Wednesday, September 18, 2024

UrbanElephantMedia

~ PRESENTS ~

Biogas to RNG 101

Presented by Unison Solutions

Sponsored by Unison Solutions

URBANELEPHANTMEDIA

PEER-TO-PEER LEARNING MADE EASY

Sustainability Training for Urban Designers and Policymakers

Randy Rodgers, Director of Big Ideas Randy@UrbanElephantMedia.com 563-562-2925

UrbanElephantMedia.com

out

our presenters

Dave Broihahn President Unison Solutions

BIOGAS TO RNG 101: Back to the basics

(elebrating

EMPLOYEE

OWNED

Overview

- Company founded on January 1, 2000
- Employee Owned: November 2020
- 70 employees (11 engineers)
- 90,000 ft² manufacturing facility
- Over 400 systems sold worldwide

Proudly manufactured in the USA

project map Unison

Application & project development team

Our professional staff has over 100 years of combined experience in biogas applications

Dave Broihahn, PE President 24 years

Adam Klaas Application and Business Development Manager 18 years

Eric Wilgenbusch

Applications Engineer 17 years

Curt Schiesl Applications Engineer 6 years

Nick Oberbroeckling Applications Engineer 5 years

Biogas purification & analysis specialists

Our professional staff has over 100 years of combined experience in biogas applications

Kim Murdock-Timmerman Aftermarket Sales & Service Manager 13 years

Emma Hoefer Product Specialist 1 year

Engineering team

Our professional staff has over 100 years of combined experience in biogas applications

Kevin Deiter, PE Engineering Manager Mechanical Engineer 15 years

Logan Udelhofen Mechanical Engineer 6 years

Evan Carlson Mechanical Engineer 6 years

Chris Hankins Mechanical Engineer 1 year

Derek Venteicher Mechanical Engineer 1 year

Anaerobic digesters

Landfills

Biogas constituents

bi·o·gas, 'bīō gas/, noun, gaseous fuel, especially methane, produced by the fermentation of organic matter.

- Methane, CH₄
- Carbon Dioxide, CO₂
- Nitrogen, N₂
- Oxygen, O₂
- Hydrogen Sulfide, H₂S
- Moisture
- Particulates
- Siloxanes
- Volatile Organic Compounds

Gas sampling and shipping supplies

Metal can, lid, and sealing ring

Flexible tubing

Summa canister with fittings

Biogas testing

Before starting a project, we recommend the following biogas tests be performed:

Major components:

Methane, Nitrogen, Oxygen, Carbon Dioxide, and Btu calculation

Siloxanes, by speciation:
 Up to 8 compounds common to biogas

- Sulfur compounds, by speciation: Includes hydrogen sulfide, mercaptans, and other sulfide compounds
- Volatile Organic Compounds, (VOC) by speciation: Follows EPA TO-15 protocol

EPA pathway testing-gas constituents

Gas quality constituent	Pipeline	Units	Raw biogas	RNG
Oxygen (O ₂)	0.0005	Vol %	0.55%	0.15 ppmv 0.000015%
Hydrogen Sulfide (H ₂ S)	0.25	Grains/100 scf	1,100,000 ppbv	120 ppbv
Mercaptan Sulfur (R-SH)	0.5	Grains/100 scf	1380 ppbv	ND
Total Sulfur (TS)	5	Grains/100 scf	1,101,455 ppbv	ND
Carbon Dioxide (CO ₂)	2	Vol %	38.10%	0.30%
Water vapor	5	lbs/MMscf	>100 lb/MMcf	<2 lb/MMcf
Interchangeability (AGA Research Bulletin No. 36) GPA 2286_Wobbe Index			616	1347
Temperature	≤100	°F	80°F	51°F
Hydrocarbon dew point	0	°F @ 500 lbs/in ²	-31.0°F at 500 psig	-132°F at 500 psig
Higher heating value (Gross)	950-1100	Btu/scf	601 Btu/scf	1008 Btu/scf

