Tuesday, February 20, 2024

A Blueprint To Decarbonize Your Real Estate Portfolio

Featuring Simon Fowell and Nicolette Sanfilippo

Sponsored by Autocase

URBANELEPHANTMEDIA

PEER-TO-PEER LEARNING MADE EASY

Sustainability Training for Urban Designers and Policymakers

Randy Rodgers, Director of Big Ideas Randy@UrbanElephantMedia.com 563-562-2925

UrbanElephantMedia.co

© Copyright 2024 UrbanElephantMedia LLC. All rights reserved.

Nicolette Sanfilippo Director of Portfolio Sustainability Strategy

Stok

Simon Fowell Director of Customer Success Carbonsight

© Copyright 2024 UrbanElephantMedia LLC. All rights reserved.

LIVE WEBINAR

A Blueprint to Decarbonize your Real Estate Portfolio

February 20@2PM EST

REGISTER NOW

Simon Fowell Director, Customer Success Carbonsight (by Autocase)

Nicolette Sanfilippo Director, Portfolio Sustainability Strategy Stok

Download the full companion guide

STEP 01 Identify risks of <u>not</u> decarbonizing

STEP 02

Quantify baseline emissions

STEP 03

Set SMART carbon reduction targets

STEP 04

Identify CO2 reduction measures

STEP 05

Create a prioritized action plan to decarbonize

STEP 06

Implement & adapt the plan

STEP 07

Track, report, and communicate

STEP 08 Repeat

Step 1. The risks of not decarbonizing

5 key risks leading to the brown discount

"What's the cost of decarbonizing?"

"What's the cost of not decarbonizing?"

Less desirable

Brown Discount

Local building energy performance standards & penalties.

You have to do it sooner or later.

ESG reporting requirements to show meaningful action.

Investors & clients are asking: "What are you doing to decarbonize?"

Fluctuating energy prices.

Less maintenance.

Occupancy and retention.

Climate-savvy consumers.

Reduced down-time from shocks.

Where, what, when (& how long), & how big

Less desirable

Brown Discount

Step 2. Quantify baseline emissions

The importance of baselining

You can't manage what you don't measure.

Conduct a GHG inventory / carbon audit.

Follow existing protocols e.g.

- US EPA Greenhouse Gas Reporting Program (GHGRP)
- Greenhouse Gas Protocol from World Resources Institute (WRI) & World Business Council for Sustainable Development (WBCSD)
- ISO 14067:2018 Carbon footprint of products Requirements and guidelines for quantification

Bucket by scope

Image Source: WRI/WBCSD Corporate Value Chain (Scope 3) Accounting and Reporting Standard

Find energy data and fill gaps the right way

Building-specific ratio

Divide the total building energy use by the % of gross floor area you occupy

Generic building

Use default energy use per square foot

Actual energy use

Monthly utility bills or meter readings

Similar buildings

Extrapolate based on buildings similar in size, location, typology, and schedule.

Carbonsight

Æ

Le Results

Energy \rightarrow Baseline CO₂ now using local grid emission factors \rightarrow Business as usual projection as grid changes

Step 3. Set SMART targets

Why you need to set a SMART carbon target

S	Specific	• Define exactly what you are trying to accomplish
\mathbb{M}	Measurable	• You need to be able to verify you've actually achieved it
А	Achievable	• Set a target you can actually reach
R	Relevant	Align it to your long-term objectives as a company
Т	Time-bound	Nothing happens without a deadline

 \checkmark

"Reduce absolute operational Scope 1 and 2 CO₂e emissions from our North American facilities by 50% relative to 2019 by 2030."

"Reduce emissions by 80%"

X

Absolute vs. intensity-based goals

AbsoluteIntensity-basedReduce GHG emissions by a
discrete amountSets a goal relative to an economic
or operational metricFig. Deduce total emissions E0% by
Fig. DeduceFig. Deduce

E.g. Reduce <u>total emissions 50%</u> by 2030 vs. 2019.

E.g. Reduce...

- kgCO₂e/\$ in revenue,
- kgCO₂e/sq ft,
- kgCO₂e/widget made,
- etc.

...50% by 2030 vs. 2019.

Actually tackles carbon reduction

Doesn't restrict growth potential

Step 4. Identify decarbonization strategies

The levers you can pull

Energy efficiency and conservation measures

Fuel switching / electrification

Decarbonizing the supply of energy

Low hanging fruit

'A slice of watermelon is still bigger than a bunch of grapes'.

80-20 rule.

Which buildings to focus on

Start with high level strategy

Autocase Insights								
Location 🛱 Boston ~								
Energy Reduction Analysis		Location: Boston150,000 ft²CommercialIndustrialResidential						
Baseline annual electricity consumption: 2,425,707 kWh		Baseline annual natural gas consumption: 6,224 MMBtu						
Targeted electricity percent reduction from base case	100/	Targeted natural gas percent reduction from base case						
	40%	80%						
		—						
Building electricity needs supplied by onsite renewables	250/	Building natural gas needs supplied by onsite renewables						
0	25%	0%						

Create a list of all potential decarbonization measures

Energy audits + technical team.

Not always possible \rightarrow creative solutions.

