ANGEL'S PUBLIC SCHOOL

SAMPLE PAPER

HALF YEARLY EXAM SESSION 2025 – 26 CLASS – XII SUBJECT: PHYSICS CODE – 42

M.M: 70

TIME: 3 HRS

Gene	eral instructions.							
(a) All questions are compulsory in section –A, each of one mark.								
(b)	There are 35 questions.							
(c) This questions paper has five sections A,B,C, D and E.								
(d)	Section – A contains 18 MCQs of one mark each. Section –B contain 7 questions of 2 marks							
each. Section – C contains 5 questions of 3 marks each. Section – D contains 3 long								
	questions of 5 mark each. Section – E contains two case study based questions of 4 marks							
	each.							
(e)	There is no overa	all choice whomever some in		in section.				
	SECTION – A							
1. A metallic sphere has a charge of 10 μ c. A unit negative charge is brought from A to B both 1 away from the sphere, but A being east of it while B being on the west. The net work done								
	et work done							
	is	2	2	1				
	(a) zero	(b) ² / ₁₀ joule	(c) $-\frac{2}{10}$ joule	(d) $-\frac{1}{10}$ joule				
2.	A parallel plate air capacitor having a capacitance C. When it is half filled with a dielectric of							
	dielectric constant	5, the percentage increase in	n the capacitance will be					
	(a) 200 %	(b) 33.3 %	(c) 400 %	(d) 66.6 %				
3.	The terminal pote	ential difference of a cell is gre	eater than its EMF, when it is_	·				
	(a) being discharg	ge	(b) in an open circu	it				
	(c) being charged	1	(d) being either cha	rged or discharged				
4.	Kirchhoff's 2nd law is based on the law of conservation of							
5.								
	(a) 1 A	(b) 3 A	(c) 6 A	(d) 12 A				
	24							
	=======================================	3-1						
	Łn	m						
	6	~						
6.	Calculate the cur	rent in the given circuit.						
	(a) $\frac{3}{2}$ A	(b) $\frac{3}{4}$ A	(c) 0.5 A	(d) 1 A				
	2		()	()				
	45	Mar. 184.02						
	2.03	2 m2 n						
		144						
		7						
7.	The deflection pro	oduced in a galvanometer wh	nen a unit current flows throug	h it is known as				
8.								
.			-					
	(a) r ²	(b) r	(c) $\frac{I}{r}$	(d) $\frac{I}{r^2}$				
9.	Two curves are s	r esent?						
.	 Two curves are shown in the figure. What magnetic substance do they represent? (a) Dia (b) Para (c) Ferro (d) None of these 							
	(a) Dia	(b) i aia	(0) 1 6110	(a) None of these				
		B↑						

	to 100 A ?					
	(a) $0.01~\Omega$	(b) $0.1~\Omega$	(c) 0.9 <u>(</u>	(d) 0.09	Ω	
11.	À circular coil of radius a	carries an electric c	urrent. The magneti	c field due the coil at a point	on	
	the axis of the coil located at a distance r from centre of the coil, such that r > > a, varies.					
	(a) $\frac{1}{r}$	(b) $\frac{1}{x^2}$	(c) $\frac{1}{r^3}$	(d) $\frac{1}{3/2}$		
12.	A solenoid has 1000 turn field inside the solenoid	ns per metre length. s.	If a current of 5 A is	flowing through it, then magr	netic	
	(a) 2 Λ x 10 ⁻³ T	(b) $2 \Lambda \times 10^{-3} T$	(c) 4 Λ x 10 ⁻³ 7	(d) 2 Λ x 10 ⁻⁵ T		
13.		A is infinitely long and	•	gh two parallel wires A and B then force on wire B which is		
	(a) $8 \times 10^{-5} \text{ N}$ (b)	6 x 10 ⁻⁵ N (c) 4 x 10 ^{–5} N (d) 2 x 1	0-5 N		
14.	If distance between two current – carrying wires is doubled, the force between them is.					
	(a) halved	(b) doubled	(c) tripled	(d) quadrupled		
15.	Which of the following is weakly repelled by a magnet field:					
	(a) Iron	(b) Cobalt	(c) Steel	(d) Copper		
		ASSERTIO	ON REASON			
Dire	ection : These questions	consists of two st	atements. Each pr	inted as Assertion (A) and	l	
				to choose any one of the		
	owing four responses.			•		
(a) If both Assertion (A) explanation of the As		e true and the Re	ason (R) is the correct		
(b) If both Assertion (A) explanation of the As	• •	true and the Rea	son (R) is not a correct		
(c) If Assertion (A) is true	e but Reason (R) is	false.			
(d) If both Assertion (A)	and Reason (R) are	e false			
16.	Assertion. If a proton and	an α particle enter	a uniform magnetic t	ield perpendicularly, with the)	

If a 10 A ammeter has a resistance of 0.09Ω . What resistance of the shunt will enable it to read up

10.

17. Assertion. If two long parallel wires, hanging freely are connected to a battery in series, they come closer to each other.

same speed, then time period of revolution of the α —particle is double that that of proton. Reason . In a magnetic field, the time period of revolution of a charged particle is directly

proportional to mass of particle and is inversely proportional to charge of particle.

18. Reason. Force of attraction acts between the two parallel wires in series carrying current. Assertion. When a magnetic dipole is placed in a non uniform magnetic field, only a torque acts on the dipole.

Reason. Force would also act on dipole of magnetic field were uniform.

