ANGEL'S PUBLIC SCHOOL

SAMPLE PAPER

HALF YEARLY EXAM SESSION 2025 - 26 CLASS - XI SUBJECT: PHYSICS CODE - 42

T	IME: 3 HRS	M.M: 70					
Ge	eneral Instructions.						
(a) All questions are compulsory.						
(b) Section – A contains question number 1 to 16, multiple choice questions of 1 mark each. c) Section – B contains question number 17 to 23, short answer type questions of 2 mark each. d) Section – C contains question number 24 to 30, long answer questions of 3 mark each. e) Section – D contains question number 31 & 33, very long answer questions of 5 mark each. f) Section – E contains Question no. 34 of 4 mark. (CASE BASED QUESTIONS) 						
ı	<u>SECTION – A</u> Multiple choice question:						
	The physical quantity which is equal to the change in momentum of a body is known as						
	(a) force (b) acceleration (c) impulse (d) reaction						
	Action and reaction (a) act on the same body (b) are equal and act in the same direction (c) cancel each other (d) act on two different bodies A ten paisa coin is placed on a revolving table files off tangentially. This is due to the						
٠.	(a) intertia of direction (b) inertia of rest (c) inertia of motion (d) none of these	·					
4.	The force of friction between a solid body and a fluid depends on the speed (v) of the solid	body.					
	For low speed of body, force of friction between a solid body and fluid is						
	(a) directly proportional to V ² (b) directly proportional to V (c) inversely proportional to V (d) independent of V						
_							
5 . /	Acceleration of a body moving with constant speed in a circle is						
6 .	(a) zero (b) ω r (c) ω^2 /r (d) r ω^2 The displacement – time graphs of two moving particles make angles of 30 $^\circ$ and						
U.							
45° with the X– axis. The ratio of their velocities is							
	Time						
	(a) 1: 3 (b) 1:2 (c) 1:1 (d) 3:2						
7.	7. If a particle is thrown upwards, the correct v – t graph will be						
	(a) (b) (c) (d) (d)						
8.	. If the maximum horizontal range of a projectile is 400m, then maximum height attained by it v	vill					
	be						
	(a) 100 m (b) 200 m (c) 400 m (d) 800 m						
9.	The horizontal range of a projectile is 3 times its maximum height. Its angle of						
	projection will be						
	(a) 30° (b) 45° (c) 60° (d) 90°						
10.). A block of mass 2 kg is lying on an inclined plane, inclined to the horizontal at 30°.						
	If the coefficient of friction between the block and the plane is 0.7, then						
	magnitude of the frictional force acting on the block will be						
	(a) 1109 N (b) 11.9 N (c) 0.119 N (d) 119 N	6.41					
11.	The kinetic energy of a body becomes four time its original value. The new linear momentur body will be	n of the					

	(a) $\frac{1}{2}$ time	(b) 4 times	(c) 3 times	(d) 2 times			
12.	The kinetic energy of a body increase by 300%, The linear momentum of the body increase by						
	(a) 300 %	(b) 150 %	(c) 100 %	(d) 50 %			
13.	In the elastic collision, 100 % energy transfer takes place when						
	(a) $m_1 = m_2$	(b) $m_1 > m_2$	(c) $m_1 < m_2$	(d) $m_1 = 2 m_2$			
14.	The motion of planets in the solar system is an example of the conservation of						
	(a) mass	(b) linear momentum	(c) angular momentum	(d) energy			
15.	A couple produces.						
	(a) linear and rotation motion (b) no motion (c) purely linear motion (d) purely rotational motion						
16.	A wheel has angular ac	cceleration of 3.0 rad/ sec ² a	nd an initial angular speed	of 2.00 rad/sec. In a			
	time of 2 sec, it has rotated through an angle (in radian) of						
	(a) 10	(b) 12 (c) 4	(d) 6				
	SECTION - B						

- Taking velocity, time and force as fundamental quantities, find the dimension of mass?
- **18.** The velocity time relation of an electron starting from rest is given by v = kt where k = 2 m/s². Calculate the distance travelled in 3 sec.
- 19. If IA>+ B▶= IA>− B▶ then find the angle between A and B?
- 20. Two projectile of same mass have their maximum K.E in the ratio and ratio of their maximum heights is also 4:1. Then what is the ratio of their ranges?

