

(a)SO₂

(a) 1

12. Bond order of nitric oxide (NO) is :

ANGEL'S PUBLIC SCHOOL

SAMPLE PAPER

HALF YEARLY EXAMS **SESSION 2025 - 26** CLASS - XI

SUBJECT -CHEMISTRY TIME: 3 HRS. M.M:70 General Instructions. (a) SECTION - A (Q NO. 1 TO 15) CARRIES 1 MARKS EACH (b) SECTION - B (Q NO. 16 TO 23)CARRIES 2 MARKS EACH (c) SECTION - C(QNO. 24 TO 31) CARRIES 3 MARKS EACH (d) SECTION - D (Q NO. 32 TO 34) CARRIES 5 MARKS EACH (e) ATTEMPT ALL QUESTIONS (f) USE OF CALCULATOR IS NOT ALLOWED **1.**An adiabatic'expansion of an ideal gas always has: (b) q = 0(c) W = 0(d) $\Delta H = 0$. (a) Decrease in temperature **2.**For an endothermic reaction ΔS is positive, the reaction is: (a) feasible when $T\Delta S > \Delta H$ (b) feasible when $\Delta H > T\Delta S$ (c) feasible at all temperature (d) Not feasible at all **3.**Which of the following is not a state function? (a) ΔG (b) ΔE (c) W (d) H 4. The unit of entropy is: (a) joule (b) joule per mole (c) joule per Kelvin (d) joule per gram. **5.**The quantity of heat measured for a reaction in a bomb calorimeter is equal to: (b) ΔH (a) ΔG (c) $P\Delta V$ (d) ΔE 6. The bond energies of C-C, C=C; H-H and C-H linkages are 350, 600, 400 and 410 kj per mole respectively. The heat of hydrogenation of ethylene is: (c) 400 kj mol⁻¹ (a) -170 kj mol⁻¹ (b) -260 kj mol⁻¹ (d) -450 kj mol⁻¹ 7. Number of pi and sigma bonds in benzene are: (c) 6 & 11 (a) 3 & 12 (b) 12 & 12 (d) 6 & 6 **8.** The hybridisation of iodine in I_{3} is : (a) sp^3 (b) sp^3d (c) sp^3d^2 (d) sp³d²9. Which of hybridisation is possible in square planer molecules : (b) dsp^3 (a) sp^3d (c) sp (d) sp³d²**10.** The geometry of ClO₃- ion according to VSEPR theory will be: (c) tetrahedral (a) triangular planer (b) pyramidal (d) square planer 11. Which of the following molecule is linear?

(b) NO_2^+

(b) 2

(c) NO_2^-

(c) 2.5

(d) SCl₂

(d) 1.5

13. Two lone pair of electrons and two bond pair of electrons are present in :		
` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	₃ (c) H ₂ O	(d) CO ₂
14. In which of the follo	wing pair of both the	e molecules does not posses same type of hybridisation?
(a) CH ₄ and H ₂ O	(b) PCL₅ and	SF ₄ (c) SF ₆ and XeF ₄ (d) Bcl ₃ and NCl ₃
15. Hybridisation in SC) ₂ is :	
(a)sp	(b) sp ²	(c) $sp^3(d) sp^3d$
<u>SECTION - B</u>		
16 .Explain sp3 hybridisation in detail?		
17. Name the element in the periodic table having the highest electron affinity and the Size?		
18. Write postulates of molecular orbital theory.		
19 Explain ionisation energy and electron affinity.		
20. Calculate the no. of atoms in: [a] 88.0 g of CO ₂ [b] 10 gram atoms of Na.		
21. Arrange elements of second period on the basis of Ionisation energy . Give reason		
22. Calculate the enthalpy of combustion of propane . the bond energy of:		
C—C, C—H, C=O	, O—H , O=O are 34	17, 414, 741, 464 k j. 500kj
23. What is the number of photons of light with a wavelength of 4000pm that provide 1.0j of energy?		
SECTION - C		
24 . Calculate the wavenumber for the transition of n1 to n3 in the hydrogen spectrum?		
25. Draw the shape of aP Orbital.		
26. What is anode? Draw the shape of d _{xy} andd _{zx} orbitals?		
27. Explain isothermal workdone.		
28. Derive de Broglie relation. What is its significance?		
29 . Draw molecular orbital energy diagram of N_{2} moleculeand find its bond order, magnetic property		
and electronic configuration ?		
30. Explain VSEPR theory.		
31. Define and prove Hess's law.		
<u>SECTION - D</u>		
32. Draw the structure	, and the write the s	hape and state the hybridization of the following:
(a) CH ₄ (l	o) SF ₄	(c) XeO ₃
33. Draw the molecula	r orbital energy level	diagram of N ₂ , N ₂ + and arrange them on the basis of :
(a) bond order (b) bond length	(c) bond dissociation energy (d) magnetic
character	,	
34. Calculate the enthalpy of formation of methane . if its enthalpy of combustion is −1323kj. And		
enthalpy of formation of CO ₂ and H ₂ O are - 393.5kj and -249kj.		