10 V

(D) 15 V

ection of electrons when the radiation of itable frequency is made to fall on the	Incident light	
made hedgeney is made to fair on the		
rface of a metal. When light of suitable	C	
avelength falls on the emitter C given in the	Emitter	
_	Zimtee.	
_	\	
-		
	B+	
	111	
_	o of metals with low ionization	
-		
If infrared radiation of 3 x 10 ¹¹ Hz is used as	incident radiation, determine the	2
reading of microammeter? Justify mathemati-	cally.	
	towards the left then how will it	1
affect the reading of the microammeter?		
) If the supplied voltage is decreased, then wh	at will be affect on the reading of	
	at will be effect on the reading of	
I) Plot a graph showing this variation in reading	ng of micrometre on shifting the	1
terminal B towards the right.		
•	led, by what factor will the kinetic	
energy change?		
SECTION F		
) A dialactuic alab afthialmagat is introduced	hoters on the plotse of monellel plots	2+2+1
		2+2+1
-	e (<u). an="" expression="" find="" for="" td="" the<=""><td></td></u).>	
-	accor Will the conscitours of the	
	_	
-	-	
	i using insulating stick. Plot 'V' vs	
d graph for the given capacitor.		
	If infrared radiation of 3 x 10 ¹¹ Hz is used as reading of microammeter? Justify mathemati In the given diagram, if terminal B is shifted affect the reading of the microammeter? If the supplied voltage is decreased, then whe the microammeter? I) Plot a graph showing this variation in reading terminal B towards the right. II) If the intensity of incident radiation is double energy change? SECTION F I) A dielectric slab of thickness t, is introduced capacitor of area A and separation d (where capacitance with the dielectric slab. I) A copper sphere of capacitor C is dropped in sphere increase, decrease or remain same? Justice increase, decrease or remain same? Justice increase, decrease or remain same? Justice increase, decrease or source of particles.	otoelectrons are drawn to the collector A. se photoelectric current of the order of a few croamperes can be normally obtained from a device given in figure. The device given inverts a change in intensity of illumination of a change in photocurrent. This current can used to operate control systems and in light result of the devices. The devices are made up of metals with low ionization thalpies, for example platinum whose work function is 6.35 eV. If infrared radiation of 3 x 10 ¹¹ Hz is used as incident radiation, determine the reading of microammeter? Justify mathematically. In the given diagram, if terminal B is shifted towards the left then how will it affect the reading of the microammeter? If the supplied voltage is decreased, then what will be effect on the reading of the microammeter? If the supplied voltage is decreased, then what will be effect on the reading of the microammeter? If the intensity of incident radiation in reading of micrometre on shifting the terminal B towards the right. SECTION E A dielectric slab of thickness t, is introduced between the plates of parallel plate capacitor of area A and separation d (where t <d). 'd'="" 'v'="" a="" across="" an="" and="" between="" c="" capacitance="" capacitor="" connected="" copper="" decrease="" dielectric="" difference="" dropped="" expression="" find="" for="" in="" increase,="" increased="" insulating="" is="" justify.="" ocean.="" of="" or="" plates="" plot="" potential="" remain="" same?="" separation="" slab.="" source="" sphere="" stick.="" td="" the="" then="" using="" v="" vs<="" will="" with=""></d).>

	(C) A capacitor is connected across potential difference V and is then separation between plates 'd' is increase using insulating stick. Will the energy stored in capacitor increase or decrease? Justify OR	
31	(A) If a charge of 1μC is placed at the origin and another charge of 3 μC placed at	3+1+1
(II)	the point (20m,0m,0m) in an external uniform electric field of 40V/m î with the electric potential at origin to be zero. Find the electrical potential energy of system.	31111
	(B) If one charge particle is moved from A to C To B and another charge particle of equal magnitude is moved from A to D to B, In uniform external magnetic field. Than for which charge particle more work will be needed? (use fig for reference)	
	C C A D D	
	(C) Electrostatic potential is constant throughout the volume of conductor has the same value on its surface why?	
	(C) If A charge particle is taken from A to B from two different path one path has resistance of 10Ω and another has capacitance of $3\mu F$. work done by which path will be more.	
32(I)	(A) Derive lens maker's formula.	3+2
	(B) Equi-convex lenses are to be manufactured from a glass of refractive index 1.55, with both faces of the same radius of curvature. What is the radius of curvature required if the focal length is to be 10cm?	
	OR	
32(II)	 (A) Define angle of deviation in a prism? (B) Obtain the relation A+δ=i+e for a prism where A is the angle of prism, δ is the angle of deviation, i is the angle of incidence and e is the angle of emergence. Write this relation for the minimum deviation? (C) Write the condition for minimum deviation. 	1+3+1

33(I)	 (A) State the working principle of a moving coil galvanometer? What modification is required in the galvanometer to make its scale linear? (B) If a galvanometer of resistance 49.5Ω has range of 0.05A. What will be the value of resistance needed to convert it in ammeter of range 5A? (C) How these two resistors should be connected to galvanometer in both cases? 	2+2+1
	OR	
33(II)	(A) An input potential V_{in} =200 Sin $100\pi t$ V is provided to an ideal transformer having 1000 turns in primary coil and 100 turns in secondary coil as shown in figure. The load circuit has a resistance of 4Ω , a capacitive reactance of 2Ω and an inductive reactance of 6Ω .	3+2
	Find:	
	 (i) the output voltage across the load circuit (ii) the current flowing through the load circuit (iii) the power supplied to the load circuit by the transformer 	
	(B) State the working principle of a transformer and explain how it is a key component in the transfer of electrical power over long distances.	