(a) -16

(b) 16

ANGEL'S PUBLIC SCHOOL

SAMPLE PAPER

HALF YEARLY EXAMS SESSION 2025 – 26 CLASS – XII

TIME: 3 HRS. General instructions		SUBJECT - MATHEMATICS		M.M:80
(b)Section - (c)Section - (d)Section -	B contains 6 veryC contains 6 shoD contains 4 Lon	bjective type questions each y short type questions each c rt type questions each carry 3 g type questions each carry 5 e Based problems each carry	arry 2 mark. 3 marks 5 marks.	
		SECTION - A		
1. The function f	: R – R defined as	f(x) = x ³ is		
(a) One one but not onto		(b) Not one one but onto		
(c) Neither one	e one nor onto	(d) One one and onto		
2. If a matrix has	36 elements, the r	number of possible orders it can	have , is :	
(a) 13	(b) 3	(c) 5	(d) 9	
3. The greatest in	nteger function f : F	R - R, given by $f(x) = [x]$ is:		
(a) One one	(b) Onto	(c) Both one and onto	(d) Neither one nor o	nto
4. Let A and B ar	e the matrices of th	ne order 3 × 2 and 2 × 3 respect	ively, then order of matrix	AB is:
(a) 3×4	(b) 3×2	(c) 2×3	(d) 3×3	
5. The rate of ch	ange of the area of	circle with respect to its radius	r at r = 6 cm is :	
(a) 10π	(b) 12π	(c) 8π	(d) 11π	
6. The domain of	$f \cos^{-1} (2 x - 1) is$:		
(a) [0 , 1]	(b) (- 1 , 1)	(c) [- 1 , 1]	(d) [0 , π]	
7. If $\cos \left(\sin^{-1} \left(\sin$	$(\frac{3}{5} + \cos^{-1} x)$	= 0 then x is equals to:		
(a) 1/5	(b) 3/5	(c) 0	(d) 1	
8. If A and B are	two matrices of the	order 3 × m and 3 ×n respective	ely and m = n , then the	order of
(5A-2B) is	:			
(a) m × 3	(b) 3 × 3	(c) m × n	(d) 3 × n	

9. If A is square matrix of order 3×3 such that |A| = 2, then the value of |adj(adj A)| is:

(c) 0

(d) 2

10. If y = log √tar	nx , then the value	of dy/dx at $x = \pi/4$ is :	
(a) 0	(b) 1	(c) ½	(d) Infinity \Box
11. $f(x) = x^x$ has	stationary point at	:	
(a) $x = e$	(b) $x = 1/e$	(c) $x = 1$	(d) $x = \sqrt{e}$
12. The function	f(x) = [x], where $[x]$	is the greatest integer	function, is continuous at
(a) 4	(b) -2	(c) 1	(d) 1.5
13. Range of fun	ction tan ⁻¹ x is	<u> </u>	
$\begin{vmatrix} x+1 \\ x^2+x+1 \end{vmatrix}$	$\begin{vmatrix} x-1 \\ x^2-x+1 \end{vmatrix}$ is equal t	ю:	
(a) 2x^3	(b) 2	(c) 0	(d) 2x ³ – 2
14. If a matrix ha	s 36 elements, the	number of possible ord	ers it can have , is :
(a) 13	(b) 3	(c) 5	(d) 9
15. The function	$f(x) = x^x$ has statio	nary point at :	
(a) 1/e	(b) √e	(c) 1	(d) zero
16. If A is square	matrix of order 3 ×	3 such that $ A = 2$, the	en the value of adj(adj A) is :
(a) 16	(b) -16	(c) 0	(d) 2
17. The function	f(x) = [x], where $[x]$	is the greatest integer	function, is continuous at :
(a) 4	(b) -2	(c) 1.5	(d) 2
18. If A and B are	e two matrices of th	ne order 3 × m and 3 ×n	respectively and m = n, then the order of
(5A-2B) is	3:		
(a) m × 3	(b) 3 × 3	(c) m × n	(d) 3 × n
19. The rate of cl	nange of the area o	of circle with respect to i	ts radius r at r = 6 cm is :
(a) 10π	(b) 12π	(c) 8π	(d) 13π
20. If $y = \log \sqrt{tar}$	nx , then value of dy	y/dx at $x = \pi/4$ is	
(a) 2	(b) 3	(c) 1	(d) None of these
		SECTION - B	
	elation S in the set A an equivalence rela	-	given by S = { (a ,b) : a , b € A , a – b is

$$f(x) = \begin{cases} \frac{(x+3)^2 - 36}{x-3}, & x \neq 3 \\ k, & x = 3 \end{cases}$$

Determine the value of 'k' for which the given function is continuous at x = 3.

22. Differentiate:

$$y = \log[x + \sqrt{x^2 + a^2}]^n \text{ w. r. t x}.$$

23. Prove that log sinxis strictly increasing in (0, $\pi/2$) and strictly decreasing in ($\pi/2$, π).

OR

Show that tan^{-1} (sin x + cos x) is increasing in (0 , $\pi/4$)

24.