For each building, you should have the following information on each measure:

- ✓ Impact on energy use for each fuel source
- ✓ When it would be implemented
- ✓ Upfront cost
- ✓ Any maintenance cost impacts
- Expected utility savings
- Annual change in CO₂

Overview Properties

erties Measures Evaluate

Roadmap

 (\rightarrow)

Simon test Carbonsight (retrofit packages) V

Retrofit Packages - Hot & Dry Climate Zone | Energy Related Process improvements | 9901 Home Ave, Hanford, California, 93230

Options represent alternatives being explored for a particular measure. Create a new option, or edit previously created ones. If you have created options that require the EnergyPlus simulation engine to run TBD will be displayed until the model has been run. Once run the impact shown in the options table reflects the single measure impact, and synergies of selected measures for a single property are considered in the final roadmap results once all property options are selected.

← Back						kBtu kWh	kBtu kWh Delete Options + Add Option			
	Option Name	Option Type	Energy Type	EUI Amount Saved		Annual Energy Reduction	Year	Capital Cost		
				kBtu/year/ft ²	kBtu/year					
	Standard Retrofit	Modification/RetroCommissioning	F Electricity	4.26	446,110.98	9 Percent	2027	\$190,490.30	Ľ	
			b Natural Gas	0.60	62,772.30	9 Percent				
	Deep Retrofit	Modification/RetroCommissioning	F Electricity	8.52	892,221.96	18 Percent	2027	\$433,313.10	Ċ	
			S Natural Gas	1.33	139,494.00	20 Percent				

Options & timing

Step 5. Create a prioritized action plan to decarbonize

Things to consider

Location

Differing grid emissions & utility costs (now and future) affect cost-effectiveness of strategies

Sequence

Some measures have to be done before others can be done

ROI

Does energy savings over time outweigh initial upfront cost?

Measure	Property Name	Apply To Roadmap	Option	Туре	Net Savings (\$)	CO ₂ Saved	\$ per kBtu Saved	Capital Cost	Application Year
Retrofit Packages -	403 Polczinski Cir, Oconto Falls, Wisconsin, 54154		Standard Retrofit	Modification/RetroCommissioning	-\$36,920.10	314.62	\$0.03	\$186,620.49	2026
Cold Climate Zone			Deep Retrofit	Modification/RetroCommissioning	-\$86,404.23	756.97	\$0.03	\$406,812.92	2026
On-site Solar	921 W. Thatcher Boulevard, Safford, Arizona, 85546		80% on-site solar	Addition	\$200,593.39	332.60	\$0.00	\$118,424.00	2027
EBCx - Hot & Dry Climate Zone	921 W. Thatcher Boulevard, Safford, Arizona, 85546		Existing Building Commissioning (EBCx)	Modification/RetroCommissioning	\$95,164.29	157.85	\$0.00	\$18,355.72	2025
On-site Solar	194 Red Eye Ln, Defuniak Springs, Florida, 32433		50% on-site solar	Addition	\$48,329.56	97.73	\$0.00	\$21,210.00	2027
On-site Solar			80% on-site solar	Addition	\$103,729.11	195.46	\$0.00	\$35,350.00	2027
EBCx - Hot & Humid Climate Zone	100 Piper Cir, Princeton, Louisiana, 71067	Z	Existing Building Commissioning (EBCx)	Modification/RetroCommissioning	\$66,086.60	196.73	\$0.01	\$36,107.87	2025
On-site Solar	308 Byers Avenue, Hot Sulphur Springs, CO 80451		50% on-site solar	Addition	\$113,561.69	656.48	\$0.00	\$263,601.00	2027
			25% on-site solar	Addition	\$24,480.83	177.74	\$0.00	\$87,867.00	2028
EBCx - Marine Climate Zone	15870 Pedrioli Dr, Brookings, Oregon, 97415		Existing Building Commissioning (EBCx)	Modification/RetroCommissioning	\$34,184.08	60.86	\$0.01	\$21,597.08	2025
On-site Solar	15870 Pedrioli Dr, Brookings, Oregon		50% on-site solar	Addition	\$127,014.46	164.94	\$0.00	\$139,336.00	2027
On Site Solar	enterstands, oregon,								

Step 6. Implement & adapt the plan

Get buy-in for your capital plan

Build the business case so it's part of the capital plan and budget for each property.

Work with your building managers, facilities teams, and consultant teams to put the plan into action.

Update and adapt

• As you implement measures, check it off your decarbonization plan.

- If things change, reassess your plan.
 - Budgets, acquisitions, dispositions, delays, utility rates, emission factors.

• Make sure you're still going to meet your goal.

Step 7. Track and report progress

TrackUse tracking tools to help see how you'reperforming against your intended goals

Report GRI, SBT, SASB, TCFD, CDP, GRESB

Communicate

Share successes and be honest about areas for improvement

Step 8. Repeat

STEP 01 Identify risks of <u>not</u> decarbonizing

STEP 02

Quantify baseline emissions

STEP 03

Set SMART carbon reduction targets

STEP 04

Identify CO2 reduction measures

STEP 05

Create a prioritized action plan to decarbonize

STEP 06

Implement & adapt the plan

STEP 07

Track, report, and communicate

STEP 08 Repeat

Download the full companion guide

Questions: <u>simon.fowell@autocase.com</u> <u>nicolette@stok.com</u>