SECTION – B

- **19.** Two capacitors of capacitance 0.3 μ F and 0.6 μ F are connected in series with 6 volt. Find the ratio of their energy stores.
- **20.** Prove that voltage and current always vary in the same phase in an circuit contain resistance only.
- **21.** A conducting rod of length 'l' with one end pivoted is rotated with a uniform angular speed ω in a vertical plane normal to a uniform magnetic field B. Deduce the expression for the EMF produced in the rod.
- 22. An element $\triangle l = \triangle x$ is placed at the origin and carries a current I = 2 A, as shown in the figure. Find out the magnetic field at point P on the y axis at a distance of 1 m due to the el \triangle ment x = 1 cm. Also, give the direction of the field produced.

- 23. (a) An iron bar magnet is heated to 1000° c and then cooled. Will it retain its magnetism?
 - (b) Write two basic differences between dia, para and ferromagnetic substances.
- **24.** Using Biot Savart's Law, obtain an expression for the magnetic field at the centre of the coil bent in the form of a square of side 2a carrying current I.
- 25. A resistor is connected to a battery of emf 10 V and internal resistance 0.3 Ω . What is the resistor of resistance to be inserted in the circuit for the circuit 1.2 A?

OR

The copper wire is stretched to make it 0.2 % longer. What is the % change in its resistance?

SECTION - C

- **26.** Plot the graph showing the variation of magnetic flux and induced EMF with time t. Derive an expression for the torque, acting on a current carrying loop, placed inside the magnetic field.
- 27. A charged particle having a charge of 3 μc is placed close to a sheet of charge having a surface charge density 5 x 10⁻⁶ cm⁻². Find the force of attraction between the particles and the sheet of charge.

OR

Calculate the electric field strength required to support a water drop of mass 10-7 kg and has a charge of 1.6 x 10-19 c.

- 28. With the schematic diagram, show how can a galvanometer be converted into an ammeter.
- **29.** What do you mean by sharpness of resonance in series circuit? Find expression for Q factor of the circuit.
- **30.** Using kirchhoff's law find the value of I_1 and I_2 .

SECTION - D

- 31. (a) What are eddy currents? How can they be minimized?
 - (b) A bar magnet M is dropped so that it falls vertically through the coil C. The graph obtained for voltage produced across the coil versus time is as shown in the given figure.
 - (i) Explain the shape of the graph. (ii) Why is the negative peak longer than the positive peak?

- (a) Using the Amperis Circuital Law, find an expression for the magnetic field for a long solenoid.
- (b) Find the magnitude and the direction of the net magnitude field at the common centre of the two coils.

32. Discuss the Principal and working of a moving coil galvanometer. Explain two application for it.

- (a) An electric dipole is placed in a uniform external electric field E. Show that torque on the dipole is given by $\tau = P \times E$.
- (b) A cylinder is placed in a uniform electric field E with its axis parallel to the field. Show that the total electric flux through the cylinder is zero.
- 33. Explain with the help of leveled diagram the principle construction and working transformers. Why is its core laminated?

OR

The two capacitors C₁ & C₂ are charged to potential V₁ & V₂, then connected in a parallel. Calculate the loss of energy sharing of the charges.

SECTION – E CASE BASED

34. According to Gauss's theorem in electrostatics, total electric flux over a closed surface S in vacuum is I/ϵ_0 times the total charge (Q) contained inside i.e.,

$$\phi_E = \frac{Q}{\epsilon} = \frac{Q}{K \epsilon_0}$$

The charges enclosed may be distributed any way. If the medium surrounding the charge has a dielectric constant K. then.

$$\phi_E = \oint_{ss} \overrightarrow{E} \cdot \overrightarrow{ds} = \frac{Q}{\epsilon_0}$$

Charges situated outside the surface make no contribution to electric flux.

- (a) Charges + 6q, 2q and + 3q are enclosed by a surface in vacuum. The total electric flux over the surface is.
 - (ii) 2 q/ ϵ_0 (i) 6 q/ ϵ_0

- (b) A charge –7q is situated outside the surface in the above questions. What will be the total electric flux in that case?
 - (i) Zero
- (ii) 7q/ ϵ_0
- (iii) 7 q/ ϵ_0
- (iv) 14 q/ ϵ_0
- (c) Charges + 2q, 5q and 8 q are enclosed by a surface in a medium of dielectric constant 6. The total electric flux over the surface will be.
 - (i) $\frac{5q}{6\epsilon 0}$
- (iii) zero
- $(iv) \frac{15 q}{6\epsilon 0}$
- (d) A cube of side 1 metre encloses a charge of 1 coulomb in vacuum. What is the electric flux from any one surface of the cube?
 - $(i)\frac{1}{\epsilon 0}$
- $(iii) \frac{1}{6.60}$

- $(iii) \frac{6}{\epsilon_0} \qquad (iv) \frac{\epsilon_0}{6}$

CASE BASED

- **35.** A wire of length 12 cm; resistance 12 Ω and of uniform area of crossection is cut into twelve equal parts, which are connected to form a skelton cube, A cell of emf 2 V is connected across the two diagonally opposite corners of the cube. Using kirchhoff's laws of junction and loop. Answer the following questions.
 - (a) The effective resistance of the circuit is.
 - (a) $4/5\Omega$
- (b) $5/6\Omega$
- (c) $6/7\Omega$
- (d) $7/12\Omega$

- (b) The current drawn from the battery is.
 - (a) 2.5 A
- (b) 2.4 A
- (c) 2.3 A
- (d) 3.4 A
- (c) The maximum current flowing in an arm of network is.
 - (a) 0.4 A
- (b) 0.8 A
- (c) 1.2 A
- (d) 2.4 A
- (d) The minimum potential differences across an arm of network is.
 - (a) 0.4 V
- (b) 0.8 V
- (c) 1.2 V
- (d) 2.4 V