If
$$\begin{bmatrix} x+y & 2 \\ 5 & xy \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix}$$
, then find the value of $\left(\frac{24}{x} + \frac{24}{y}\right)$

- **25.** If A is a square matrix such that $A^3 = A$, then write the value of $7A (I + A)^3$, where I is an identity matrix.
- **26.** A balloon , which always remain spherical , has a variable diameter 2/3 (3x + 1) , Find the rate of change of its volume w.r.t x.

SECTION - C

27. A function f : R - R defined as f(x) = ax + b, such that f(1) = 1 and f(2) = 3. Find function f(x). Hence check whether the function f(x) is one one and onto or not.

OR

A relation R on set A = $\{1, 2, 3, 4, 5\}$ is defined as R = $\{|x^2 - y^2| < 8\}$, Check, whether relation R is reflexive, symmetric and transitive.

Where
$$A = \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}$$

- 28. FindA² 5A + 4 I and hence find the matrix X such that A² 5A + 4 I + X = 0
- **29.** If $y = e^{\tan^{-1} x}$, Prove that : $(1 + x^2) y_2 + (2x 1) y_1 = 0$

OR

Find
$$\frac{dy}{dx}$$
, if $y = e^{\sin^2 x} \left\{ 2 \tan^{-1} \sqrt{\frac{1-x}{1+x}} \right\}$

30. Find the value of x, such that function $y = [x(x-2)]^2$ is an increasing function.

31. If
$$x = \sqrt{a^{\sin^{-1}}t}$$
 and $y = \sqrt{a^{\cos^{-1}}t}$. show that $\frac{dy}{dx} = -\frac{y}{x}$

If
$$y = x^{\sin x} + (\sin x)^x$$
, then find $\frac{dy}{dx}$.

- **32.** (a) Find the principal value of $\cos^{-1}\left(-\frac{1}{2}\right) 2\sin^{-1}\left(-\frac{1}{2}\right)$.
- (b) Find the domain off(x) =[$\sin^{-1} \sqrt{x-1}$]

33. Prove that
$$:cos^{-1}\left(\frac{4}{5}\right) + cos^{-1}\left(\frac{12}{13}\right) = cos^{-1}\left(\frac{33}{65}\right)$$
OR

Find the value of a for which the function f defined as:

$$f(x) = \begin{cases} a \sin \frac{\pi}{2} (x+1), & x \le 0 \\ \frac{\tan x - \sin x}{x^3}, & x > 0 \end{cases}$$
 is continuous at $x = 0$.

$$3x - 2y + 3z = 8$$

$$2x + y - z = 1$$

$$4x - 3y + 2z = 4$$

- 34. Solve the system of linear equations by Matrix Method.
- **35.** A jet of Pakistan Rangers is flying along the curve $x^2 + 4$. An Indian soldier is standing at the point (5, 3). What is the nearest distance between the soldier and jet.

OR

Find the value of
$$\frac{dy}{dx}$$
 at $t = \frac{\pi}{4}$, if $x = a \left(\cos t + \log \tan \frac{t}{2}\right)$, $y = a \sin t$.

36. Find the intervals in which the function $f(x) = \sin x + \cos x$, $0 \le x \le 2\pi$ is strictly increasing or strictly decreasing.

SECTION - D

37. CASE STUDY 1

Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin's sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.

 $A = \{S, D\}, B = \{1,2,3,4,5,6\}$

- 1. Let $R: B \to B$ be defined by $R = \{(x, y): y \text{ is divisible by } x \}$ is
- Reflexive and transitive but not symmetric
- b. Reflexive and symmetric and not transitive
- c. Not reflexive but symmetric and transitive
- d. Equivalence
- 2. Raji wants to know the number of functions from A to B. How many number of functions are possible?
- a. 62
- b. 26
- c. 6!
- d. 212
- Let R be a relation on B defined by R = {(1,2), (2,2), (1,3), (3,4), (3,1), (4,3), (5,5)}.
 Then R is
- a. Symmetric
- b. Reflexive
- c. Transitive
- d. None of these three
- 4. Raji wants to know the number of relations possible from A to B. How many numbers of relations are possible?
 - a. 62
 - b. 26
 - c. 6!
 - d. 212
- Let R: B → B be defined by R={(1,1),(1,2), (2,2), (3,3), (4,4), (5,5),(6,6)}, then R is
 - a. Symmetric
 - b. Reflexive and Transitive
 - c. Transitive and symmetric
 - d. Equivalence

38. CASE BAESD - 2

The reliability of a COVID PCR test is specified as follows:

Of people having COVID, 90% of the test detects the disease by 10% goes undetected. Of people free of COVID, 99% of the test is judged COVID negative but 1% are diagnosed as showing COVID positive. From a large population of which only 0.1% have COVID, one person is selected at random, given the COVID PCR test and the pathologist reports him/her as COVID positive.

Based on the above information, answer the following questions:

- (i) What is the probability of the 'person to be tested as COVID positive' given that 'he is actually having COVID'?
- (ii) What is the probability of the 'person to be tested as COVID positive' given that 'he is actually not having COVID'?