- Raw biogas validates your source of biogas
- RNG validates meeting pipeline specs
- Both sets of tests must include all pipeline specs for the project

Grand Rapids WRCC, Michigan

- 400 MGD plant
- Municipal waste
- 2-400 scfm systems
- Oxygen removal system
- Start-up: December 2021
- Pipeline injection-DTE energy pipeline

Moisture, bacteria, CO₂ and siloxane/VOC removal

PSB Industries deoxo system

 H_2S removal

Design considerations

- Site conditions
- Installation requirements
- End-use technology
- Discharge gas conditions

Hazardous locations

Locations where fire or explosion hazards exist due to flammable gases

> Per NFPA 820, gas processing equipment shall be rated Class I Division 1 and located in a classified area

Enclosures: purpose-built vs. containerized

Advantages of purposebuilt enclosures

- Customization
- Higher quality cold weather protection
- Higher quality sound attenuation
- Ease of assembly
- Consistent quality control of product
- Price competitive

Ease of installation

Enclosures with electrical rooms

Ease of installation

- Reduce on-site installation time
- Defined interconnections
- Limited contractor scope
- On-site electrical pre-commissioned prior to shipment

Ease of installation

- Roanoke Regional WPCP, VA
- 37 MGD plant
- Municipal wastewater
- 400 scfm
- Owned and operated by the natural gas utility
- Start-up: April 2023

- Site conditions
- End-use technology
- Inlet gas conditions (gas testing)
- Discharge gas conditions

Equipment	H ₂ S	Siloxanes	
Turbine	<5,000 ppmv	<100 ppbv	
Linear generators	ND	100 ppbv	
IC engine	<100 - 500 ppmv	<100 - 1,000 ppbv	
Boiler	<100 - 500 ppmv	<500 - 2,000 ppbv	
Vehicle fuel	<4 ppmv	<100 ppbv	
Pipeline	Utility requirements	Utility requirements	

Biogas to RNG process flow

Vehicle fuel/pipelines

Leaders in Biogas Technology

CNG vehicle fueling station

Biogas constituents

bi·o·gas, 'bīō gas/, noun, gaseous fuel, especially methane, produced by the fermentation of organic matter.

- Methane, CH₄
- Carbon Dioxide, CO₂
- Nitrogen, N₂
- Oxygen, O₂

Hydrogen Sulfide, H₂S

- Moisture
- Particulates
- Siloxanes
- Volatile Organic Compounds

Hydrogen Sulfide, H₂S

- Equipment damage from corrosion (Hydrosulfuric Acid)
- SO_x emissions
- Health and safety issues (1000 ppm will cause an individual to lose consciousness)
- Odor control
- Causes fouling of siloxane removal media

H₂S removal at the digester

- Ferric hydrate powder
- Added directly to the digester on a daily basis
- Can be used alone or in conjunction with fixed-bed media systems

New bag

After 7 days

H₂S removal system

Vehicle fuel/pipelines

Leaders in Biogas Technology

CNG vehicle fueling station

Hydrogen Sulfide removal systems

- Filtration medias
 - Wood based
 - Clay based
 - Ferric hydroxide
 - Carbon
- For sites with high H₂S
 - Biological systems
 - Chemical systems

South Platte Renew, Colorado

- Littleton-Englewood, CO
- 20 MGD plant
- 400 scfm
- Start-up: October 2019

Biogas constituents

bi·o·gas, 'bīō gas/, noun, gaseous fuel, especially methane, produced by the fermentation of organic matter.

- Methane, CH₄
- Carbon Dioxide, CO₂
- Nitrogen, N₂
- Oxygen, O₂
- Hydrogen Sulfide, H₂S
 Moisture
- Particulates
- Siloxanes
- Volatile Organic Compounds

Compression/moisture removal systems

Compression/moisture removal

- Two stage condensate removal process to protect the compressor and the end use equipment
- Designed for up to 200 psig, particulate free and relative humidity less than 25%

Compression/moisture removal

Theresa Street WRRF, Nebraska

- 27 MGD
- 400 scfm
- Municipal waste
- Start-up: September 2020

Biogas constituents

bi·o·gas, 'bīō gas/, noun, gaseous fuel, especially methane, produced by the fermentation of organic matter.