Show mathematically that Impulse of force is equal to change in momentum produced by the force.

- 21. A person of mass 60 kg is inside a lift of mass 940 kg and presses the button on control panel. The lift start moving upward with an acceleration 1 m/s². Find the tension in the supporting cable?
- Show mathematically that the potential energy of an elastic stretched spring is $\frac{1}{2}$ kx². 22.
- Derive the relation between torque and angular momentum. 23.

<u>SECTION - C</u>

- **24.** The displacement of a particle moving along x axis is given by $x = 18 t + 5t^2$. Calculate (i) the instantaneous velocity at (t = 2 Sec) (ii) the average velocity between (t = 2 s and t = 3s) (iii) instantaneous acceleration.
- **25.** Show that path followed by the projectile is parabolic in nature when object is thrown with angle θ from horizontal.
- **26.** The mass of A and B are 10kg and 5 kg respectively. Calculate the minimum mass of c which may stop A from slipping. Coefficient of static friction between A and the table is O.2.

OR

A balloon with mass M is descending down with an acceleration a where a > g. What mass m of its content must be removed so that it start moving up with acceleration?

- 27. Show that total mechanical energy of a freely falling body is always remain conserved.
- What will be the duration of a day if earth suddenly shrink to $\frac{1}{64}$ of its original volume, mass 28. remaining the same.
- 29. Two masses 5kg and 3 kg are suspended with the help of massless string as shown. Calculate T₁ & T₂ when whole system is moving upward with an acceleration of 2m/s².

30. Prove that Newton's second law is the real law of motion.

SECTION - D

- **31.** (a) Two projectile A and B are projected with velocities $\sqrt{2}v$ and V. They have the same range. If A is thrown at angle of 15 with the horizontal then what is the angle of projection of B?
 - (b) Calculate the maximum height and horizontal range of the projectile.

OR

Find the value of T_1 and T_2 in the string as shown.

32. (a) What is banking of road? Find the velocity of the vehicle on the banked road to take sharp turn.

(b) Derive the relation between linear velocity and angular velocity.

OR

- (a) Te resultant vectors of P and Q is R on reversing the direction of Q the resultant vectors becomes S. Show that $R^2 + S^2 = 2$ ($P^2 + Q^2$)
- (b) Two forces whose magnitude are in the ratio of 3:5 give a resultant of 35 N if the angle of inclination of 60°. Calculate the magnitude of each forces.
- 33. What is perfectly inelastic collision? Show that the kinetic energy is invariably lost in such collision.

OR

The bodies A, B and C each of mass m are hanging on a string over a fixed Pulley. What are the tension in the string connecting bodies A to B and B to C.

(a) Find the tension T₁, T₂ & T₃ when whole system is moving upward with acceleration of 2 m/s².

SECTION - E (CASE BASED QUESTIONS)

- **34.** According to Newton's second law of motion. F = ma, where F is the force required to produce an acceleration a in a body of mass m. If a = 0 then F = 0 i,e., no external force is required to move a body uniformly along a straight line. If a force F acts on a body for t seconds, the effect of the force is given by impulse = F x t = change in the momentum of the body.
 - (a) Newton's second law of motion can be represented by.
 - (i) F = ma
- (ii) $F \propto \frac{\Delta p}{\Delta t}$

here p is linear momentum

- (iii) F $\propto \frac{\triangle(mv)}{\triangle_t}$, here v is velocity
- (iv) All of the above
- (b) If an impulsive force of 100 N acts on a body for 1 sec then, the change in its linear momentum is.
- (i) 50 N s
- (ii) 100 N s
- (iii) 200 N s
- (iv) 40 N s
- (c) A body of mass 50g is moving with a velocity of 10 m/s. Its velocity increases to 20 m/s in the same direction as a force exerted on it for 1s. The impulse of the force is.
- (i) 500 N s
- (ii) 0.5 Ns
- (iii) 50 Ns
- (iv) 5 Ns
- (b) The force acting on a body whose linear momentum change by 10 kg m/s in 1 second.
 - (i) 4 N
- (ii) 100 N
- (iii) 1 N
- (iv) 20 N