- Methane, CH₄
- Carbon Dioxide, CO₂
- Nitrogen, N₂
- Oxygen, O₂
- Hydrogen Sulfide, H₂S
- Moisture
- Particulates
- Siloxanes
- Volatile Organic Compounds

- Silica and organic compounds are combined (Organosilicon)
- Used in many consumer and *industrial products (listed as silicones as the ingredient on products)
- Shampoo
- Conditioner
- Deodorant
- Food additives * F

- * Dry cleaning solutions
- * Windshield cleaning products
- * RTV silicone cleaner
- s * Pipe dope/sealant
- Siloxanes break down in landfills and digesters, and combine with the methane gas

What is a Siloxane?

Siloxane impact on equipment

Engines

When methane gas is used as a fuel, the siloxanes form SiO_2 Silicon Dioxide, and precipitate to a hard deposit on surfaces

- Significant impact on electrical generation systems
- Increased downtime for maintaining equipment
- Increased costs for components, i.e. spark plugs, valve seats
- Engine rebuild time is more frequent

Is a siloxane removal system needed?

CNG vehicle fueling station

Vehicle fuel/pipelines

Siloxanes and VOCs

Coal

Wood

Coconut shell

Extruded pellets

4x8 mesh chips

Silica gel-irregular shaped

Silica gel-spheres

Siloxane/VOC removal

Pacific NW facility

- 130 MGD Plant
- Municipal waste
- 300 scfm system
- Start-up: Fall 2022

Pipeline injection – PSE

Moisture, bacteria and CO₂ removal

Biogas constituents

bi·o·gas, 'bīō gas/, noun, gaseous fuel, especially methane, produced by the fermentation of organic matter.

- Methane, CH₄
- Carbon Dioxide, CO₂
- Nitrogen, N₂
- Oxygen, O₂
- Hydrogen Sulfide, H₂S
- Moisture
- Particulates
- Siloxanes
- Volatile Organic Compounds

Biogas upgrading technologies

- Membrane separation
- Chemical absorption

- Membranes have a few hundred miles worth of fiber in one cartridge
- Each hollow fiber has a size on the micron scale, smaller than a human hair

Membrane separation

Pleasant Grove WWTP

- Roseville, CA
- 12 MGD Plant
- Gas flow: 400 scfm
- Fast-fill: municipal bus fueling
- System component redundancy
- 2 10'Ø x 12' ss H₂S vessels 1,000 ppm
- Redundant compressors inside enclosure with sound attenuation

Puregas CA technology

- CO₂ separation via chemical absorption and stripping of amine
- Low pressure (~12 psig) operation reduces electrical demand, increases plant availability
- Lowest methane slip to tail gas stream (< 0.1%) of biogas upgrading technology options
- Flexibility to treat H₂S in raw biogas or in tail gas

Threemile Canyon Farms

- Location: Boardman, OR
- Biogas feedstock: dairy manure
- Plant capacity: 3,500 scfm
- Puregas CApure upgrading technology with 99.934% methane recovery
- Heat integration between CApure plant and substrate pre-heat train upstream of covered lagoon digesters

Start-up date: 2019

Shell New Energies Junction City

- Location: Junction City, OR
- Biogas feedstock: dairy manure and straw/grass residuals
- Plant capacity: 3500scfm
- Puregas CApure upgrading technology
- Prefabricated equipment modules fully factory-tested
- Start-up: 2021

Q & A

Electricity, heat, fuel for vehicles, pipeline injection

/ UNISON

VISIT US AT BOOTH 4002

elebratic V

SYEARS

EMPLOYEE

OWNED

OCTOBER 5-9

www.unisonsolutions.com sales@unisonsolutions.com